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Cancer poses a serious threat to human health, and the search for safe and
effective drugs for its treatment has aroused interest and become a long-term
goal. Traditional Chinese herbal medicine (TCM), an ancient science with unique
anti-cancer advantages, has achieved outstanding results in long-term clinical
practice. Accumulating evidence shows that saponins are key bioactive
components in TCM and have great research and development applications
for their significant role in the treatment of cancer. Saponins are a class of
glycosides comprising nonpolar triterpenes or sterols attached to hydrophilic
oligosaccharide groups that exert antitumor effects by targeting the NF-κB, PI3Ks-
Akt-mTOR, MAPK, Wnt-β-catenin, JAK-STAT3, APMK, p53, and EGFR signaling
pathways. Presently, few advances have been made in physiological and
pathological studies on the effect of saponins on signal transduction pathways
involved in cancer treatment. This paper reviews the phytochemistry and
extraction methods of saponins of TCM and their effects on signal
transduction pathways in cancer. It aims to provide theoretical support for in-
depth studies on the anticancer effects of saponins.
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Introduction

Cancer is one of themost lethal diseases caused by cells escaping homeostatic control and
proliferating and differentiating abnormally. It is the second leading cause of human death
worldwide (Yan et al., 2017). As of 2019, approximately 23.6 million new cancer cases and
10 million cancer deaths were reported worldwide, and the trend has been increasing
annually (Kocarnik et al., 2022). Among them, lung cancer is the leading cause of morbidity
and mortality among men, and global cancer data published by the International Agency for
Research on Cancer (IARC) (2020) indicate that lung cancer ranks first in terms of morbidity
and mortality among all malignancies (Sung et al., 2021). Breast cancer is one of the most
common malignant tumors among women, with the highest incidence rate (Arnold et al.,
2022). Other types of cancers, including those of the colon, esophagus, and pancreas, are also
increasing yearly, thereby seriously endangering the physical and mental health of human
beings. Currently, the main method of cancer treatment is chemotherapy (Nagasaka and
Gadgeel., 2018), and the commonly used chemotherapeutic agents are cytotoxic and
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antimetabolic drugs, including adriamycin, cyclophosphamide, etc.
(Khan et al., 2019); however, chemotherapeutic drugs can cause
serious side effects of immunodeficiency, fatigue, diarrhea, and
respiratory difficulties (Qiang et al., 2023). Therefore, the search
for safe and efficient drugs or ingredients is a global concern.

Compared to traditional chemotherapeutic drugs for cancer
treatment, active ingredients derived from Chinese herbal
medicine (CHM) including saponins, polysaccharides, alkaloids,
flavonoids, volatile oils, etc., have the advantages of multi-target
synergistic effects and less toxic side effects, thus effectively
inhibiting cancer cells from invading (Kumar and Jaitak., 2019)
or metastasizing and differentiating (Sarwar et al., 2018; Zhou et al.,
2018). Saponins are a class of glycosides with relatively complex
structures and are widely found in CHM, such as Panax ginseng
(Wei et al., 2020), Caulophyllum robustum Maxim (Lü et al., 2019),
etc. They exert a variety of important biological activities and have a
wide range of pharmacological effects; for example, antitumor (Xu
et al., 2016), immunomodulatory (Bhardwaj et al., 2014),
antioxidant (Wang et al., 2015), anti-inflammatory (Xiang et al.,
2016), hypoglycemic (Uzayisenga et al., 2014), and therapeutic in
cardiovascular diseases (Wu et al., 2019). CHM is one of the most
active and fastest-progressing areas of research in traditional
Chinese medicine. Saponins not only have the advantages of
multi-target and multi-pathway in Chinese medicine but the
active ingredients are also easy to identify and refined in modern
medicine. Accumulating evidence shows that saponins prevent and
treat cancer through multiple mechanisms and links, mainly
including the induction of cell cycle arrest, promotion of
apoptosis, induction of autophagy, anti-angiogenesis, inhibition
of migration, and induction of tumor cell differentiation (Tian
et al., 2020; Chen et al., 2018a; Liu et al., 2014). The potential

mechanism of action of saponins against cancer is shown in Figure 1.
Saponins can reduce the side effects on patients by eliminating
tumor cells through apoptosis (Man et al., 2010). Ginsenosides (Yao
and Guan., 2022), astragalosides (Georgieva et al., 2021), Pulsatilla
chinensis saponins (Li et al., 2020), Paridis Rhizoma (Chonglou)
saponins (Yu et al., 2022), Radix Bupleuri saponins (Cheng and
Ying., 2021), and Zizyphus jujuba saponins (Jia et al., 2020) have
significant and excellent anticancer effects. Therefore, saponins are
promising drug candidates in the biomedical and pharmaceutical
fields.

In recent years, owing to the in-depth study of cancer
pathogenesis, tumorigenesis is found to be related to the
transduction of many signaling pathways, including JAK-STAT3,
NF-κB, MAPK, p53, PI3Ks-Akt-mTOR, Wnt and others, and these
are considered important in regulating key functions of human
tumor cells (Zhu et al., 2022; Song et al., 2022; Kobayashi et al.,
2020). Modifications of various key regulatory pathways promote
tumor cell metabolism, proliferation, and apoptosis, and multiple
alterations in cell signaling mechanisms cause changes in cancer
cells. The complex nature of cell signaling networks is a useful
attempt to better understand the behavior and biological processes
of tumor cells (Fu et al., 2022). The use of key signaling molecules in
the pathway as targets for drug therapy has been the focus and is a
fundamental direction for studying the mechanism of drug action.
However, the progress of research on the effects of saponins on the
corresponding cellular signal transduction pathways in the
anticancer process is poorly reported, which is a matter of concern.

Taken together, saponins, as active ingredients in CHM, are
effective against different kinds of tumors. This paper presents a
review of the phytochemistry of the saponins of CHM, their effect on
cell signal transduction pathways, and the progress of research on

FIGURE 1
The therapeutic mechanism of saponins from Chinese herbal medicine on cancer.
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their extraction methods since 2014. The data presented in this
review were collected from different websites, including PubMed,
Citexs, Web of Science, Elsevier, and Science Direct. The keywords
used in our search were “saponins”, “anticancer potential of
saponins”, “biological activities of saponins”, “signal transduction
pathway”, “cancer”, “triterpenoid saponins”, etc. This review aimed
to sort out the key signaling pathways involved in the functional
mechanism of saponins from CHM for cancer treatment, and we
hope to provide scientific information for researchers and clinical
workers, for the in-depth research and exploitation of saponins.

Saponins

Phytochemical studies have shown that saponins can be divided
into the following two major groups: triterpenoid and steroid (Fuchs
et al., 2017). Among them, triterpene saponins are the most
widespread, and consist of 30 carbon skeletons of triterpene
glycosides in a pentacyclic structure (Augustin et al., 2011).
Many common herbs including those in the Araliaceae,
Leguminosae, Polygalaceae, and Campanulaceae families, etc.
Contain triterpene saponins, which can be divided into
tetracyclic triterpenes and pentacyclic triterpenes (Han and He.,
2021). Steroid saponins are a class of steroidal glycosides of
spirostane compounds combined with sugars. These do not
contain carboxyl groups in the molecules and are often neutral.
Steroidal saponins are raw materials for the synthesis of steroid
hormones and related drugs and are widely used in the
pharmaceutical industry (Passos et al., 2022). Steroidal saponins
are mostly found in plants belonging to Dioscoreaceae, Agavaceae,
and Scrophulariaceae, and Liliaceae, Gingeraceae, and Trilliaceae
Lindl families (Dong et al., 2019). Based on their structures, they can
be classified into four groups, namely, spirostanol, isosprirostanol,
furostanol, and pseudospirostanol.

