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Background:Opioid-induced hyperalgesia (OIH) is an adverse event of prolonged
opioid use that increases pain intensity. The optimal drug to prevent these adverse
effects is still unknown.We aimed to conduct a networkmeta-analysis to compare
different pharmacological interventions for preventing the increase in
postoperative pain intensity caused by OIH.

Methods: Several databases were searched independently for randomized
controlled trials (RCTs) comparing various pharmacological interventions to
prevent OIH. The primary outcomes were postoperative pain intensity at rest
after 24 h and the incidence of postoperative nausea and vomiting (PONV).
Secondary outcomes included pain threshold at 24 h after surgery, total
morphine consumption over 24 h, time to first postoperative analgesic
requirement, and shivering incidence.

Results: In total, 33 RCTswith 1711 patients were identified. In terms of postoperative
pain intensity, amantadine, magnesium sulphate, pregabalin, dexmedetomidine,
ibuprofen, flurbiprofen plus dexmedetomidine, parecoxib, parecoxib plus
dexmedetomidine, and S (+)-ketamine plus methadone were all associated with
milder pain intensity than placebo, with amantadine being themost effective (SUCRA
values = 96.2). Regarding PONV incidence, intervention with dexmedetomidine or
flurbiprofen plus dexmedetomidine resulted in a lower incidence than placebo, with
dexmedetomidine showing the best result (SUCRA values = 90.3).

Conclusion: Amantadinewas identified as the best in controlling postoperative pain
intensity and non-inferior to placebo in the incidence of PONV. Dexmedetomidine
was the only intervention that outperformed placebo in all indicators.

Clinical Trial Registration: https://www.crd.york.ac. uk/prospero/display_record.
php?, CRD42021225361.
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What is already known about this
subject?

OIH is highly prevalent in surgery patients, contributing to
various undesirable outcomes, such as more severe postoperative
pain, increased opioid demand, and a high incidence of side effects.

In clinical routine, multiple medications with various
mechanisms were proven to prevent the increase in postoperative
pain caused by OIH. However, the comparative effects of different
pharmacological interventions are urgently needed for a better
guideline for the individualized anesthesia protocols.

What this study adds

Amantadine, magnesium sulphate, pregabalin,
dexmedetomidine, ibuprofen, flurbiprofen plus dexmedetomidine,
parecoxib, parecoxib plus dexmedetomidine, and S (+)-ketamine
plus methadone all have statistically significantly lower pain
intensity than placebo. Amantadine was the most effective
compared to placebo but failed to demonstrate superiority in the
incidence of PONV.

Dexmedetomidine is not the best option, but it is the most well-
balanced choice because it is the only intervention that outperforms
placebo in all indicators.

1 Introduction

Opioids are the most commonly used analgesics during the
perioperative period as a part of balanced anesthesia. Timely opioid
administration during surgery reduces the need for general
anesthetics, resulting in faster recovery (Lang et al., 1996), and
post-surgery patient-controlled opioid analgesia improves patient
comfort and satisfaction (McNicol et al., 2015). However, a state of
nociceptive sensitization with reduction in nociceptive thresholds
and paradoxical increase in pain after exposure to opioids (Koppert
et al., 2003), referred to as opioid-induced hyperalgesia (OIH), have
been demonstrated in animal models (Minville et al., 2010), human
volunteers (Vinik and Kissin, 1998) and surgical patients (Fletcher
and Martinez, 2014). Patients who experience more severe
postoperative pain due to nociceptive sensitization may be
obliged to accept more opioids unless alternatives are considered
(He et al., 2020). Furthermore, opioid-related adverse drug events
have been associated with increased inpatient mortality, prolonged
stay, and a high cost of hospitalization (Shafi et al., 2018).

Although the precise molecular mechanism underlying OIH is
unknown, it is widely assumed to be triggered by neuroplastic
changes in the peripheral and central nervous systems (Lee et al.,
2011). Previous research has demonstrated that opioids contribute
to the occurrence of OIH by inhibiting glutamate recapture and
inducing production of pro-inflammatory molecules (Roeckel et al.,
2016). The inhibition of the glutamate transporter leads to increased
synaptic concentrations of glutamate, which, in turn, activates the
N-methyl-D-aspartate (NMDA) receptor, thus triggering OIH
(Antal et al., 2008; Arout et al., 2015). Previous
electrophysiological studies also identified the rapid and
persistent upregulation of NMDA receptor function by clinically

relevant concentrations of remifentanil, mirroring the potential
target for the pathologic activation of NMDA receptor in the
intervention of OIH (Guntz et al., 2005; Zhao and Joo Daisy,
2008). Furthermore, neuroinflammation mediated by opioid-
triggered release of pro-inflammatory molecules and the
activation of glial cells can sensitize pain pathways, lower pain
thresholds, and contribute to the development of OIH (Grace
et al., 2015). Additionally, the interactions between mu and delta
opioid receptors (Beaudry et al., 2015),α-2 adrenoreceptors
(Mercieri et al., 2017), neurokinin-1 receptor mediated
transmission (Vera-Portocarrero et al., 2007), and spinal
dynorphin expression (Vanderah et al., 2001) also have been
reported to play a role in the development and maintenance of OIH.

