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Introduction: Research in the field of pharmacogenomics (PGx) aims to identify
genetic variants that modulate response to drugs, through alterations in their
pharmacokinetics (PK) or pharmacodynamics (PD). The distribution of PGx
variants differs considerably among populations, and whole-genome
sequencing (WGS) plays a major role as a comprehensive approach to detect
both common and rare variants. This study evaluated the frequency of PGx
markers in the context of the Brazilian population, using data from a
population-based admixed cohort from Sao Paulo, Brazil, which includes
variants from WGS of 1,171 unrelated, elderly individuals.

Methods: The Stargazer tool was used to call star alleles and structural variants (SVs)
from38pharmacogenes. Clinically relevant variantswere investigated, and the predicted
drug response phenotype was analyzed in combination with the medication record to
assess individuals potentially at high-risk of gene-drug interaction.

Results: In total, 352 unique star alleles or haplotypeswere observed, ofwhich 255 and
199had a frequency<0.05 and <0.01, respectively. For star alleleswith frequency> 5%
(n=97), decreased, loss-of-function and unknown function accounted for 13.4%, 8.2%
and 27.8% of alleles or haplotypes, respectively. Structural variants (SVs) were identified
in 35 genes for at least one individual, and occurred with frequencies >5% for CYP2D6,
CYP2A6, GSTM1, and UGT2B17. Overall 98.0% of the individuals carried at least one
high risk genotype-predicted phenotype in pharmacogenes with PharmGKB level of
evidence 1A for drug interaction. The Electronic Health Record (EHR) Priority Result
Notation and the cohort medication registry were combined to assess high-risk gene-
drug interactions. In general, 42.0%of thecohort usedat least onePharmGKBevidence
level 1Adrug, and 18.9%of individualswhousedPharmGKBevidence level 1Adrugshad
a genotype-predicted phenotype of high-risk gene-drug interaction.
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Conclusion: This study described the applicability of next-generation sequencing
(NGS) techniques for translating PGx variants into clinically relevant phenotypes on
a large scale in the Brazilian population and explores the feasibility of systematic
adoption of PGx testing in Brazil.
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Introduction

The concept of precision medicine is based on identifying
individuals at risk of developing diseases, their trajectories, and
their individual response to treatments. Pharmacogenomics (PGx)
plays an important role in precision medicine and deals with
interindividual variation of drug response due to genetic variants
across the genome, which affect the efficacy and toxicity of drugs
through alterations in their pharmacokinetics (PK)—absorption,
bioavailability, distribution, metabolism, and excretion—or
pharmacodynamics (PD) (Relling and Evans, 2015).

The Pharmacogenomics Knowledgebase (PharmGKB1) is a
major partner in PGx research and implementation in clinical
practice, through the collection of primary PGx data, curation,
and annotation of peer-reviewed literature on gene–drug
associations (Barbarino et al., 2018; Whirl-Carrillo et al., 2021).
Presently, there are more than 800 drugs in the PharmGKB
database, for which associations with genetic variants have been
reported2. However, only a limited fraction of these associations,
comprising 148 drugs, has been translated into genotype-based
dosing recommendations by PGx-focused independent initiatives
such as the Clinical Pharmacogenetics Implementation Consortium
(CPIC) (Relling et al., 2020).

Several factors play a role in the translation of PGx findings into
the clinic and objective criteria such as “levels of evidence” from
PharmGKB which are considered by the CPIC as the main standard
to classify these findings. The level of evidence of each gene–drug
relationship is determined by the parameters of the study, such as
strength of association, effect size, cohort size, and the reproducibility
of the results3. It is important to note that genomic diversity and
variation play a major role, since the distribution of PGx variants
(both occurrence of rare variants and frequency of common
polymorphisms) and the extent of linkage disequilibrium (LD)
differ considerably among populations, with important
implications for design of clinical trials and genome-wide
association studies (GWASs) (Suarez-Kurtz and Parra, 2018).

For Brazilians and other Latin American (LA) populations,
distinct patterns of admixture between different continental groups
create additional challenges to PGx implementation in clinical
practice (Suarez-Kurtz and Pena, 2007; Suarez-Kurtz and Parra,
2018). Accordingly, standardized guidelines to inform and adjust
prescriptions based on PGx data require deeper knowledge of the

frequency and effect size of PGx variants across Latin American
populations. In this context, whole-genome sequencing (WGS) plays
a major role as a comprehensive approach to detect both common
and rare variants, and in the development of algorithms to predict the
functionality of rare variants (Suarez-Kurtz and Parra, 2018).

This study assessed PGx markers in the Brazilian population,
using data from the “Health, Well-Being, and Aging Study”
(SABE—Saúde, Bem-estar e Envelhecimento), a population-based
cohort from Sao Paulo, Brazil, which includes variants from whole-
genome sequences of 1,171 unrelated individuals. The frequency of
star alleles of pharmacogenes was investigated, and the predicted
phenotypes were analyzed in combination with medication records
for the assessment of individuals potentially at high-risk for
gene–drug interactions.