Composition

Saponins mainly comprise sapogenin with sugars, glyoxylates,
or other organic acids. Among them, the sapogenin skeletons of
triterpene saponins mainly include cycloastragenol, dammarane,
oleanane, ursane, and lupane, and the sapogenin skeletons of
steroidal saponins include spirostane, furostane, cholestane, and
cardenolide (Zeng et al., 2022). The composition of sugars mainly
includes glucose, galactose, rhamnose, arabinose, and other pentoses
(Singh and Chaudhuri., 2018).

Structure

The structures of natural glycoside components aremostly in the
form of hydrophobic glycosides or triterpenoids or steroids
connected to glycosyl groups by glycosidic bonds, and usually,
the sugar chains are attached to the sapogenins either as a
unilateral sugar chain (one sugar side chain at C-3) or a bilateral
sugar chain, i.e., two sugar side chains at C-3 and C-28 (Baky et al.,
2022). The cytotoxic activity of saponins is associated with the
presence of a free carboxyl group at C-28 and a glycosyl group at C-3

(Cho et al., 2016). Among them, the free carboxyl group at C-28 is
important for antitumor activity (Chwalek et al., 2006). Saponins
have large molecular weights and complex structures, and often
those with similar chemical structures are subject to small
differences in the number of sugar chains and the location of the
linkage sugars, resulting in different biological activities. Primary
saponins can be converted into hypo saponins or sapogenins by
enzymatic digestion, and by the intestinal flora (Luo et al., 2020; He
et al., 2019a). Most sapogenins have higher biological activity than
their proto-saponin forms. For instance, the antitumor activity of
ginsenosides is in the following order: sapogenins >
monoglycosides > disaccharides > triglycosides > tetrasaccharides
(Navarro Del Hierro et al., 2018a). Intestinal microbes are
considered the “second genome” of the human body (Sommer
et al., 2017), and saponins are metabolized by intestinal
microorganisms to produce new components. These are absorbed
into the blood and undergo biotransformation. The types of
biotransformation reactions mainly include glycosyl hydrolysis,
redox, acetylation, rearrangement, etc. Among them, hydrolysis
of sugar groups is the most common during biotransformation
(Chen et al., 2018b). New ingredients and sapogenins are produced
by physiological and biochemical processes and exert therapeutic
effects. This is a more profound transformation mechanism in the
body, which is conducive to deepening the understanding of the
material basis of saponins. Simultaneously, the complex structure of
saponins makes chemical synthesis more difficult, and their
biotransformation by intestinal flora yields highly active and low-
toxic metabolic components, which has become a development
trend in this field. The chemical structures of various triterpene
and steroidal saponins described in the paper are shown in Figure 2.

PI3Ks/Akt/mTOR signal transduction
pathway

The phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(Akt)/mammalian target of rapamycin (mTOR) signaling
pathway, plays a key role in the formation and development of
various diseases, including cancer (Ediriweera et al., 2019),
neurodegenerative disorders (Fakhri et al., 2021), etc. PI3K is a
class of lipid kinases further classified into three subclasses, namely,
PI3KI, PI3KII, and PI3KIII. Activated PI3K further catalyzes
phosphatidylinositol bisphosphate (PIP2) to phosphatidylinositol
trisphosphate (PIP3), and PIP3 can activate Akt (Tan., 2020). Akt is
an important signaling target downstream of PI3K and is divided
into three main classes, namely, Akt1, Akt2, and Akt3 (Yu et al.,
2018). PI3K-Akt and AKT/mTOR signaling pathways have key roles
in cell survival (Tewari et al., 2022; Xie et al., 2017). mTOR is a
serine/threonine kinase, a key protein essential for life processes.
mTOR is also a downstream signal of the PI3K/Akt pathway and a
key component of most signaling cascades (Rong et al., 2020). The
PI3K/Akt/mTOR signaling pathway affects the tumor cell cycle,
apoptosis, autophagy, and angiogenesis by altering the activity of its
downstream effector molecules, and therefore, it may be an effective
tool for targeted cancer therapy.

TBSE, the main active ingredient of Bupleurum, induces
apoptosis in human colon cancer SW480 and SW60 cells
through the PI3K/Akt/mTOR signaling pathway. It reduces the
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FIGURE 2
Chemical structure of triterpene saponins and steroidal saponins involved in the paper. Among them, (A) Astragaloside IV (Molecular formula:
C41H68O14), (B) Saikosaponin-A (Molecular formula: C41H66O13), and (C) TSBE (Molecular formula: C42H69O13), (D) Ziyuglycoside II (Molecular formula:
C35H56O8), (E) Jujuboside B (Molecular formula: C52H84O20), (F) Momordin Ic (Molecular formula: C41H62O14), (G) Raddeanin A (Molecular formula:
C46H74O16), (H) Ginsenosides Rh4 (Molecular formula: C35H58O8), and (I) Afrocyclamin A (Molecular formula: C54H86O20), (J) Pulsatilla saponin D
(Molecular formula: C47H76O17), (K)Ginsenosides Rg3 (Molecular formula: C43H74O12), (L) Platycodin D (Molecular formula: C57H92O28); (M) Timosaponin
AIII (Molecular formula: C39H64O13), (N) Gypenoside XL (Molecular formula: C42H70O14), (O) DT-13 (Molecular formula: C46H74O15), (P) Gypenoside XII
(Molecular formula: C42H72O12), and (Q) Paris Saponin II (Molecular formula: C49H78O22), (R)Gypenoside LXXIX (Molecular formula: C42H72O14), (S) A-24
(Molecular formula: C55H90O21), (T) Ophiopogonin B (Molecular formula: C39H62O12); (U) Timosaponin A3 (Molecular formula: C39H64O13), and (V)
Dioscin (Molecular formula: C45H72O16), (W) Polyphyllin D (Molecular formula: C44H70O16), and (X) Ophiopogonin D (Molecular formula: C46H74O14).
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expression of the anti-apoptotic member, Bcl2, causes
downregulation of expressions of PI3K, Akt, mTOR, and p-PI3K,
p-Akt, p-mTOR, and increases the expression of Bax, cleaved
caspase-3, cleaved caspase-9 (Zhang et al., 2022). Afrocyclamin A
increases the expression of p53, p21, and Bax, in addition to
upregulating the expression of cleaved PARP, cleaved caspase-3,

and Cyt-c but decreases the levels of Bcl-2, cyclin E, cyclin D, cyclin
B, and inhibits the expressions ofMMP-2 andMMP-9 (Sachan et al.,
2018). PNS (Liu et al., 2022a) inhibits the proliferation of Y79 cells
and induces apoptosis through the PI3K/Akt pathway. It
significantly increases the levels of cleaved caspase-3, cleaved
caspase-8, cleaved caspase-9, and downregulates Bcl-2, PI3K,

