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The importance of biologically active lipid mediators, such as prostanoids,
leukotrienes, and specialized pro-resolving mediators, in the regulation of
inflammation is well established. While the relevance of cholesterol in the
context of atherosclerosis is also widely accepted, the role of cholesterol
and its biosynthetic precursors on inflammatory processes is less
comprehensively described. In the present mini-review, we summarize the
current understanding of the inflammation-regulatory properties of
cholesterol and relevant biosynthetic intermediates taking into account the
implications of different subcellular distributions. Finally, we discuss the
inflammation-regulatory effect of cholesterol homeostasis in the context of
SARS-CoV-2 infections.
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1 Introduction

The high incidence of hypercholesteremia, i.e., pathologically elevated plasma
cholesterol levels, remains a matter of great concern, as the concomitantly elevated
levels of low-density lipoprotein (LDL) cholesterol pose a major risk factor for the
development of cardiovascular diseases such as atherosclerosis (Tsao et al., 2022). In
atherosclerosis, LDL-cholesterol is deposited in the arterial intima. Upon uptake of
excessive amounts of modified, e.g., oxidized, LDL-cholesterol by macrophages, the
latter develop a highly activated foam cell phenotype and, thus, contribute to the
inflammatory character of atherosclerosis (Choudhury et al., 2005). Consequently, the
use of cholesterol-lowering therapeutics, especially statins, i.e., 3-hydroxy-3-
methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, increased massively
(Salami et al., 2017). The fact that upon inhibition of intracellular cholesterol
production cells are able to cover their cholesterol demand by taking up cholesterol
from the plasma (Gui et al., 2022), underscores the importance of maintaining intracellular
cholesterol levels in a narrow, physiological range to facilitate the crucial functions of
cholesterol in cellular membranes and as a precursor for various products (e.g., steroids,
bile acids, vitamin D) (Tabas, 2002). Equally important, cells evolved efficient means to
export cholesterol to avoid toxicity induced by excessive cholesterol levels (Song et al.,
2021). As a side note, elevated cholesterol concentrations also play a pivotal role in the
tumor microenvironment, where they not only support proliferation of tumor cells, but
also attenuate anti-tumor immune responses. For details on the role of cholesterol
homeostasis in tumor immunity see (Halimi and Farjadian, 2022).
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With the recent advent of the concept of immunometabolism
(Mathis and Shoelson, 2011), the tight integration of metabolic
processes with immune responses gained increasing attention and
led to propose that intracellular cholesterol dynamics and, similarly
important, the cholesterol biosynthetic flux bear immune-

regulatory properties (Fessler, 2016; O’Hagan et al., 2022). In
this review, we provide a brief overview of the inflammation-
regulatory functions of various cholesterol biosynthesis
intermediates and discuss implications in the context of SARS-
CoV-2.

FIGURE 1
Cholesterol homeostasis and inflammatory regulation. 1. Uptake: Cholesterol is taken up bound to low-density lipoprotein (LDL) particles via LDL-
receptor (LDL-R)-associated endocytosis, released from LDL upon fusion of endosomes with lysosomes, and distributed by Niemann-Pick type C (NPC)
proteins to either the endoplasmic reticulum (ER) or the plasma membrane. 2. Biosynthesis: Cholesterol is synthesized starting from acetyl-CoA in the
cytoplasm, converted via 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) to mevalonate in the ER, further processed in peroxisomes to the
isoprenoids farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), which can also be produced from the GGPP-precursor geranylgeraniol
(GGOH). In the ER, two FPP molecules condensate to squalene, which in a multi-step process is processed to lanosterol, which is further metabolized in the
parallel Bloch and Kandutsch-Russel (K-R) pathways to desmosterol and 7-dehydrocholesterol (7-DHC), respectively, both of which are direct precursors of
cholesterol. ER cholesterol levels are sensed by sterol response element-binding protein 2 (SREBP2), which is bound by SREBP cleavage-activating protein
(SCAP) and insulin-induced gene (INSIG) in the ER. Low ER cholesterol levels induce translocation of SCAP-bound SREBP2 to the Golgi, where it undergoes
cleavage-dependent activation. The N-terminal SREBP2 fragment acts as transcription factor among others for cholesterol biosynthesis enzymes and LDL-R.
3. Efflux: Excess cholesterol in the ER is esterified by acyl coenzyme A:cholesterol acyltransferase (ACAT) and subsequently either stored in lipid droplets or
exported via ATP-binding cassette A1 (ABCA1) or ABCG1 and loaded onto high-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I) for retrograde
transport to the liver. Elevated oxysterol and desmosterol levels further activate the transcription factor liver X receptor (LXR) to enhance the expression of
cholesterol exporters.
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2 Cholesterol and inflammation