Materials and methods

SABE project and the study population

The SABE study cohorts comprise population-based probability
samples of individuals aged 60 years and older and were designed to
provide information on health indicators of the elderly population in
the city of São Paulo, Brazil, through comprehensive in-home
interviews and biological sample collection every 5 years. This
cross-sectional study included individuals who participated in the
third wave of data collection in 2010. A detailed description of the
project under the coordination of the School of Public Health at the
University of São Paulo (FSP-USP) can be found elsewhere (Lebrão
and Laurenti, 2005; Naslavsky et al., 2022). Individuals responded to
a long questionnaire which included questions related to self-
reported health conditions, such as hypertension, heart and
cardiovascular conditions, diabetes, cancer, chronic pulmonary
disorders, joint conditions, osteoporosis, anemia, and depression.
One section of the questionnaire is devoted to collect information
about medication and supplement intake. Biological samples were
collected, including peripheral blood for DNA biobanking.

The SABE project was approved by the FSP-USP Institutional
Review Board and the National Committee of Ethics in Research. All
participants signed consent forms according to the Brazilian
regulatory requirements human research.

Variant discovery

A total of 1,335 SABE participants were enrolled in the
2010 round of data collection. DNA was extracted from these
individuals, and 1,200 DNA samples met the quality criteria and

1 www.pharmgkb.org

2 www.pharmgkb.org/downloads

3 www.pharmgkb.org/page/varAnnScoring
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were submitted to WGS. Further details on the adopted
methodology can be found in the WGS flagship publication
(Naslavsky et al., 2022). Briefly, Illumina HiSeqX sequencers were
used with a 30X target coverage and a 150 base paired-end single
index read format. Relatedness was assessed by the KING toolset
(Manichaikul et al., 2010), and to avoid inflating population
frequencies for rare alleles, only one individual (proband) was
maintained when identifying siblings, duos, or other pairs of up
to three degrees of relationships. GATK flags (Auwera et al., 2013)
and an in-house genotype and variant flagging algorithm were
applied to filter out low-quality variants, as described in
Naslavsky et al. (2022). The variants and allelic frequencies of the
aggregated sample of 1,171 unrelated individuals submitted to WGS
are publicly available on the ABraOM (Arquivo Brasileiro Online de
Mutações) platform4. The frequency of clinically important variants
in CACNAS1S, CFTR,DPYD, IFNL3, and RYR1 were extracted from
the ABraOM dataset since these genes are not represented in the
Stargazer pipeline.

Pharmacogenes star allele assessment

WGS data had been previously mapped to human reference
GRCh38 using ISIS analysis software (Raczy et al., 2013), and reads
overlapping with the 38 pharmacogenes of interest regions were
extracted from BAM files, converted to FastQ files, and realigned to
hg19 using BWA-MEM v0.7.12 (Li and Durbin, 2009). Duplicate reads
were removed using MarkDuplicates from Picard v1.79. GATK3.7
(Auwera et al., 2013) was used for indel realignment, base quality score
recalibration, and variant joint calling. The following hard filters were
applied to exclude low-quality SNPs (QD < 2.0, FS > 60.0, MQ < 40.0,
MQRankSum < −12.5, ReadPosRankSum < −8.0, and SOR >3.0) and
indels (QD < 2.0, FS > 200.0, ReadPosRankSum < -20.0, and
SOR >10.0). Read-depth files were obtained through the GATK’s
DepthOfCoverage function with mapping and base quality
thresholds of 20 or greater.

The star alleles of 38 pharmacogenes were called using the tool
“genotype” from Stargazer v1.0.7 genotyping pipeline (Lee et al.,
2019a; Lee et al., 2019b), which uses the hard-filtered vcf and
coverage files as input, the program Beagle (Browning et al.,
2018), and the 1000 Genomes Project (Auton et al., 2015)
haplotype as a reference panel for phasing. Phased SNVs and
indels were then matched to star alleles. Stargazer used the read
depth from the coverage file to convert to copy number by
performing intrasample normalization using read depth from a
control GDF file (Lee et al., 2019a). Diplotypes are defined as
two alleles or haplotypes carried by a given individual.

Predicted phenotype assignment

For pharmacogenes with PharmGKB evidence level 1A,
PharmGKB’s diplotype–phenotype translation tables5 were used

to map each individual diplotype to a predicted phenotype and
calculate phenotype frequencies (Supplementary Figure S1).
Diplotypes that were not listed in translation tables were assigned
as unknown functions, with the exception of CYP2D6, for which
several diplotypes present in our sample were missing in
PharmGKB’s translation tables, and the sum of the activity score
(AS) for each allele was used to assign the predicted metabolic
phenotype according to the CPIC guidelines (Caudle et al., 2020).