FIGURE 3
Signaling pathway of Chinese materia medica saponins in anti-cancer effect. (A) Wnt-β-catenin; (B) PI3Ks-Akt-mTOR; (C) p53; (D) JAK-STAT3; (E)
NF-κB; (F) MAPK; (G) APMK and (H) EGFR signal transduction pathway.
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p-Akt (THR308), p-Akt (SER473), and p-mTOR levels. Wang found
that Hederacolchiside A1 could promote the expression of cleaved
caspase-3 and cytochrome, downregulate bcl-2 levels, and inhibit
the phosphorylation of PI3K, mTOR, Akt, and P70S6K (Wang et al.,
2018a). Total secondary saponin elevated the expressions of Bax/
Bcl-2, Cyt-c, caspase-3, and caspase-9 by inhibiting the proliferation
of MCF-7 cells and inducing apoptosis through PI3K/Akt/mTOR
signal transduction (Zhang et al., 2020). Moreover, other
triterpenoid saponins, such as Jujuboside B (Li L et al., 2021) and
Saikosaponin-A (Du et al., 2021) exert anti-cancer effects through
the PI3K/Akt pathway.

Steroidal saponins, the material basis of higher plants like
Ophiopogon japonicus (T.f) Ker-Gawl (OJ), Anemarrhena
asphodeloides, and Rhizoma Paridis, inhibit cell proliferation
(Wang et al., 2021a; Wang et al., 2020), induce cell cycle arrest
(Long et al., 2015), and induce apoptosis (Liu et al., 2021; Song et al.,
2019) through the PI3K/Akt/mTOR pathway. SSOJ significantly
inhibits the expression of Ki67, p-PI3K/PI3K, p-Akt/Akt, and
mTOR, and upregulates the levels of p53 and autophagy
mediators (LC3-II/I ratio, ATG-3, ATG-7, and Beclin-1) (Chen
et al., 2017). Paris Saponin II enhances the activities of Cyt-C,
caspase 9, cleaved-caspase3, and Bax, while increasing the
expressions of LC3-II and Beclin-1 by PSII but decreasing those
of P62 and bcl-2, which are involved in PI3K/Akt/mTOR signaling
(Zhang et al., 2016). Xu et al. showed that A-24 not only increased
the expressions of cleaved-caspase-3, cleaved-caspase-8, cleaved-
caspase-9, and Bax in SGC-7901 and AGS cells but also
increased the levels of LC3-II and Beclin-1, and resulted in the
downregulation of Bcl-2 expression, which played a role in inducing
apoptosis and autophagy (Xu et al., 2020a). According to the results
of in vitro research, Dioscin decreased the concentration of CHK2,
cyclin B1, and CDK1 while increasing the expressions of cyclinD1,
Bak, Cyt-c, caspase-3, caspase-9 in the HepG2 cells but decreasing
those of bcl-2, bcl-xl and P70S6K (Zhang Y. S. et al., 2018). In
summary, saponins play essential roles in anti-tumor activity by
regulating the PI3K-Akt-mTOR signal transduction pathway
(Figure 3B).

Wnt/β-catenin signaling transduction
pathway

The wingless-related integration site (Wnt) signaling pathway is
an important intracellular signaling cascade with a regulatory role in
cell proliferation, apoptosis, and differentiation in tissues and
organs, and many diseases occur due to mutations or
dysregulation in the Wnt signaling pathway. The widespread
potential of the Wnt pathway in cancer has been reported
(Duchartre et al., 2016). The Wnt signaling pathway is divided
into classical (β-catenin dependent) and non-classical (β-catenin
non-dependent) forms, which are key pathways that control
developmental processes and histomorphogenesis (Koni et al.,
2020). The dysregulation of the classical Wnt/β-catenin signaling
pathway is involved in the pathological processes of many types of
cancer (Zhang et al., 2018a; Cao et al., 2018; Spaan et al., 2018). β-
Catenin is a switch in the Wnt/β-catenin signaling pathway, and
phosphorylation of β-catenin is influenced by glycogen synthase
kinase 3β (GSK3β) and casein kinase 1α (CK1α)

(Nusse and Clevers., 2017). When pathway activation or
degradation complexes are abnormal, β-catenin fails to
phosphorylate or degrade and accumulates in the nucleus. Further,
excessive concentrations of β-catenin bind to T-cell transcription
factor/lymphocyte enhancer factor (TcF/LEF) and form complexes
that activate the downstream target genes (cyclin D1, CDKN1A) and
promote tumorigenesis and development (Zhang and Wang, 2020).

Triterpenoid saponins, like Raddeanin A (RA), inhibit
proliferation and induce apoptosis in the CRC model both in
vivo and in vitro. RA reduces the expression of β-catenin in the
nucleus and cytoplasm along with the levels of Bcl-2, c-myc, p-GSK-
3β, and cyclin D1 but promotes the expression of Bax (Wang et al.,
2018b). Compound 1C is a modified version of AD-2, which is a
ginsenoside isolated from P. ginseng. In LNCaP prostate cancer cells,
1C upregulates the expression of p53 but downregulated those of β-
catenin, TCF-4 protein, CCND1, and C-myc (Wang et al., 2018c). In
vivo and in vitro studies indicate that ginsenosides from Korean Red
ginseng decrease the expressions of LEF1, CMYC, and CCND1 by
inhibiting the Wnt/β-catenin signaling pathway (Ham et al., 2019).
Saponins can regulate Wnt/β-catenin signal transduction and exert
anti-cancer effects (Figure 3A).

NF-κB signal transduction pathway

The nuclear factor kappa-B (NF-κB) signaling pathway is
intricately and closely linked to other cellular signaling pathways,
and pathway activation is an important factor in promoting
tumorigenesis and progression. Extracellular stimuli (bacteria,
viruses, oncogenic molecules, etc.) can activate NF-κB. The NF-
κB signaling pathway is involved in several functions related to
proliferation, metastasis, and angiogenesis, which are required
for cancer (Dimitrakopoulos et al., 2020). Studies have confirmed
that NF-κB is a transcription factor with oncologic therapeutic
potential and has been recognized for its important role in
colorectal cancer (Plewka et al., 2018), gynecologic cancers
(Harrington and Annunziata., 2019; Diéguez-Martinez et al.,
2022), pancreatic cancer (Geismann et al., 2019), and other
types of cancer. NF-κB is also an important linker between
chronic inflammation and cancer and regulates the expression
of a wide range of genes associated with immune and
inflammatory responses. It importantly contributes to the
pathogenesis of inflammation-driven diseases (Chauhan et al.,
2022). NF-κB includes classical as well as non-classical pathways,
comprising bridging molecules for receptor and receptor
proximal signaling, the IκB kinase complex, IκB proteins
(IκBα, IκBβ, IκBε, IκBγ, IκBζ, Bcl-3, p100, and p105) and NF-
κB dimers (Colomer et al., 2017). NF-κB signaling plays a role in
reducing cancer cell proliferation and metastases and promoting
apoptosis in the pathological process of tumors by
downregulating downstream genes (Soleimani et al., 2020).