2.1 Cholesterol homeostasis

All mammalian cells share essentially the same mechanisms to
regulate their cholesterol content by a dynamic interplay between
uptake, de novo synthesis, storage, and export. Cells take up
cholesterol from the plasma, where it is transported predominantly
packaged in LDL particles, via LDL receptor (LDLR)-mediated
endocytosis (Brown and Goldstein, 1986). Upon release from the LDL
particles within the endo-lysosomal compartment, cholesterol is
distributed intracellularly to endoplasmic reticulum (ER) or plasma
membrane by Niemann-Pick type C (NPC) 1 and 2 proteins (Pfeffer,
2019). In addition, cells can de novo synthesize cholesterol in a tightly
regulated cascade involving more than 20 enzymes within three
subcellular compartments (cytoplasm, ER, and peroxisomes) to satisfy
their cholesterol demands (Charles et al., 2020). Due to its toxic properties,
excess free intracellular cholesterol is esterified by acyl coenzyme A:
cholesterol acyltransferase (ACAT) and either stored in lipid droplets or
exported via ATP-binding cassette A1 (ABCA1) or ABCG1 and loaded
onto high-density lipoprotein (HDL) (Yu and Tang, 2022).

The delicate cholesterol balance is largely controlled by two
opposing transcription factors: Sterol response element-binding
protein 2 (SREBP2), which, in response to cholesterol depletion at
the ER, is escorted by SREBP cleavage-activating protein (SCAP) from
ER to Golgi, where it is cleaved by site 1 protease (S1P) and S2P. The
N-terminal transcription factor domain then localizes to the nucleus,
and facilitates the expression of target genes, which are important for
cholesterol biosynthesis and import (Sakai et al., 1996). In contrast,
under elevated cholesterol conditions SREBP2 is retained at the ER,
while oxysterols or desmosterol, a direct precursor of cholesterol,
activate liver X receptors (LXRα/β) with subsequent induction of genes
that reduce cholesterol uptake and promote cholesterol export
(Janowski et al., 1996; Yang et al., 2006) (Figure 1). For further
details, we refer the readers to the following comprehensive review
(Luo et al., 2020).

2.2 Sterol synthesis and inflammatory
responses

Cholesterol homeostasis and immune responses are tightly
intertwined in a bidirectional manner. Since the present mini-
review focuses on the effects of cholesterol (and cholesterol
precursors) on inflammatory responses in innate immune cells, we
refer the readers to excellent reviews for details on the reprogramming
of cholesterol metabolism upon infections (Robertson and Ghazal,
2016; Lee and Bensinger, 2022).

A general reduction in the cholesterol biosynthetic flux was
described to spontaneously induce interferon-stimulated genes
(ISGs) (York et al., 2015), and to enhance anti-viral responses
upon infections (Xiao et al., 2020). Moreover, SREBP2 was shown
to directly bind and transcriptionally activate ISGs and further pro-
inflammatory genes (Kusnadi et al., 2019). Independent of its
SREBP2-activating function, the cholesterol sensor SCAP was also
observed to connect cholesterol homeostasis to inflammation by
shuttling interferon-regulatory factor 3 (IRF3) from ER to the
golgi-localized stimulator of interferon genes (STING), thereby
facilitating ISG induction upon infection (Chen et al., 2016), and

by activation of the NLR family pyrin domain containing 3 (NLRP3)
inflammasome (Guo et al., 2018). In the following sections, we will
summarize the current understanding of the immunoregulatory
functions of cholesterol and associated biosynthetic intermediates.

2.2.1 Cholesterol
As exemplified by the pro-inflammatory character of foam cells

laden with modified LDL-cholesterol in atherosclerosis (Tall and
Yvan-Charvet, 2015), high cholesterol levels in innate immune cells
are generally associated with pro-inflammatory functions. Along these
lines, cholesterol crystals are recognized as NLRP3 inflammasome
inducers in macrophages in atherosclerosis (Duewell et al., 2010).