Furthermore, predicted phenotypes were matched to the
Electronic Health Record (EHR) Priority Result Notation (risk)5,
and the frequency of individuals at high-risk of gene–drug
interaction was verified.

Since diplotype–phenotype translation tables have not been
reported for CYP4F2 and VKORC1, the assignment of predicted
phenotypes was interpreted from the Warfarin dosing guideline
(Johnson et al., 2017). CYP4F2*3 (c.1297G>A; p. Val433Met;
rs2108622) is listed as a decreased function allele and individuals
with one or two copies of CYP4F2*3 were assigned as higher
warfarin dose phenotype. VKORC1 (c.-1639G>A, rs9923231) is
associated with warfarin sensitivity, and patients with one or two
–1639A require progressively lower warfarin doses. Thus,
individuals with one or two copies of VKORC1*2 (rs9923231,
and the linked rs9934438 and rs235961) were assigned as
decreased warfarin dose phenotype.

Medication analysis

The SABE in-home interview includes the collection of
information about the medication that respondents were taking
at the time of the interview. The medication section from the
2010 round of data collection was first checked against a list of
45 PharmGKB evidence level 1A drug–gene pairs (Supplementary
Figure S1) to obtain the fraction of the cohort who has taken one or
more of the drugs listed. Then, potential PGx interactions were
verified by checking the individuals that had any predicted
phenotype designated as high-risk following EHR Priority Result
Notation and had also taken any specific drug associated with the
high-risk phenotype.

Results

Samples

A total of 1,171 unrelated, elderly Brazilian individuals from
the SABE 2010 cohort passed sample-level QC criteria, including
427 (36.5%) men and 744 (63.5%) women, with a median age of
71 years (IQR = 64–80). The distribution of self-reported color/
race categories, according to the Brazilian census was “White,”
58.1% (n = 680); “Brown” (Pardo in Brazilian Portuguese), 28.2%
(n = 330); “Black,” 6.4% (n = 75); “Yellow” (referring to Asian
extraction), 2.7% (n = 32); others, 2.1% (n = 25); and no answer,
2.5% (n = 29). It is important to note that these census “color/race”
classifications are sociopolitical and not biological constructs. In
Brazil, multiple studies have highlighted the complex relationships
between “color/race” and genetic ancestry (e.g., estimates of the
geographical origin of the ancestors of the individuals in a sample

4 abraom.ib.usp.br

5 www.pharmgkb.org/page/pgxGeneRef
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based on statistical inferences made from genomic data) (Pena
et al., 2011; Naslavsky et al., 2022), and we provide a relevant
example when discussing the distribution of CYP2C9 variants in
one of the sections of this article. We would like to note that when
writing self-reported “White or Black” persons, we are referring to
the Brazilian census categories.

Star alleles assessment

Stargazer 1.0.7 was used to call star alleles in
38 pharmacogenes in the study cohort, and the frequency of
haplotypes and diplotypes are presented in Supplementary
Tables S1, 2, respectively. In total, 352 unique star alleles or
haplotypes were observed in all pharmacogenes assessed.
Among these, 255 and 199 had a frequency <5% and <1%,
respectively. For star alleles with frequency >5% (n = 97),
decreased function, loss-of-function, and unknown function
accounted for 13.4%, 8.2%, and 27.8% of alleles or haplotypes,
respectively (Figure 1). Structural variants (SVs) were
identified in 35 genes for at least one individual, although
the allele frequencies of SVs were >5% only for CYP2D6,
CYP2A6, GSTM1, and UGT2B17. A total of 103 different
duplications/deletions of star alleles and 16 different
rearrangements in CYP2A6, CYP2B6, CYP2D6, CYP2E1,
SLC22A2, and UGT2B15 were identified. The allele
frequency of complete deletion of GSTM1 and UGT2B17 was
65.2% and 34.3%, respectively (Supplementary Table S1).

CYP2D6 showed the highest levels of polymorphism among
all genes, with 43 identified unique star alleles (Figure 1), and
23.9% of individuals carrying SVs including rearrangements with
loss-of-function (*68+*4, *4N+*4, *13), decreased function
(*36+*10) and normal function (*S1+*1 and *83+*2), and
copy number variation (CNV) ranging from zero to three
gene copies. Among alleles that have not been reported in

PharmVar, we detected CYP2D6 *21 × 2 and *83+*2 and two
new star alleles referred to as *S1+*1 and *S2+*1 (Supplementary
Figure S2).