In light of these findings, clinical investigators mainly focused on
manipulating the glutaminergic system through modulation of the
NMDA receptor and blocking the neuroinflammation to prevent the
occurrence and development of OIH. Various interventions have
been explored, including NMDA receptor antagonists (amantadine
(Snijdelaar Dirk et al., 2004), magnesium sulphate (Ryu et al., 2008),
methadone (Tognoli et al., 2020), and ketamine (Leal et al., 2015)),
non-steroidal anti-inflammatory drugs (NSAIDs) (Ibuprofen (Koo
et al., 2016), flurbiprofen (Zhang et al., 2016), and parecoxib (Du
et al., 2019)), opioid receptor antagonist (naloxone (Du et al., 2019)),
agonist-antagonist opioid analgesics (nalbuphine (Hu et al., 2020)
and buprenorphine (Mercieri et al., 2017)) and α-2 adrenoceptor
agonist (dexmedetomidine (Wu et al., 2021)). These interventions,
with different mechanisms of action, have been shown the potential
in reduce pain intensity and the need for postoperative analgesics
due to OIH. Regretfully, clinical routines are still debatable about the
optimal intervention strategy to prevent the increase in
postoperative pain intensity caused by OIH due to small sample
sizes and varying medication dosages in existing literature (Wu et al.,
2015). Importantly, the relative effects of different types of
medications remain unknown.

Given these uncertainties, we conducted a systematic review and
network meta-analysis of various pharmacological interventions to
prevent the increase in postoperative pain intensity caused by OIH
in adults following general anesthesia, hoping better to guide clinical
practice for more individualized general anesthesia protocols.

2 Methods

This network meta-analysis was registered on https://www.crd.
york.ac.uk/PROSPERO. The registration number is
CRD42021225361.

2.1 Search strategy and selection criteria

According to PRISMA Extension Statement for Reporting of
Systematic Reviews Incorporating Network Meta-analyses (Hutton
et al., 2015), MEDLINE, Embase, The Cochrane Central Register of
Controlled Trials, andWeb of Science were searched in English with
language restrictions. The search strategy combined free text words
and medical subject heading (MeSH) terms to maximize the results.
The following keywords were used in the search: 1) opioid, 2)
hyperalgesia, and 3) magnesium, naloxone, buprenorphine,
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ketamine, dexmedetomidine, butorphanol, propofol, flurbiprofen,
morphine, methadone, lornoxicam, nitrous oxide, parecoxib,
clonidine, amantadine, nalbuphine, paracetamol, pregabalin,
nefopam, acetazolamide.

2.2 Selection of studies and data extraction

Two investigators (WJX and HFC) reviewed all titles, abstracts,
and full texts sequentially. Finally, eligible trials were identified, and
data on eligibility, quality, and outcomes were independently
retrieved. Disagreements between the two reviewers on eligibility
were resolved through mutual discussion. A third reviewer (YCL)
was requested for the final decision when needed. Relevant data were
extracted from eligible literature using a standard extraction formula
and cross-checked.

Retrieved data included: 1) first author, year of publication,
study location, study design, sample size, gender, age, American
Society of Anesthesiologists (ASA) status, types of surgery,
premedication, anesthesia maintenance, intervention description,
control description, dose of opioid, postoperative analgesic
strategies, and 2) pain intensity in the form of the various pain
scores during the 0 to 24 postoperative hours, pain threshold or
normalized area of hyperalgesia during the 0 to 48 postoperative
hours, cumulative morphine consumption at 24 h after surgery, time
to first rescue analgesic, and incidence of postoperative opioid-
related side-effects, such as postoperative nausea and vomiting
(PONV), shivering, dizziness and hypotension. Dichotomous data
were extracted as the number of patients (%). Continuous data were
extracted in the form of mean ± standard deviation (SD).

We tried to contact the author via e-mail twice when the target
data in the article were incomplete, but no responses were received.
Range and median estimation (Grace et al., 2015) were used to
convert the data when the standard deviation was missing.