In addition to total cellular cholesterol levels, its intracellular
distribution appears critical for the inflammatory functions. For
example, undisturbed cholesterol trafficking to the ER was required
to enable activation of nuclear factor ‘kappa-light-chain-enhancer’ of
activated B cells (NF-κB) and mitogen-activated protein kinase
(MAPK) signaling, and consequently enhanced expression of the
pro-inflammatory cytokines interleukin-6 (IL-6) and tumor
necrosis factor-α (TNF-α) in response to excess amounts of free
cholesterol (Li et al., 2005). Similarly, reducing ER cholesterol
levels by either NPC1 inhibition or statin treatment abolished
NLRP3 inflammasome activation, resulting in markedly lower IL-
1β and IL-18 secretion. While activation of the NLRP3 inflammasome
demanded intact shuttling of cholesterol to the ER, assembly and
activation of the DNA sensing absent in melanoma 2 (AIM2)
inflammasome by poly(deoxyadenylic-deoxythymidylic) acid
(poly(dA:dT)) appeared insensitive to disturbances in cholesterol
distribution (de la Roche et al., 2018). Interestingly, enhanced
accumulation of cholesterol at the ER, brought about by
experimental depletion of cholesterol-25-hydroxylase (Ch25h),
resulted in mitochondrial (mt) dysfunction and mtDNA release
and, thus, induced activation of the AIM2 inflammasome in
response to lipopolysaccharide (LPS)-stimulation (Dang et al., 2017).

Furthermore, cholesterol, like other membrane lipids, affects the
localization of various pattern-recognition receptors (PRRs) to specific
organelles and/or membrane microdomains known as lipid rafts, which
again is critical for the regulation of their activity. For further details,
readers are referred to comprehensive reviews (Ruysschaert and Lonez,
2015; Köberlin et al., 2016). Therefore, it is not surprising that changes in
intracellular cholesterol distribution were associated with altered toll-like
receptor (TLR) sensitivity. For instance, increasing cholesterol loading in
plasmamembranes, by supplementation ofmethyl-β-cyclodextrin (CD)-
complexed cholesterol, sufficed to initiate spontaneous TLR4 signaling in
murine macrophages. In contrast, enhanced endosomal cholesterol
accumulation, achieved by combined supplementation of acetylated
LDL-cholesterol and inhibition of NPC1, induced TLR3 responses
(Sun et al., 2009). A recent study further revealed that accumulation
of free cholesterol in endosomes and lysosomes upon TLR4 activation is
necessary for effective myeloid differentiation primary response 88
(MyD88)-dependent pro-inflammatory signaling in macrophages
(Hayakawa et al., 2022).

In addition to uptake and de novo synthesis, cellular export of
cholesterol by ABCA1/G1 transporters controls total and subcellular
cholesterol levels, and consequently influences inflammatory
responses. For example, intracellular cholesterol accumulation in
ABCA1-deficient macrophages increased the expression of a broad
range of inflammatory mediators upon LPS stimulation (Zhu et al.,
2008). Mechanistically, elevated lipid raft cholesterol levels in ABCA1-
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deficient cells led to enhanced recruitment of TLRs to these membrane
domains, thereby increasing the responsiveness to TLR agonists
(Yvan-Charvet et al., 2008; Zhu et al., 2010). Cholesterol
accumulation due to ABCA1/G1-deficiency was further shown to
activate the NLRP3 inflammasome in dendritic cells, resulting in a
systemic lupus erythematosus-like autoimmune phenotype in mice
(Westerterp et al., 2017). This corroborates recent observations that
miltefosine, an FDA-approved drug for the treatment of leishmaniasis,
dampens NLRP3 inflammasome assembly and IL-1β release in
macrophages by increasing ABCA1-mediated cholesterol efflux
(Iacano et al., 2019).