A total of 21 CYP genes were analyzed, and the highest
frequency of loss-of-function and decreased function alleles,
considering the AS of 0 or 0.5 designated by Stargazer, occurred
in CYP3A5 (81.7%), followed by CYP2D6 (38.6%), CYP2B6 (30.9%),
CYP2E1 (29.8%), CYP4F2 (29.2%), CYP2F1 (22.3%), CYP2C9
(18.6%), CYP2A6, and CYP2C8 (18.5%). The frequency of loss-
of-function and decreased function alleles was less than 10% in
CYP2W1, CYP3A4, CYP2A13, CYP2S1, CYP1A2, CYP1A1, CYP2J2,
CYP3A7, CYP2R1, and CYP3A43.

The frequency of NAT2 decreased function star alleles was
71.0%. In the case of NAT1, normal function and unknown
function alleles accounted for 64.6% and 32.5%, respectively.
POR*28 (decreased function) had a frequency of 24.0%. The
combined frequency of decreased function NUDT15*3 and
NUDT15*4 was 1.6%.

Four solute carrier (SLC) transporter genes were studied
(SLCO1B1, SLCO2B1, SLC15A2, and SLC22A2), and SLCO1B1
showed the highest degree of polymorphism with
20 identified star alleles, 15.5% alleles with loss-of-function or
decreased function, and 19.3% of alleles with increased function.

The combined frequency of TPMT loss-of-function alleles (*2,
*3A, *3B, and *3C) was 4.4%. Four UDP-glucuronosyltransferase
(UGT) phase II metabolism enzymes were evaluated. UGT1A1*28 is
the most common decreased function allele and had a frequency of
32.9%. The decreased function alleleUGT1A1 *37 had a frequency of
1.2%, while UGT1A1*6 and UGT1A1*7 were detected at a
frequency <0.1%.

Most of the star alleles from VKORC1 were designated by
Stargazer as “unknown function” (84.4%), including
VKORC1*2 defined by the variant rs9923231 (and the linked
rs9934438 and rs235961), related to warfarin dosage, which has a
frequency of 33.1%.

FIGURE 1
Star alleles frequency of 38 pharmacogenes called by Stargazer 1.0.7. Circles in vertical line denote frequency distribution of star alleles for each
gene. Mark colors represent allele functions as attributed by Stargazer, dark green (increased function, AS of 1.5–3.0), light green (normal function, AS of
1.0), orange (decreased function, AS of 0.5), red (loss-of-function, AS of zero), and black (unknown function).
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Variant analysis of CACNAS1S, CFTR, DPYD,
IFNL3, and RYR1

In addition to the evaluation of star alleles, the SABE cohort
WGS dataset (deposited in ABraOM) was used to verify the
frequency of clinically important variants in CACNAS1S, CFTR,
DPYD, IFNL3, and RYR1 (Supplementary Table S3). No CACNA1S
or RYR1 actionable variants were found, and three individuals were
identified with the rare loss-of-function DPYD variant rs3918290 in
heterozygosis.

Clinically actionable pharmacogenes

To estimate the possible clinical impact of the findings, the
predicted phenotype was obtained by analyzing the genotype data of
1,171 individuals for pharmacogenes with PharmGKB evidence level
1A. For this, PharmGKB reference translation tables5 were used to
map each individual diplotype to a predicted phenotype and then to
individual EHR priority result notation (Supplementary Figure S1),
which is used to predict individuals at potential risk of an adverse or
untoward response to medications due to the gene–drug interaction
(Figure 2). Overall, 98.0% of the individuals carried at least one high-
risk genotype in nine genes analyzed.

A total of 49 diplotypes were identified in CYP2B6, half of which
were associated with intermediate or poor metabolizer phenotypes
and classified as high risk for an adverse or poor response to
medications that are metabolized by CYP2B6 (51.6% of the
individuals). The frequency of diplotypes with one or two copies
of CYP2B6*6, associated with lower protein expression and activity,
was 45.8%.

In the case of CYP2C19, carriers of one or two copies of *17,
*3, and *2 are considered at potential risk of an adverse or poor
response to medications metabolized by the gene. Due to the high
frequency of those diplotypes in the cohort, mainly CYP2C19 *1/
*17 (24.3%), *1/*2 (19.6%), and *2/*17 (6.4%), CYP2C19 had the
highest frequency of genotypes associated with actionable
phenotypes.

According to the CPIC, individuals with intermediate and poor
metabolizer CYP2C9 phenotypes are considered to be at high risk for
adverse reactions to medications that are affected by CYP2C9. The
intermediate metabolizer diplotypes CYP2C9 *1/*2 and *1/*3 were
present in 17.5% and 8.4% of individuals, respectively, and a total of
33.2% were classified into the high-risk EHR annotation group.