The involvement of saponins in antitumor signaling contributes
to a better understanding of their role in the regulation of NF-kB
(Figure 3E). CBS is a triterpenoid saponin extracted from the
Chinese medicinal material, Conyza blinii H. lev. In xenografted
animal models of tumor and HeLa cells, CBS downregulated the
expressions of nuclear-translocated p65 and molecules downstream
of NF-κB (XIAP, Bcl-xL, MMP-2, MMP-9, COX-2, and cyclin D1)
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by inhibiting the NF-κB signaling pathway (Ma et al., 2017). RA, a
triterpene saponin of Anemone raddeana Regel, possesses potent
anti-tumor properties. Both in vivo and in vitro research shows that
RA reduces the levels of p-IκBα, p65, MMP-2, and MMP-9 by
inhibiting ROS/JNK and NF-κB signaling pathways (Ma et al.,
2018). Saponins of Patrinia villosa decrease the levels of
E-cadherin, N-cadherin, and NF-KBp65 in the CRC EMT model
by inhibiting the NF-κB signaling pathway (Xia et al., 2018).

Paris polyphylla is usually used as a heat-clearing and
detoxicating agent in traditional Chinese medicine (Tu et al.,
2016; Guo et al., 2019) and Polyphyllin VII is one of the primary
natural steroidal saponins in it. In vitro research indicates that
Polyphyllin VII promotes the expressions of caspase-3, poly-
(ADP-ribose) polymerase cleavage but suppresses those of p65,
PI3K, (P)-PI3K, AKT, P-AKT, NF-κB, and P-NF-κB and
inhibitor of caspase-activated DNase by attenuating the PI3K/Akt
and NF-κB signaling pathways (He et al., 2020). Similarly, an in vitro
experiment suggested that Paris Saponin II lowered the expressions
of p65, c-myc, and cyclin D1 in HT 29 and HCT 116 cells by
inhibiting the NF-κB signaling pathway, as evidenced by the
suppression of IKKα phosphorylation and p65 nuclear
translocation (Chen et al., 2019).

EGFR signal transduction pathway

The epidermal growth factor receptor (EGFR) is a
transmembrane receptor glycoprotein of the tyrosine kinase
family. Many cell fate-specific activities are regulated by the
EGFR cell signaling pathway, including cell growth,
differentiation, metabolism, and proliferation (Kyriakopoulou
et al., 2018). Mutations in components of the EGFR pathway
are usually closely associated with several human malignancies
(Isomoto et al., 2020), and EGFR signaling is upregulated in 20%
of tumors (Kang et al., 2022), inducing proliferation and
inhibiting apoptosis (Guan et al., 2017). The development of
molecular agents targeting the EGFR pathway offers attractive
avenues for anti-tumor effects, and the presently available EGFR
tyrosine kinase inhibitors in widespread clinical use are gefitinib
and erlotinib (Ayati et al., 2021). Both in vivo and in vitro
experiments indicate that Ginsenoside Rg3 enhances the anti-
cancer cell proliferation effect of erlotinib and erlotinib-induced
apoptosis. Erlotinib/ginsenoside Rg3 treatment increases the
protein levels of caspase-3, caspase-9, and PARP while
decreasing those of p-EGFR, p-PI3K, and p-Akt in pancreatic
cancer cell lines and BALB/c nu/nu male mice by inhibiting the
EGFR/PI3K/Akt signaling pathway (Jiang et al., 2017a).
Ziyuglycoside II (ZYG II) is an active ingredient in the
treatment of digestive system cancers (HCC, CCA, EC, and
PC), and functions by inducing cell cycle arrest and activation
of mitochondria-dependent apoptosis. ZYG II inhibits EGFR and
ERK1/2 protein phosphorylation while enhancing the expression
of cleaved caspase-3 and cleaved PARP (Zhong et al., 2021).
Moreover, in vitro research suggests that Saikosaponin-d reduces
the levels of EGFR, p-EGFR, MEK, p-MEK, p38, and p-P38 but
promotes that of p53 in human RCC cells (769-P and 786-O)
through the inhibition of the EGFR/p38 signaling pathway (Cai
et al., 2017) (Figure 3H).

JAK/STAT3 signal transduction pathway

The Janus kinase/signal transducer and activator of the
transcription 3 (JAK/STAT3) signaling pathway has an important
role in tumor behavior and function. STAT3 is a common signal
transducer and activator of transcription that is involved in multiple
signaling cascades. STAT3 deletion is a driver of tumor growth, and
metastasis (Bharadwaj et al., 2020). STAT3 is one of the key
oncogenes and therapeutic targets (Wang et al., 2021b; Chai
et al., 2016). Recent evidence suggests that STAT3 is a regulatory
node of cancer-related inflammation and a regulator of immune
checkpoint proteins (Huynh et al., 2017). Autophagy and
STAT3 pathways are two important directions in tumorigenesis
and progression, and both have become research hotspots for tumor
mechanisms in recent years (Hu et al., 2020; Jacquet et al., 2021).
Autophagy, also known as type II programmed cell death, is a
biological process important for maintaining tissue stability and
metabolism. Abnormalities in autophagy are accompanied by
alterations in STAT3 expression, and Xu et al. showed that STAT
interacts with autophagy depending on several factors including
phosphorylation sites, mode of action, and subcellular localization
(Xu et al., 2022). STAT3 is a member of the STAT family and an
important part of the JAK/STAT3 signaling pathway. Saponins were
found to exert inhibitory effects on cell proliferation and induction
of apoptosis through the modulation of the STAT3 pathway (Li
et al., 2018; Li X et al., 2021; Zhou et al., 2019).

JAK/STAT3 is mainly divided into receptor tyrosine kinases
(RTKs), JAKs (JAK1, JAK2, JAK3, and TYK2), and signal transducer
and activator of transcription (STAT), which are activated by a
variety of cytokines. Among them, the JAK2/STAT3 pathway is a
component of JAK/STAT signaling that is upregulated in a variety of
tumor cells and is particularly involved in the development of some
solid tumors through the regulation of tumor cell proliferation and
apoptosis (Jiang et al., 2016; Iriki et al., 2017; Wu et al., 2017). α-
Hederin, a monodesmosidic triterpenoid saponin, is isolated from
the leaves of Hedera helix and exerts potential anti-tumor effects in
colon cancer. In vitro studies show that α-Hederin upregulates the
expression of Ecapherin but downregulates those of IL-6-induced
EMT markers (N-cadherin, vimentin, fibronectin, twist, and snail)
by regulating the JAK2/STAT3 pathway to intervene metastasis in
colon cancer (Sun et al., 2018).

Steroidal saponins, including DT-13, dioscin, and
Ophiopogonin B show anti-metastasis and anti-proliferation
effects, as do triterpenoid saponins. According to in vivo and
in vitro studies, DT-13, isolated from the Dwarf lilyturf tuber,
inhibits the phosphorylation levels of STAT3 and AKT in breast
cancer cells (DA-MB-231 and MDA-MB-468) and reduces the
expressions of the Procollagen-lysine, 2-oxoglutarate 5-
dioxygenase 2 (PLOD2), and two receptors (Gp130 and OBR) by
inhibiting the JAK/STAT3 and PI3K/AKT signaling pathways (He
et al., 2019b). Moreover, both in vivo and in vitro experiments
suggest that dioscin can upregulate the expressions of IL-4 and IL-10
by regulating the JAK2/STAT3 signaling pathway, thus inhibiting
metastasis of B16 cells (Kou et al., 2017). Moreover, a previous study
revealed that Ophiopogonin B could downregulate the protein
expression of P-STAT3 by regulating the STAT3 signaling
pathway, thus inducing apoptosis and affecting the cell cycle in
SKOV3 and A2780 cells (Yuan et al., 2022). Steroidal saponins, the
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main active ingredient in Rhizoma Paris, are mainly composed of
four kinds of saponins (Paris saponin I, II, VI, and VII). It is widely
applied to treat tumors in China (He et al., 2019c). Paris saponin I
can lower the levels of MMP-2, p-JAK2, and STAT3 in HUVEC cells
(Wang et al., 2018a) (Figure 3D).