Although cellular cholesterol export is largely associated with anti-
inflammatory responses, the role of HDL remains controversial. In
line with its function as a main plasma acceptor for cellular cholesterol,
HDL was reported to provoke cholesterol export, thereby reducing
cholesterol in lipid rafts and consequently attenuating TLR signaling
(Cheng et al., 2012). HDL further induced the expression of activating
transcription factor 3 (ATF3), a key transcriptional repressor of innate
immune response genes, and, thus, downregulated the expression of
TLR-induced pro-inflammatory cytokines (De Nardo et al., 2014). In
contrast, HDL-associated apolipoprotein A-I (apoA-I) was shown to
stimulate MyD88-dependent pro-inflammatory cytokine production
in mouse macrophages (Smoak et al., 2010). Interestingly, while
exporter-independent, lipid raft-disturbing depletion of cholesterol
(e.g., in the presence of high HDL-apoA-I levels) was associated with
pro-inflammatory effects, active, exporter-mediated efflux likely
accounts for anti-inflammatory HDL effects (van der Vorst et al.,
2017). Nevertheless, the majority of information, especially available
in vivo findings, rather support the anti-inflammatory aspects of HDL
(Fotakis et al., 2019).

Not surprisingly, LXR as the major regulator of ABCA1/G1 was
also comprehensively analyzed in the context of inflammation. While
the majority of reports described anti-inflammatory properties of LXR
(Bilotta et al., 2020), others proposed potential pro-inflammatory
functions of LXR as well. For instance, LXR was shown to activate
hypoxia-inducible factor-1α (HIF-1α) and subsequent IL-1β secretion
in human macrophages independent of its effects on ABCA1/G1
(Ménégaut et al., 2020). Furthermore, long-term activation of LXR
was shown to potentiate subsequent LPS responses in human
macrophages by increasing TLR4 signaling (Fontaine et al., 2007).
Yet, considering the wide-ranging functions of LXR in lipid signaling,
exceeding its mere role in cholesterol homeostasis (Wang and
Tontonoz, 2018), contradictory findings regarding its impact on
inflammatory responses are not entirely unexpected.

2.2.2 Cholesterol biosynthesis intermediates
While the importance of cholesterol for innate immunity has been

extensively studied, the role of specific intermediates generated during
cholesterol biosynthesis for inflammatory reactions just emerges. In
the following section, we will therefore briefly summarize the current
understanding of the role of cholesterol precursors and oxysterols in
the context of inflammation (Figure 1).

2.2.2.1 Mevalonate
Mevalonate, the direct product of HMG-CoA reductase, is

considered to have pro-inflammatory properties. In line,
mevalonate accumulation enhanced a trained immunity phenotype
induced by β-Glucan, and, consequently, contributed to elevated TNF-
α and IL-6 responses after restimulation with LPS in human

monocytes. Mevalonate-driven constitutive trained immunity was
further proposed to contribute to recurrent episodes of
inflammatory symptoms in patients suffering from the hyper
immunoglobulin D syndrome (HIDS), which is characterized by
mevalonate kinase deficiency (MKD) accompanied by elevated
mevalonate levels (Bekkering et al., 2018). Interestingly, others
proposed that the decrease in isoprenoids rather than the increase
in mevalonate underlies the hyper-inflammatory syndrome in HIDS
(Politiek and Waterham, 2021).

2.2.2.2 Isoprenoids (farnesyl/geranylgeranyl pyrophosphate
(FPP/GGPP))

The hydrophobicity-increasing prenylation of members of the Ras
superfamily of small GTPases by the peroxisomally produced GGPP
or FPP is essential for their functionality and localization, and, thus,
directly affects cytoskeletal organization, receptor trafficking, and,
consequently, numerous communication processes (Wang and
Casey, 2016). Nevertheless, the role of isoprenoids in inflammation
remains rather obscure. Some studies observed pro-inflammatory
effects, due to enhanced type I or type II IFN signaling in response
to GGPP (Veillard et al., 2006; Koike et al., 2021). In contrast,
supplementation of the GGPP-precursor geranylgeraniol (GGOH)
reduced pro-inflammatory cytokines after LPS stimulation in vitro
and in vivo (Giriwono et al., 2013; Giriwono et al., 2019), suggestive for
anti-inflammatory properties of GGPP. Accordingly, pharmacological
inhibition of FPP synthase reduced FFP and GGPP levels, and
concomitantly increased inflammatory cytokine expression in LPS-
stimulated murine macrophages, which again could be reversed by the
addition of GGOH (Tricarico et al., 2014). These findings substantiate
the above-mentioned notion that the lack of isoprenoids might be
accountable for hyper-inflammatory episodes in HIDS (Politiek and
Waterham, 2021).