The frequency of individuals at high risk for an adverse or
untoward response to medication metabolized by CYP2D6 was
40.8%, including ultrarapid (4.6%), intermediate (31.3%), and
poor metabolizer phenotypes (5.0%). The most frequent high-
risk diplotypes were CYP2D6 *1/*4 (6.15%), *1/*68+*4
(3.59%), *1/*5 (2.56%), and *2/*4 (2.56%), all intermediate
metabolizers.

CYP3A5 high-risk phenotypes, which are normal and
intermediate metabolizers, were verified in 4.5% and 27.4% of
our cohort, respectively, and consist of diplotypes of one or two
copies of CYP3A5 *1.

Less than 20% of the individuals were found to be at high risk
of gene–drug interactions due to variants in NUDT15, SLCO1B1,
TPMT, and UGT1A1. For NUDT15, intermediate metabolizer
(*1/*3) is considered high-risk phenotypes and occurred in 2.1%
of individuals. The frequency of individuals with SLCO1B1
high-risk phenotypes (decreased function or poor function)
was 18.7%, including individuals with one or two copies of

FIGURE 2
Frequency of predicted metabolizer/function phenotypes and gene–drug priority risk categories based on the CPIC guidelines for pharmacogenes
with PharmGKB level of evidence 1A for drug interaction. Bars on the left represent phenotype risk using Electronic Health Record Priority Result Notation.
Bars on the right indicate the predicted phenotype obtained by matching diplotypes assigned by Stargazer to phenotypes using PharmGKB/CPIC
diplotype–phenotype reference tables [Poor/Intermediate/Normal/Rapid] function refers to SLCO1B1 phenotypes. *Predicted phenotype
categories were grouped as follows: Intermediate metabolizer/function also includes: CYP2C19 Likely Intermediate Metabolizer (CYP3A5/NUDT15/
TPMT) Possible Intermediate Metabolizer, SLCO1B1 Decreased function, and SLCO1B1 Possible Decreased Function; poor metabolizer/function also
includes: CYP2C19 Likely Poor Metabolizer, and SLCO1B1 Possible Poor Function; and rapid metabolizer/function also includes SLCO1B1 Possible
Increased Function, and CYP2D6 Ultrarapid Metabolizer.
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SLCO1B1 *5, *15, or *17. TPMT intermediate metabolizer, poor
metabolizer, and indeterminate metabolizer phenotypes are
considered to be at high risk of gene–drug interactions and
consisted of 9.8% of individuals. The frequency of individuals
with UGT1A1 *28/*28 (poor metabolizer predicted phenotype)
was 11.3%, which is the only high-risk UGT1A1 diplotype
identified in our cohort.

CYP4F2 and VKORC1 had the EHR Priority Result
Notation designated according to warfarin guidelines.
Therefore, the CYP4F2 lower warfarin dose phenotype
individuals (carriers of one or two copies of CYP4F2*3)
were 48.8% of our cohort, and VKORC1 decreased

warfarin dose phenotype (carriers of one or two copies of
VKORC1*2), which accounted for 49.8% of our cohort
(Figure 3).

Real-world medication use

The analysis of medication use was performed to predict the
clinical impact of the findings in a real-world scenario. For this, the
PharmGKB evidence level 1Amedication used in outpatient settings
was verified in the SABE questionnaire. The median number of
drugs used was four (IQR = 2–6). In general, 42.0% of the individuals

FIGURE 3
Frequency of predicted metabolizer/function phenotypes for CYP4F2 and VKORC1 based on the warfarin dosing guideline (Johnson et al., 2017).

TABLE 1 Cohort medication use and predicted high-risk individuals by pharmacogene.

Gene Drugsa % Taking
drugs (n)

% Taking drugs at high
risk (n)b

CYP2C19 Amitriptyline, citalopram, clomipramine, clopidogrel, escitalopram, imipramine, lansoprazole,
omeprazole, pantoprazole, and sertraline

25.1 (278) 14.5 (161)

SLCO1B1 Simvastatin 20.1 (223) 3.0 (33)

CYP2D6 Amitriptyline, clomipramine, codeine, fluvoxamine, imipramine, metoprolol, nortriptyline,
paroxetine, propafenone, risperidone, tramadol, and venlafaxine

6.7 (74) 2.4 (27)

CYP2C9 Celecoxib, ibuprofen, meloxicam, phenytoin, piroxicam, tenoxicam, and warfarin 4.7 (52) 1.5 (17)

CYP4F2/
VKORC1

Warfarin 1.4 (15) 0.5 (5)

CYP2B6 Efavirenz 0.2 (2) 0.1 (1)

aDrugs identified in the cohort among 45 PharmGKB evidence level 1A drug–gene pairs (Supplementary Figure S1).
bIndividuals whose predicted phenotype was designated as high-risk following the EHR Priority Result Notation and has also taken any specific drug associated with the high-risk phenotype.
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used at least one PharmGKB level 1A drug, 18.9% were at potentially
high risk for adverse effects, and 2.7% had more than one PGx
interaction. Simvastatin and omeprazole were in use by 20.1 and
19.5% of the cohort, amytriptiline by 3.3%, sertraline by 2.3%, and
ibuprofen by 2.2%. All other drugs were taken by <1.5% of the
cohort (Table 1 and Supplementary Table S4).