MAPK signal transduction pathway

The mitogen-activated protein kinase (MAPK) signaling
pathway can affect several different biological processes in cancer,
including proliferation, differentiation, apoptosis, inflammation,
and immunity (Wang et al., 2021c; An et al., 2020; Zhu et al.,
2020; Lu et al., 2019), and plays a non-negligible role in the
development of tumors. MAPK cell signaling mainly regulates
the response of tumor cells to many internal and external stimuli
(Anjum et al., 2022) In several malignancies, saponins regulate the
MAPK signaling pathway through the induction of apoptosis and
autophagic responses, thus exerting anticancer effects. Momordin
Ic, a principal triterpene saponin constituent, isolated from Fructus
Kochiae directly induces autophagy of hepatocellular carcinoma
cells in vitro. Momordin Ic increases Beclin1 and LC-3 protein
expressions in HepG2 cells by activating ROS-mediated JNK and
p38 signaling pathways and regulating the ERK signaling pathway
(Mi et al., 2016). Si et al. conducted in vitro experiments using
human laryngeal squamous cell carcinoma cells, Hep-2 and TU212,
and demonstrated that dioscin could exert potential anti-migration
and anti-invasion, cell cycle arrest, and pro-apoptosis effects by
significantly downregulating the protein and mRNA levels of
cyclina, CDK2, Bcl-2, MMP2, and MMP9 while upregulating
those of p53, Bax, Cyto-c, and caspase-3, caspase-9, p-JNK, and
p-p38 by targeting the MAPK signaling pathway (Si et al., 2016).
Treatment with water-soluble Astragaloside IV (AS-IV, 20 mg/kg)
prepared from the roots of Astragalus membranaceus can inhibit
proliferation and invasion in vitro. Furthermore, AS-IV reduces the
expressions of MMP-2/9 and VAV3 in MDA-MB-231 cells by
regulating the MAPK pathway, thereby downregulating tumor
cell viability and growth, which is a potential strategy for treating
metastatic breast cancer (Jiang et al., 2017b). Similar observations
were reported in U251 cells and tumor-bearing athymic BALB/c
mice. AS-IV upregulates the levels of Ki67, MMP-2, and MMP-9 by
regulating the MAPK/ERK signaling pathway, which further results
in the suppression of tumor cell growth, migration, and invasion
abilities (Li et al., 2017).

According to their biological functions, the MAPK family
mainly includes extracellular signal-regulated kinase (ERK),
p38 mitogen-activated protein kinase, and c-Jun amino-terminal
kinase 1/2/3 (JNK1/2/3), and these are involved in carcinogenesis
(Lei et al., 2020; Kumar et al., 2020). ERK promotes cell proliferation
and is involved in apoptosis and differentiation (Xu et al., 2019).
JNK can be phosphorylated and can activate several proteins
(c-Myc, p53, Bcl-2 family in the mitochondria of cell death
regulators, etc.), and these nuclear and non-nuclear proteins
regulate many cellular responses including cellular proliferation,
differentiation, and apoptosis (Bubici and Papa., 2014). p38/MAPK
is a stress protein kinase with core components α, β, γ, and δ. Stress
stimuli, pathogens, or pro-inflammatory factors can activate the
phosphorylation of p38/MAPK, which is involved in tumor

development and has key regulatory roles in eliciting apoptosis,
immune responses, and inflammatory responses (Martínez-Limón
et al., 2020). The three intracellular MAPK signaling pathways
interact with each other to produce biological effects.
Triterpenoid saponins, such as CalundulosideE (Wang et al.,
2021d), platycodinD (Lei et al., 2022), and Ginsenoside Rh4 (Wu
et al., 2018), and steroidal saponins, like Dioscin (Wang et al., 2014)
and Polyphyllin D (Liu et al., 2022b) exert anti-tumor effects by
regulating the MAPK signaling pathways (Figure 3F). (1)
p38 MAPK: RLTS can activate p38 MAPK and downregulate the
protein expressions of CXCR4, MMP2, and MMP9, suppress cell
migration, induce apoptosis, and inhibit the proliferation of cancer
cells both in vivo and in vitro (Zhan et al., 2016). Paris Saponin I
(PSI) significantly reduces the levels of Bcl-2 and Bcl-xl but
promotes those of p-p38 MAPK, Cyto-c, caspase-9, and caspase-
3 in lung cancer cells (Liu et al., 2017). (2) ERK1/2: Timosaponin
A3 decreased the levels of MMP-9, Bcl-2, Bcl-xl, and VEGF-1 (in
pancreatic cancer AsPC-1 cells) by inhibiting the ERK1/2 pathway
(Kim et al., 2019). (3) JNK: Protodioscin regulates the key extrinsic
apoptotic pathway molecules, including Bcl-2, caspases-8/3/9,
-PARP, and Bax (Lin et al., 2018). Protodioscin promotes the
expression of cleaved-PARP and cleaved-caspase 3 while
decreasing E-cadherin levels (Chen et al., 2022). Moreover, T-17
decreased P62 expression but increased those of P21 and Beclin-1 by
regulating the JNK signaling pathway (Xu et al., 2020b).

APMK signal transduction pathway

AMP-activated protein kinase (AMPK) is a sensor of energy
status and regulator of metabolism in eukaryotic cells and comprises
three subunits, namely, α, β, and γ. AMPK-triggered energy
imbalance can cause the development of several diseases,
including diabetes, inflammation, obesity, and cancer (Paskeh
et al., 2022). Among them, AMPK regulates cancer cell
metabolism and is a promising anti-cancer target
(Samarghandian et al., 2016). Activation of AMPK signaling is
associated with an increase in AMP: ATP and ADP: ATP ratios,
thus driving the stimulation of AMPK by upstream molecules
(LKB1 and CAMKK) (Ashrafizadeh et al., 2021). APMK is
activated in the phosphorylated state and its activation is strongly
associated with improved survival of patients with breast (Henry
et al., 2017), bladder (Tao et al., 2017), and colon (Wei et al., 2016)
cancers. Phosphorylated AMPK activates TSC1/2 proteins, thereby
inhibiting mTOR kinase activity (Bai et al., 2017). mTOR is a
regulator associated with autophagy, and saponins reportedly
target autophagy through the AMPK/mTOR signaling pathway
to slow the malignant progression of cancer. PGB shows a
noticeable pro-autophagy effect on A549 human lung carcinoma
cells in vitro. Studies have revealed that PGB-activated AMPK
phosphorylation inhibits mTOR and AKT activities.
Furthermore, PGB increases the levels of lC3-II, Beclin-1, and
Bax but decreased those of the mTOR complex (Raptor and
Rictor) and Bcl-2 (Yim et al., 2016).