2.2.2.3 Squalene
Cholesterol biosynthesis intermediates downstream of the

isoprenoid pathway for the most part bear anti-inflammatory
characteristics. In line, squalene, derived from the condensation of
two FPP molecules, dampened NF-κB signaling and pro-
inflammatory cytokine expression after LPS stimulation in
monocytes and neutrophils as demonstrated by supplementation
studies (Cárdeno et al., 2015).

2.2.2.4 Lanosterol
Similarly, lanosterol accumulation, induced by pharmacological

inhibition or knockdown of its metabolizing enzyme cytochrome
P450 family 51 subfamily A member 1 (CYP51A1), reduced the
expression of ISGs and pro-inflammatory cytokines after LPS
treatment of murine macrophages (Araldi et al., 2017). Reduced
lanosterol levels in mice transgenically overexpressing 3β-
hydroxysterol Δ24-reductase (DHCR24), further correlated with
progression of atherosclerosis, as well as with enhanced type I IFN
responses and NLRP3-dependent inflammasome activation (Zhang
et al., 2021). Of note, the authors characterized this pro-inflammatory
phenotype mostly with respect to equally reduced desmosterol levels,
yet, indicated that reduced lanosterol levels might also be involved.

2.2.2.5 Desmosterol
Desmosterol is the direct precursor of cholesterol in the Bloch

pathway. It was described to exert mostly anti-inflammatory functions
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by activating LXR. Accordingly, the above-described atherosclerosis-
promoting phenotype in mice overexpressing DHCR24 in myeloid
cells was proposed to result from the depletion of desmosterol, leading
to impaired LXR activation and mitochondrial reactive oxygen species
formation (Zhang et al., 2021). Along the same lines,
DHCR24 inhibition and concomitant desmosterol accumulation,
led to LXR-mediated synthesis of polyunsaturated fatty acids,
which supported an anti-inflammatory and pro-resolving
macrophage phenotype in a murine peritonitis model (Körner
et al., 2019). Similarly, desmosterol-induced LXR activation in
microglia contributed to inflammation resolution in multiple
sclerosis (Berghoff et al., 2021). Interestingly, desmosterol
accumulation was also observed in atherosclerotic foam cells, where
it unexpectedly also suppressed inflammatory gene expression (Spann
et al., 2012).

2.2.2.6 7-Dehydrocholesterol (7-DHC)
In contrast, 7-DHC, the direct precursor of cholesterol in the

Kandutsch-Russell pathway, was shown to exert pro-inflammatory
functions. Specifically, elevated cellular 7-DHC levels, due to
deficiency of 7-DHC reductase (DHCR7) or exogenous
supplementation of 7-DHC, activated PI3K/AKT3, which
contributed to increased IRF3 phosphorylation and type I IFN
responses upon viral infections (Xiao et al., 2020).

2.2.2.7 Oxysterols
Oxysterols are well-known for their anti-viral properties by

influencing viral entry and replication via alterations of membrane
compositions (Lembo et al., 2016; Foo et al., 2022). In addition,
oxysterols were shown to induce pro- but also anti-inflammatory
immune responses. Most of the anti-inflammatory effects of
oxysterols, e.g., 25-hydroxycholesterol (25-HC), are mediated by
activation of LXR (Ma and Nelson, 2019), but further LXR-
independent functions were described. For instance, 25-HC
accumulation restricted AIM2 inflammasome activation and IL-1β
secretion in macrophages by reducing ER cholesterol levels and
associated mitochondrial damage (Dang et al., 2017). In contrast,
increased 25-HC levels enhanced pro-inflammatory responses via an
activator protein-1 (AP-1)-dependent increase in TLR expression in
macrophages in the context of viral infections (Gold et al., 2014). As
the present mini-review aims to provide a quick overview of the role of
various cholesterol biosynthesis intermediates in inflammation,
readers specifically interested in the role of the more extensively
studied oxysterols are referred to comprehensive reviews (Bah
et al., 2017; de Freitas et al., 2022).