Discussion

Genetic variation plays an important role on drug response, and
the scientific community has been making efforts in the last few
decades to translate PGx advances into the clinic. A better
understanding of human genomic diversity is necessary to
broaden the scope of clinical guidelines and implementation of
PGx-informed prescription and also has important implications for
the design of clinical trials. The present study uncovers the
frequency of star alleles and predicted phenotypes of
38 pharmacogenes from WGS data for a population-based
sample containing more than 1,000 individuals of admixed
ancestry from Brazil (Naslavsky et al., 2022), with a distinctive
demographic history as compared to other Latin American
populations (Popejoy and Fullerton, 2016; Sirugo et al., 2019).
Available medication data were used to assess potential
pharmacogenes–drug interactions.

In general, the frequencies of the star alleles identified in the
SABE WGS cohort were in accordance with previous studies in
the Brazilian population (Rodrigues-Soares et al., 2018;
Rodrigues-Soares et al., 2020), although a higher number of
star alleles with a frequency <5% (n = 255) and <1% (n =
199) have been identified in our study. Genotyping
technologies are able to identify the most frequent variants
but lack the ability to reveal rare and deleterious ones that
have been proven to play a significant role in the field of PGx
(Ingelman-Sundberg et al., 2018; De Mattia et al., 2022; Gray
et al., 2022). An analysis of the UK Biobank sample, which
included nearly 50,000 subjects with both imputed data from
genotyping arrays and exome sequencing, compared their ability
to call haplotypes and phenotypes in 14 clinically important
pharmacogenes. Despite the high concordance between
techniques for most genes, the analysis revealed extremely low
concordance for highly polymorphic pharmacogenes such as
CYP2D6, where imputed data from genotyping arrays may not
capture the wide range of variation (McInnes et al., 2021).

Several initiatives have used NGS to analyze PGx markers in
diverse populations, using large genomic databases (Reisberg et al.,
2019; Luo et al., 2021; McInnes et al., 2021; Taliun et al., 2021) or
databases from specific populations (Cohn et al., 2017; Al-Mahayri
et al., 2020; Mauleekoonphairoj et al., 2020). The advances in
genomic analyses by NGS have enabled scientists to investigate
the contribution of rare variants to complex diseases and PGx.
Recently, Ingelman-Sundberg et al. (2018) analyzed the distribution
of rare and common variants in 208 pharmacogenes by analyzing
the exome sequencing data from 60,706 unrelated individuals from
ExAC. They reported that the vast majority of variants were rare
(98.5%; MAF <1%) or very rare (96.2%; MAF <0.1%), and for those
variants, there was a strong enrichment in consequences predicted
to cause functional alterations, suggesting that a substantial part of

the unexplained interindividual differences in drug metabolism
phenotypes can be attributed to rare genetic variants.

NGS-based techniques have also facilitated the large-scale
detection of SVs (i.e., microscopic or submicroscopic genomic
alterations comprising DNA segments larger than 50 bp),
including CNVs (duplications or deletions of DNA segments),
translocations, inversions, and combinations of the same (Feuk
et al., 2006; Trost et al., 2018). Numerous algorithms have been
developed for detecting SVs from large-scale sequencing data, and
they differ in both sensitivity and specificity mainly due to
differences in SV-related and sequencing library-related
properties, leading to variable depth of coverage (Guan and Sung,
2016). This heterogeneity motivated the development of best
practices for the detection of germline CNVs, which represent
the majority and the most clinically significant type of SVs, from
short-read WGS data (Trost et al., 2018), less prone to variability in
sequencing depth of coverage.