GIT, an important component of Tribulus longipetalus, belongs
to a family of steroidal saponins. Both in vivo and in vitro
experiments indicate that GIT promotes Bax expression, activities
of cleaved Caspase-3 and PARP, and enhances LC3II and P-AMPK
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TABLE 1 Monomer saponins against cerebral ischemia-reperfusion injury. Up arrows indicate upregulation, while the down arrows indicate downregulation.

Comp. and source Cancer model (s) Mechanism Target Signaling
pathway

Refs

Triterpenoid saponins

Afrocyclamin A, Androsace
umbellata

Human prostate cancer cell
lines (LNCaP, PC-3, and
DU145)

Pro-autophagy pro-
apoptosis Anti-migration

anti-invasion

Bcl-2 ↓ cyclin E/D/B↓ CDK2,CDK4↓ PI3K/Akt/
mTOR↓ P53↑

Sachan
et al.
(2018)

Raddeanin A Anemone
raddeana

SW480, Caco-2,
HT29,LOVOcells, Male nude
mice

Pro-apoptosis Anti-
proliferation

c-Myc,CyclinD1, p-LRP6↓ Wnt/β-catenin
NF-κB↓

Wang
et al.
(2018b)

The human osteosarcoma cells
(U-2 OS, HOS, MG-
63,143B,Saos-2)

Pro-apoptosis Anti-
proliferation anti-migration

MMP-2/9,Bcl-2↓ p65↓ caspase-
3, Bax↑

NF-κB↓ Ma et al.
(2018)

NSCLC cells of A549 Anti-proliferation pro-
apoptosis

caspase-3↑, Bax↑ STAT3↑ Li L et al.
(2021)

1C, Panax ginseng Human prostate cancer cell
lines (LNCaP, PC3, 22RV1,
DU-145, C4-2B, and GES-1
cells)

Pro-apoptosis Anti-
proliferation

MDM2, Bcl-2↓ Bax, p53↑ Cleaved
caspase-3/9 cleaved PARP↑

Wnt/β-catenin↓ Wang
et al.
(2018c)

Ginsenoside Rg3, Panax
ginseng

The pancreatic cancer cell
lines (BxPC-3 and AsPC-1)
BALB/c nu/nu male mice

Pro-apoptosis Cleaved caspase-3 Cleaved caspase-9↑
cleaved PARP↑

EGFR/PI3K/AKT↓ Jiang et al.
(2017a)

Ziyuglycoside II, Sanguisorba
officinalis L

HepG2, HuCCT1, BGC-823,
HCT116, OE21, PANC-1 cells

Cell cycle arrest
Pro-apoptosis oxidative

stress

Cleaved caspase-3 cleaved PARP↑ EGFR↓ Zhong
et al.
(2021)

α-Hederin, Hedera helix The human colon cancer cell
line (SW620)

Anti-migration Anti-
invasion

Ecapherin,↑ EMT↓ JAK2/STAT3↓ Sun et al.
(2018)

Momordin Ic, Fructus
Kochiae

HepG2 cell line Pro-apoptosis Pro-
autophagy

Beclin1,LC-3↑ MAPK Mi et al.
(2016)

Hederacolchiside A1,
Pulsatilla chinensis

Hepatocellular carcinoma cells
(Bel-7402, MCF-7)

Pro-apoptosis Bcl-2↓ Cleaved caspase-3↑ PI3K/Akt/mTOR↓ Wang
et al.
(2018a)

Jujuboside B, Zizyphus jujuba human colorectal cancer cells
(SW1116, SW1463) male
Balb/c mice

Pro-apoptosis Bax/Bcl-2↑, MMP↓, caspase-3 ↑
Cleaved PARP↑ cytochrome C↑

PI3K/Akt↓ Li X et al.
(2021)

Saikosaponin-A, Bupleurum
falcatum

Human cervical cancer HeLa
cells Female BALB/c nude
mice

Pro-apoptosis Cleaved caspase-3↑ Bax/Bcl-2↑ PI3K/Akt↓ Du et al.
(2021)

Calunduloside E, panax
japonicas Aralia elata (Miq.)
Seem

Human hepatoma cell
(HepG2)

Anti-proliferation anti-
migration

HMGB1↓,MMPs↓,Cycins,N-
cadherin↓ E-cadherin↑

p38/JNK ↑ Wang
et al.
(2021a)

Platyco-din D, Pla-tycodonis
Radix

human hepatoma cells
(SMMC-7721)

Pro-apoptosis p-AKT,↓ p-JNK↑ p-ERK1/2↓ p-P38
MAPK↑

AKT, ERK1/2↓
JNK,P38MAPK↑

Lei et al.
(2022)

Ginsenoside Rh4, Panax
notoginseng

Human colorectal cancer cells
(Caco-2 and HCT116) Nude
mice

Pro-apoptosis Pro-
autophagy

Cyclin D1↓,CDK4↓ p53,p21,Bax↑
Caspase3,9↑

ROS/JNK/p53↑ Wu et al.
(2018)

Astragaloside IV, Radix
Astragali

U251 cells Athymic BALB/c
mice

Anti-proliferation Anti-
migration anti-invasion

Ki67,MMP-2/-9↓ VEGF↓ MAPK/ERK↓ Li et al.
(2017)

Human breast cancer (MDA-
MB-231) Female athymic
Balb/c nude mice

Anti-invasion MMP-2/-9↓ VAV3↓ MAPK↓ Jiang et al.
(2017b)

Human monocyte cell line
THP-1 Male C57BL/6 J mice

Inhibit metastasis CD31,VEGFA↓ AMPK Xu et al.
(2018)

(Continued on following page)
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TABLE 1 (Continued) Monomer saponins against cerebral ischemia-reperfusion injury. Up arrows indicate upregulation, while the down arrows indicate
downregulation.

Comp. and source Cancer model (s) Mechanism Target Signaling
pathway

Refs

Triterpenoid saponins

Steroidal saponins

Paris Saponin II, Rhizoma
Paridis

BEAS-2B, NCI-H460,A549 Autophagy pro-apoptosis cytochrome C,Bax, Cleaved caspase-
3/9 LC3-II,Beclin-1↑ Bcl-2↓

PI3K/Akt/mTOR↓ Zhang
et al.
(2016)

HT 29, HCT 116 cell lines
Female nude mice

pro-apoptosis cell cycle
arrest

p65,c-myc, cyclin D1↓ NF-κB↓ Chen et al.
(2019)

A-24, Allium chinense SGC-7901 and AGS cells Autophagy pro-apoptosis Caspase3,9↑ LC3-II,Beclin-1↑ PI3K/Akt/mTOR↓ Xu et al.
(2020a)

Polyphyllin VII, Paris
polyphylla

Human lung cancer A549 cells pro-apoptosis p65↓ caspase-3↑ PI3K/Akt
NF-κB↓

He et al.
(2020)

DT-13, Dwarf lilyturf MDA-MB-231,MDA-MB-
468 breast cancer cells

Anti-migration PLOD2 Gp130,OBR↓ JAK/
STAT3 PI3K/AKT↓

He et al.
(2019a)