Conclusively, due to the complexity and highly dynamic
regulation of cholesterol biosynthesis, which encompasses
numerous feedback loops (Chen et al., 2019), characterizing the
exact role of individual sterol precursors remains challenging as
supplementation or interference with specific enzymes commonly
affects a broad spectrum of other intermediates.

3 Implications for SARS-CoV-2 infections

Infections with severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) induce massive inflammatory responses. In severe
cases of the resulting coronavirus disease 2019 (COVID-19),
inflammatory events progress to a systemic inflammatory disease

syndrome (SIRS), which correlates with poor disease prognosis (Jin
et al., 2021). Importantly, while anti-viral, inflammatory responses are
generally beneficial in early phases of the infection, development of
overshooting systemic inflammatory responses, i.e., a cytokine storm,
associated with excess production of pro-inflammatory cytokines,
including type I and II IFNs, IL-1β, IL-6, IL-12, IL-18, and TNF-α,
and chemokines, including C-X-C motif chemokine ligand 8
(CXCL8), CXCL9, CXCL10, CXCL11, C-C motif chemokine ligand
2 (CCL2), and CCL5, is rather detrimental (Coperchini et al., 2021).
Interestingly, enhanced SREBP2 activity, indicative for elevated
cellular cholesterol synthesis and biosynthetic flux, was found to
correlate with disease severity in COVID-19 patients, and further
directly associated with the development of a systemic cytokine storm
(Lee et al., 2020). Paradoxically, lipoprotein-bound as well as total
cholesterol levels in plasma appear to be reduced in COVID-19
patients, and low LDL- and HDL-cholesterol concentrations predict
enhanced disease severity as well as mortality (Chidambaram et al.,
2022). The apparent discrepancy between plasma cholesterol levels
and SREBP2 activity in severe cases of COVID-19, might serve as an
indicator for a generally disturbed cholesterol homeostasis.
Presumably, this would result in an intracellular cholesterol
overload, predicted to fuel pro-inflammatory responses (Dang and
Cyster, 2019). This concept is corroborated by the recent finding that
all classes of sterols (oxysterols and intermediates) were increased in
extracellular vesicles (EVs) of COVID-19 patients during the hyper-
inflammatory phase of the disease (Lam et al., 2021). Since EVs are not
only important for intercellular communication (Grieco et al., 2021),
but supposedly provide an accessible window into intracellular
changes on a systemic level, these observations indeed hint towards
increased SREBP2 activity. Considering the elevated levels of SREBP2-
inhibitory 25-HC previously shown in response to viral infections
(Reboldi et al., 2014), an increased cholesterol biosynthetic flux in the
hyper-inflammatory phase of viral infections appears rather
surprising. Nevertheless, the observation that the intermediates
declined again in the EVs during the early resolution phase, agree
with a dynamic response to increased 25-HC levels during the hyper-
inflammatory phase (Lam et al., 2021). Taking the highly intertwined
cholesterol dynamics into account, the success of therapeutic
approaches interfering with cholesterol homeostasis in COVID-19
patients might be highly dependent on the exact disease stage. In fact,
plasma EVs and selected cholesterol intermediates therein might be
considered as an option to guide the appropriate timing of cholesterol-
targeted therapeutic interventions. Of note, the HMG-CoA reductase
inhibitor simvastatin was recently shown to reduce viral entry, but also
to attenuate the expression of pro-inflammatory mediators in cells
already infected by a virus (Teixeira et al., 2022). Furthermore,
administration of 25-HC-containing nanovesicles effectively
inhibited SREBP2 activity and reduced pro-inflammatory cytokines
in COVID-19 patient derived immune cells (Kim et al., 2021).

Conclusively, we speculate that the cholesterol biosynthetic flux
and/or levels of certain intermediates or cholesterol itself, as well as
their intracellular distribution, might be directly involved in the
systemic inflammatory progress of severe COVID-19 cases. This
might provide novel opportunities for the development of
molecular-targeted, disease stage-tailored interventions for COVID-
19 patients. Specifically, while general cholesterol lowering measures
bear protective potential during early stages of the disease by
attenuating viral entry, the multi-facetted, partially contradictory
effects of cholesterol and its biosynthetic intermediates likely
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require more sophisticated interventions strategies to prevent the
detrimental hyper-inflammatory systemic course of the disease.
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