SVs have been shown to play a clear role in the field of PGx
(Johansson and Ingelman-Sundberg, 2009; He et al., 2011; Santos
et al., 2018) and were originally described in CYP2D6, which
metabolizes around 25% of all drugs in clinical use, and has been
extensively studied to uncover the functionality of its multiple
variants and haplotypes including CNVs and other complex SVs
that are not detected by conventional techniques. Its homology to
the pseudogenes, CYP2D7 and CYP2D8, becomes a challenge for the
interrogation by short-read NGS (Schwarz et al., 2019; Luo et al.,
2021). Recently, specific bioinformatics algorithms have been
developed for pharmacogenes genotyping based on high-
throughput sequencing data, most of them using CYP2D6 as a
model, such as Stargazer (Lee et al., 2019a; Lee et al., 2019b),
Astrolabe (formerly Constellation) (Twist et al., 2016), Aldy
(Numanagi et al., 2018), and StellarPGx (Twesigomwe et al.,
2021). In our analysis with the Stargazer pipeline, CYP2D6
showed a high degree of polymorphism with a long tail of low-
frequency alleles; 33 out of 43 star alleles were identified with a
frequency <1%, and 19 out of 33 rare alleles were classified as
abnormal function alleles (loss-of-function, decreased function, or
increased function alleles, Supplementary Table S1). Several low-
frequency alleles have not been reported in the Brazilian population
(Rodrigues-Soares et al., 2018), including the loss-of-function
rearrangement CYP2D6 *68+*4 (4.5%) and decreased function
rearrangement CYP2D6*36+*10 (frequency <1%). The frequency
of the CYP2D6*5 gene deletion was comparable to the frequency
described by Rodrigues-Soares et al. (2020) in 98 Brazilians
genotyped for CYP2D6 polymorphisms. The frequency of
CYP2D6 functional allele multiplication (extensive metabolizers)
was 2.5%, corroborating the pattern identified in LLerena et al.
(2014) in Latin American populations. SVs were also identified in
other 34 of 38 genes analyzed by Stargazer, although they are rare for
most of the genes, corroborating Santos et al. (2018), who described
novel exonic deletions and duplications in 201 of
208 pharmacogenes analyzed (97%) in the ExAC dataset. Testing
the accuracy of SVs identified in PGx-specific pipelines as compared
to the best practices available for WGS-based SV and CNV pipeline
(Trost et al., 2018) will be followed up in the future.

We verified that 98.0% of the individuals carried at least one
high-risk genotype in the nine genes analyzed, and 24.8% of the
individuals were predicted to be at a high risk for PGx interactions
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for both CYP2C19 and CYP2D6, for example. In terms of analysis of
real-world medication data, 42.0% of the individuals used at least
one drug with PGx recommendation (PharmGKB level 1A). An
important aspect is that our cohort is made up of census-sampled
individuals aged 60 years and older with a high rate of
polypharmacy, considering that 41.1% of the individuals reported
taking five or more medications regularly.

A recent systematic review (O’Shea et al., 2022) indicated that,
mainly in a multi-drug scenario, panel-based tests have provided
optimistic estimates of long-term cost savings, especially due to a
reduction in the number of emergency department (ED) visits and
the number of rehospitalizations in patients submitting to PGx tests
(Brixner et al., 2016; Elliott et al., 2017). Although an economic
analysis is beyond the scope of this study, a previous study
conducted in a public hospital in Brazil showed that 14.6% of
ED visits were associated with drug-related morbidity, with an
estimated annual cost of approximately USD 7.5 million (Freitas
et al., 2017).

More research involving economic evaluations of PGx
implementation in Brazil is needed and should also include a
discussion of the genotyping methodology. Although the idea of
using NGS-based techniques in the clinics has been challenged due
to the current costs and the complexity involved in the
interpretation of results (O’Shea et al., 2022), as we have
discussed previously, several advances in terms of techniques
have been made in recent years and targeted genotyping tends to
continuously be replaced by NGS-based approaches, includingWGS
(Caspar et al., 2021).

In our real-world in-home medication usage evaluation,
CYP2C19, SLCO1B1, CYP2D6, CYP2C9, and CYP4F2 e VKORC1
were the most important genes from a PGx perspective. CYP2C19
contributes to the metabolism of a wide range of drugs, including the
platelet aggregation inhibitor clopidogrel, proton pump inhibitors,
antidepressants, carisoprodol, and diazepam, in addition to
endogenous substances, such as melatonin and progesterone
(Aquilante et al., 2013; Botton et al., 2021). In our study,
CYP2C19 was the gene with the highest frequency of predicted
phenotypes at a potential high risk for an adverse or poor response
tomedications metabolized by the gene, in agreement with studies in
other populations (Biswas, 2021; Luo et al., 2021). Although
medications used in the hospital setting were not considered in
this analysis, we could envisage the potential clinical impact of
CYP2C19 in terms of real-world medication usage, as drugs that
potentially interact with CYP2C19 had the highest frequency of use
among all the gene–drugs pairs analyzed. In total, 25.1% of the
cohorts were taking medications with potential CYP2C19 gene–drug
interactions, and 14.5% of the cohorts were high-risk individuals
who have actually taken one or more of the drugs at home. The
frequency of use of omeprazole was 19.5%, while other drugs were
8.8%, including amitriptyline, sertraline, citalopram, and
clopidogrel.

The frequency of individuals at high-risk for SLCO1B1
gene–drug interaction was 18.7% (with one or two copies of
SLCO1B1*5, *15, or *17), and the real-world in-home medication
usage analysis showed that simvastatin was the medication taken
with the highest frequency (20.1%) and 3% of the cohort individuals
were taking simvastatin with a high risk of adverse drug reactions.
The frequency of individuals reporting statin-related skeletal muscle

toxicity, such as myalgias, myopathy, and rhabdomyolysis, is
considered low (1–5%), but the high frequency of prescription
results in an important absolute number of events (Ramsey et al.,
2014).