HCT-15, HCT-116, COLO
205, HT-29, SW-620 and SW-
480 cells Female BALB/c
athymic nude mice

Anti-proliferation mTOR, P70S6K and 4EBP1↓ AMPK Wei et al.
(2019)

Ophiopogonin B,
Ophiopogon japonicus (L.f.)
Ker-Gawl

SKOV3, A27800 cells Anti-proliferation Pro-
apoptosis Anti-migration

cell cycle arrest

P-STAT3↓ STAT3 Yuan et al.
(2022)

Paris Saponin I Paris
polyphylla

NCI-H1299, NCI-H520, NCI-
H460, SCLC NCI-H446

Pro-apoptosis Cyto-C, Bax Caspase-3/9↑ Bcl-
2,Bcl-xl↓

p38 MAPK, ERK, Akt Liu et al.
(2017)

Protodioscin asparagus,
yams, the herb fenugreek

Human bladder cancer cell
lines 5,637 and T24 Male
BALB/c nude mice

Pro-apoptosis Anti-
migration anti-invasion

E-cadherin↓ cleaved-PARP cleaved-
caspase 3↑

JNK,p38↑ Chen et al.
(2022)

The human cervical cancer cell
lines, HeLa and C33A

Pro-apoptosis caspase-8/3/9, -PARP, Bax↑Bcl-2↓ JNK,p38↑ Lin et al.
(2018)

Dioscin, Polygonatum plants The human HEp-2,
TU212 and NP69 cell lines

Pro-apoptosis Anti-
migration cell cycle arrest

anti-invasion

p-53,Bax, Cyto-C Caspase-3/9↑
MMP2/9, cyclina CDK2,Bcl-2↓

MAPK Si et al.
(2016)

Human hepatocellular
carcinoma cell lines (HepG2)

Pro-apoptosis Bcl-2↓, Bax↑ Caspase-3/9↑ PI3K/Akt/
mTOR↓ P53↑

Zhang
et al.
(2018b)

Human myeloblast leukemia
HL-60 cells

Induced apoptosis Caspase-3/9↑ p38 MAPK,JNK↑ Wang
et al.
(2014)

The murine melanoma B16-
F10 Male C57BL/6 mice

Anti-migration, anti-
invasion anti-metastasis

IL-4,IL-10↓ JAK2/STAT3↓ Kou et al.
(2017)

Timosaponin AIII,
Anemarrhena asphodeloides

A549/Taxol,A2780/Taxol cells
Male BALB/c nude mice

Inhibit cell growth, induced
apoptosis

P-gp、PARP,Bcl-2↓ Bax↑ PI3K/Akt/mTOR↓ Song et al.
(2019)

Paris saponin I, II, VI, VII,
Rhizoma Paris

Human umbilical vein
endothelial cells (HUVEC)

Anti-angiogenesis MMP-2↓ PI3K/AKT/mTOR
JAK2/STAT3↓

Wang
et al.
(2018b)

HepG2,MCF-7, PC-3 cells Cell cycle arrest
Induce apoptosis

MOMP,Bax, cleaved caspase-3/9,
Cyto-c↑,CDK1↓

MAPKs PI3K/Akt↓ Long et al.
(2015)

Polyphyllin D, Paris
polyphylla Sm

Human breast cancer cells
(MCF-7,MCF10A, MDA-MB-
468) BALB/c nude mice

Induced apoptosis Beclin1, LC3II Cleaved caspase-3↑ JNK1/Bcl-2↑ Liu et al.
(2022a)

T-17, Tupistra chinensis
Baker

SGC-7901, AGS cells Pro-apoptosis pro-
autophagy

Cycline2,P21, Beclin-1,↑ p62↓ JNK↑ Xu et al.
(2020b)

Timosaponin A3, A. as-
phodeloides

Human pancreatic cancer cells
(AsPC-1)

Anti-proliferation pro-
apoptosis

P21↑,Bcl-2↓, Bcl-XL, CyclinD1MMP-
9,VEGF-1↓

STAT3
ERK1/2↓

Kim et al.
(2019)
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expressions in lung cancer cells through the AMPK and AKT
signaling pathways, thereby initiating autophagy. Thus, it is a
potential apoptosis and autophagy inducer (Liu et al., 2022c).
Moreover, DT-13 activates AMPK phosphorylation and reduces
the expressions of p-mTOR, p-p70S6K, GLUT1, and p-4EBP1 in the
HCT-15 and HT-29 cells (Wei et al., 2019). Tetracyclic triterpenoid
AS-IV exerts anti-tumor effects by reducing tumor cell growth,
invasion, migration, and angiogenesis. An in vivo study showed that
AS-IV inhibited the levels of M2 surface marker (CD206) and
macrophage markers (PPARγ and Arg-1), MMP9, MMP10, and
MMP14. It also significantly downregulated the levels of IL-10 and
TGF-β by targeting the AMPK signaling pathway (Xu et al., 2018)
(Figure 3G).

p53 signal transduction pathway

The p53 tumor suppressor is a transcription factor that induces
apoptosis. When Afrocyclamin A was added to human prostate
cancer cells, the expressions of p53, p21, and Bax were found to
increase. The results showed that Afrocyclamin A could effectively
induce apoptosis (Sachan et al., 2018). The treatment of HCC cells

with dioscin showed that the expressions of P53 and P21 increased
while those of CHK2, cyclin B1, and CDK1 were inhibited. Dioscin
could effectively block the cell cycle in the G2/M phase through the
p53 signaling pathway (Zhang et al., 2018a). These results show that
saponins are engaged in the p53 signaling pathway (Figure 3C).

In summary, saponins play essential roles in anti-tumor effects
through the regulation of NF-κB, PI3Ks-Akt-mTOR, MAPK, Wnt-
β-catenin, JAK-STAT3, APMK, p53, and EGFR signal transduction
pathways (Figure 3). The saponins summarized in this review are
mainly divided into monomer saponins and total saponin extracts as
shown in Tables 1, 2.

Saponins extraction

Saponins are the main active ingredients of many herbal plants
and have a wide range of biological effects. Several extraction
methods have been employed to obtain saponins, which are
mainly divided into two categories, namely, traditional extraction
and green extraction processes (Figure 4). The choice of either
method depends mainly on the focus of the study; for saponin
isolation and pharmacological activity studies, traditional methods

TABLE 2 Total saponin extracts against cancer. Up arrows indicate upregulation, while the down arrows indicate downregulation.

Comp. and source Cancer model (s) Mechanism Target Signaling
pathway

Refs

Triterpenoid saponins

TBSE, Bupleurum chinensis DC. Human colon cancer cells
(SW480, SW620)

Pro-apoptosis Bcl-2↓ Bax↑ Cleaved caspase-
3↑ Cleaved caspase-9↑

PI3K/Akt/mTOR↓ Zhang et al.
(2022)

PNS, Panax notoginseng Y79 cells Pro-apoptosis Anti-
proliferation

Bax↑,Bcl-2↓, caspase-3/9 ↑
Cleaved caspase-3↑ Cleaved
caspase-9↑

PI3K/Akt↓ Liu et al.
(2022b)

CBS, Conyza blinii H.Lev HeLa, MCF-7, HepG-2, MGC-
803, A549,BEAS-2B cells female
Kunming mice

Pro-apoptosis Bcl-XL,COX-2, Cyclin
D1,MMP-2,
MMP-9↓ Cleaved caspase-3
Cleaved caspase-9↑

NF-kB↓ Ma et al.
(2017)

PGB Platycodon grandiflorum A549, NCI-H1299 Pro-autophagy Raptor, Rictor↓ LC3-Ⅱ↑ AMPK Yim et al.
(2016)

RLTS, Radix et Rhizoma
Leonticis

SPF mice, HepG2, BEL-7402,
A549, SMMC-7721, NCI-
H1299, NCI-H460

Anti-proliferation pro-
apoptosis

CXCR4, MMP2, M-MP9↓ PI3K/Akt/mTOR↓
p38 MAPK

Zhan et al.
(2016)

Total secondary Saponin,
Anemone raddeana Regel

MCF-7 cells Female BALB/
c-nude mice

Anti-proliferation pro-
apoptosis

Bax/Bcl-2↑ cytochrome c↑
caspase-3/9↑

PI3K/Akt/mTOR↓ Zhang et al.
(2020)

Patrinia villosa Saponins, Herba
Patriniae

Human CRC cell (SW480) Anti-invasion E-cadherin↓
NF-KBP65↓
N-cadherin↓

NF-kB↓ Xia et al.
(2018)

Human RCC cells (769-P,
786-O)

Inhibit cell growth pro-
apoptosis cell cycle arrest

p53↑, p-p38
EGFR, MEK,
p38 p-EGFR,p-MEK↓

EGFR/p38 Cai et al.
(2017)

Ginsenosides, Korean Red
ginseng

528NS cells Mouse Anti- propagation LEF1↓, CMYC↓ CCND1↓ Wnt/β-catenin↓ Ham et al.
(2019)

Steroidal saponins

SSOJ, Ophiopogon japonicus
(T.f) Ker-Gawl

Human lung adenocarcinoma
A549 cell line

Pro-autophagy p53,LC3-II/LC3-I ratio,Atg-3,
Atg-7 Beclin-1↑ Ki67↓

PI3K/Akt/mTOR↓ Chen et al.
(2017)
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are preferred, while for quantitative and optimization studies, green
techniques are employed (Choon et al., 2014). Traditional extraction
methods include maceration, soxhlet extraction, and reflux
extraction (Ramli et al., 2019). These are dependent on solubility
and require high solvent and time depletion (Yusoff et al., 2022), and
therefore, have prompted scientific researchers to invent green
extraction methods such as ultrasound-assisted, microwave-
assisted, and accelerated solvent extraction methods. Ultrasound
reportedly increases the solubility of saponins and improves their
bioavailability (Navarro Del Hierro et al., 2018b). Ultrasound-
assisted extraction has characteristics of less solvent requirement,
shorter time, and higher extraction yields, making it a promising
alternative method (Fu et al., 2021). With the advancement of
scientific research, the exploration of saponin-like components in
herbal medicines has increased, the perception of saponins has been
redefined to some extent, and their development and application
value have been improved.

Conclusion and perspective

Cancer is a complex pathological process with multifactorial
involvement and multiple implicated pathways. The activation or
inhibition of many cell signal transduction pathways drives the
genesis and development of tumors, and saponins derived from
CHM interact with them to inhibit cancer. An ongoing
understanding of the role of saponins on signaling pathways
involved in cancer development and progression will help us
fight cancer in a more precise manner. Therefore, the
development of saponins to act against different targets of cancer
is of extreme importance. This review summarizes the classification,
composition, structure, and extraction methods of saponins.
Moreover, the function of saponins in regulating NF-κB, PI3Ks-
Akt-mTOR, MAPK, Wnt-β-catenin, JAK-STAT3, APMK, p53, and
EGFR signaling pathways are summarized, which may be useful for

broadening their anti-cancer activity spectrum. This is expected to
enhance researchers’ understanding of the anti-tumor effects of
herbal saponins to a certain extent.

Saponins of CHM are a large class of ingredients with low side
effects, low cost, easy availability, and significant antitumor activity,
and are new antitumor agents worthy of further research and
development. This review provides good evidence for its potential
application in tumor treatment and the improvement of related
diseases. However, existing studies still have some limitations.
First, most of the research on Chinese herbal saponins is limited
to in vitro cell-based or animal experiments, and there is a lack of
relevant scientific and standardized clinical experimental studies. The
effectiveness and safety of saponins for humans need to be verified.
Therefore, in future investigations, clinical studies on the involvement
of saponins in cancer prevention and treatment through multiple cell
signaling pathways should be conducted to provide a more reliable
theoretical basis for their clinical promotion. Second, clinical
antitumor drugs are often combined, and in the studies
summarized herein, we found that saponins had outstanding
anticancer effects when combined with other drugs (Erlotinib/
Ginsenoside Rg3, Jiang et al., 2017b), so synergistic effects of
between saponins and other components and the mechanisms that
regulate the relevant cell signaling pathways warrant further
investigation. Saponins are characterized by low bioavailability and
corresponding limitations in clinical application, which may be aided
by chemical modification and artificial synthesis, as mentioned above
(Compound 1C); therefore, in future research, combining modern
technical means and existing research results, multidisciplinary
crossover in-depth study of the anti-cancer mechanism of
saponins, and development of prominent efficacy and clearer
action targets of anti-tumor drugs should be explored. The depth
and breadth of research on the treatment of cancer by Chinese herbal
saponins should be increased in subsequent studies to reflect their role
and value in the prevention and treatment of cancer and better
promote the development and utilization of these CHM resources.

FIGURE 4
The extraction methods of Chinese materia medica saponins.
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Glossary

Akt Protein kinase B;

AMPK AMP-activated protein kinase;

AS-IV Astragaloside IV;

Bcl-xl B-cell lymphoma-extra-large;

Bax Bcl-2-associated X;

Bcl-2 B-cell lymphoma-2;

Cyt-c Cytochrome c;

CDK1 cyclin dependent kinase 1;

Cyclin cell cycle protein;

CK1α casein kinase 1α;
CHM Chinese herbal medicine;

EGFR Epidermal growth factor receptor;

EMT epithelial-mesenchymal transition;

ERK extracellular signal-regulated kinase;

EGFR epidermal growth factor receptor;

JAK Janus Kinase;

GSK3β glycogen synthase kinase 3β;

JNK c-Jun N-terminal kinase;

LC3 Microtubule-associated protein light chain 3;

MAPK mitogen-activated protein kinase;

MMP matrix metalloproteinase;

mTOR mammalian target of rapamycin;

NF-κB Nuclear factor kappa B;

NF-κB nuclear factor kappa-B;

PIP2 phosphatidylinositol bisphosphate;

PIP3 phosphatidylinositol trisphosphate;

p70S6K Ribosomal protein S6 kinase;

TcF/LEF T-cell transcription factor/lymphocyte enhancer factor;

PARP Poly (ADP-ribose) polymerase;

p-Akt Phosphorylated Protein kinase B;

PI3K phosphoinositide 3-kinase;

STAT3 signal transducer and activator of transcription-3;

TCM Traditional Chinese herbal medicine;

Wnt The wingless-related integration site
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