CYP2C9 is involved in the oxidative metabolism of up to 15–20%
of all drugs undergoing phase I metabolisms, such as warfarin, non-
steroidal anti-inflammatories, and phenytoin (Lee et al., 2002; Van
Booven et al., 2010). In our analysis, ibuprofen, warfarin, and
phenytoin were the most commonly used drugs metabolized by
CYP2C9. The frequency of decreased function CYP2C9*2 and
*3 varies among populations, and in the Brazilian population, both
alleles showed significant differences between self-reported “White”
and “Black” individuals (Rodrigues-Soares et al., 2018).CYP2C9*5, *6,
*8, and *11 are decreased function alleles that are found with the
highest frequency in individuals of African ancestry6. Based on the
significant difference in allele frequencies in populations of diverse
ancestry, the warfarin guidelines have distinct dosing algorithms in
patients who self-identify as African, which includes CYP2C9*5, *6,
*8, *11, vs. non-African. In the SABE sample, the allele frequencies of
CYP2C9*2 and *3 were 11.3% and 5.2%, respectively, and the allele
frequencies of CYP2C9*5, *6, *8, and *11 were <1%. However, the
percentage of individuals with at least one copy of CYP2C9*5, *6, *8,
or *11 was 3.92%, and 19.0% of these were self-identified as “White,”
59.5% as “Brown,” and 19.0% as “Black” individuals, corroborating
previous studies that demonstrated a tenuous correlation between
self-reported “race” and biogeographical ancestry (Pena et al., 2011;
Suarez-Kurtz and Parra, 2018).

In addition to CYP2C9, warfarin dosing algorithms include
VKORC1*2 (-1639G>A) as a dose-reduction factor, due to the
increased sensitivity to warfarin associated with this variant
(Johnson et al., 2017). The frequency of individuals with both
CYP2C9 intermediate/poor metabolism phenotypes and VKORC1
alleles with increased warfarin sensitivity was 14.4% in our cohort.
For these individuals, lower doses or an alternative oral
anticoagulant might be considered (Johnson et al., 2017).
Warfarin dosing algorithms also include the detection of
CYP4F2*3 as optional and only for individuals of non-African
ancestry. The carriers of one or two copies of CYP4F2*3 would
require an increase in warfarin dose of 5–10% (Johnson et al., 2017).

The current study has some limitations. First, the initial cohort
was composed of 1,343 individuals, but 143 did not have WGS
performed because either they did not provide biological samples or
the DNA quality did not reachWGS standards. In addition, 29 pairs
of individuals had family relationships up to the third degree, which
required exclusion of one of the individuals of the pair to avoid rare
variant inflation in the population dataset (Naslavsky et al., 2022).
Second, the collection of data regarding medication usage was taken
in 2010, and we might not have access to all medications taken by
individuals, including drugs taken in the hospital setting. The
medication intake questionnaire aimed to collect information on
drug usage at the moment of interview, and no dosage annotation
was obtained. In addition, Stargazer v1.0.7 has a tool for predicting
phenotypes that has not yet been systematically validated and was
not used in this study. Other pipelines for pharmacogenes

6 www.pharmgkb.org/page/cyp2c19RefMaterials
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genotyping based onNGS data could be used in the future to validate
the results of this same set of data.

Conclusion

Although microarrays have been shown to be a cost-effective tool
for the identification of pharmacogenetic variants and dosing
adjustments (Reisberg et al., 2019), genome sequencing
technologies continue to improve in terms of read length, data
analysis, and variant interpretation. Our study used the Stargazer
pipeline (Lee et al., 2019a) to call star alleles from a WGS database of
1,171 individuals from the city of Sao Paulo, Brazil. This study
illustrates the feasibility of using such techniques on a large scale
in the Brazilian population, with the advantage of unraveling complex
pharmacogene structures, such as CYP2D6, rare variants, and other
CNVs, that have been proved to play an important role in the field of
pharmacogenetics and drug response (Santos et al., 2018). The
investigation showed that 98.0% of the individuals carried at least
one high-risk genotype in 9 PharmGKB evidence level 1A
pharmacogenes, and a significant proportion of individuals were at
a risk of interaction when the medication report was analyzed. These
results call attention to the importance of the systematic adoption of
PGx testing for our population and to the use of NGS data to extract
pharmacogenetic variants. As important as the introduction of NGS
technologies is the validation of such platforms for the call of
pharmacogenetic variants. Studies on the economic evaluation of
PGx implementation in Brazil are needed and should also include a
discussion around the genotyping methodology.
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