2.3 Type of outcome measures

Our primary outcomes were postoperative pain intensity at rest
after 24 h and the incidence of PONV. Postoperative pain intensity
wasmeasured using pain scores scaling from 0 (no pain) to 10 (worst
possible pain). Intensity scores reported on a visual analogue scale
(VAS: 0: no pain to 100: worst possible pain) were transformed to a
0–10 scale. PONV, the most common adverse event, contributes to
the highly distressing experience and severe patient dissatisfaction
(Myles et al., 2000; Eberhart et al., 2002), with an incidence as high as
80% in high-risk cohorts (Apfel Christian et al., 1999).

Secondary outcomes include pain thresholds at 24 h after
surgery, cumulative morphine consumption over the 24 h period,
time to first postoperative analgesic requirement, and shivering
incidence.

2.4 Assessment of risk of bias

Two investigators (WJX and HFC) read the eligible articles
independently. They assessed their methodological validity using the
Cochrane Collaboration’s tool of Review Manager software

(RevMan version 5.4, Cochrane Community, London, England)
for evaluating the risk of bias in randomized controlled trials
(RCTs), and disagreements were resolved through discussion
(Higgins et al., 2011). The tool includes seven items that describe
random sequence generation, allocation concealment, participants
and personnel blinding, outcome assessment, blinding, incomplete
outcome data, selective reporting, and other biases. Each item was
assigned a risk of material bias judgment of high, low, or unclear.

2.5 Statistical analysis

For dichotomous outcomes, odds ratios (ORs) with 95%
confidence intervals (CIs) were calculated, as were standardized
mean differences (SMDs) or mean differences (MDs) with 95% CIs
for continuous outcomes.

This network meta-analysis was performed within a frequentist
framework using the STATA 16.0 (StataCorp, Texas, United States)
command ‘mvmeta’ (White, 2011). First, a network geometry plot
for each outcome was created, which provided a visual and concise
description of the relationship between pairs of interventions
(Chaimani et al., 2013). Second, the node-splitting method and
loop inconsistency mode were used to assess the statistical
consistency. p-value ≥0.05 or 95% CI for each closed-loop
containing 0 means direct and indirect comparisons were
considered consistent (van Valkenhoef et al., 2016). Third, a
comparison-adjusted funnel plot was used to assess publication
bias. A symmetrical graph indicated that publication bias had a
low influence, whereas an asymmetric graph indicated possible
publication bias. Finally, the forest plot was used to report the
results of the mixed comparison of interventions and placebo, and
the league table was used to illustrate all head-to-head comparisons.
We assumed that 95% of CIs that did not contain 0 were statistically
significant for SMDs or MDs, and those that did not have 1 were
statistically significant for ORs. The two-dimensional graph is
prepared to visualize comprehensive drug for placebo
comparisons. The point in the lower-left portion of the
coordinate system that does not intersect with the dark grey
dashed line indicates that this pharmacological intervention
outperforms the placebo regarding postoperative pain intensity
and PONV incidence. Furthermore, the ranking probabilities of
all interventions at each possible intervention rank were estimated
(Chaimani et al., 2013). The treatment hierarchy was summarized
and reported as the surface under the cumulative ranking curve
(SUCRA) (Chaimani et al., 2013) the ranking probabilities. The
higher the SUCRA value, the higher the rank of the treatment
outcomes.

2.6 Inclusion and exclusion criteria

RCTs that met the following criteria were considered eligible: 1)
anesthesia was induced and maintained with opioids; 2)
pharmacological interventions were administered to patients at
any dose before or during the operative period; and 3)
pharmacological interventions were compared to the placebo.

Articles were excluded based on the following criteria: 1)
combination with regional nerve block during the anesthesia
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induction or maintenance period, and 2) data from healthy
volunteer or pediatric studies, abstracts, letters, or reviews.

3 Results

3.1 Study selection and characteristics

We identified 1,602 potentially relevant studies in total. After
adjusting for duplicates and reviewing the title/abstract, the
remaining 39 full-text manuscripts were reviewed. Following the
study protocol, six trials were excluded due to a lack of outcome of
interest (n = 4) and a combination with a regional nerve block (n =
2). In total, 33 RCTs with a total of 1711 patients were identified.
Figure 1 depicts the process of literature selection.

A total of 960 subjects were randomly assigned to
pharmacological intervention and 751 to placebo. The included
RCTs were published between 2002 and 2020 and included
orthopedic (n = 2), urinary (n = 4), abdominal (n = 10),
gynecologic (n = 9), thyroid surgery (n = 5), thoracic (n = 1)
and ear-nose-throat surgery (n = 2). Table 1 describes the basic
characteristics of the enrolled studies.

3.2 Risk of bias assessment

Supplementary Appendix S2 contains the details for the risk of
bias assessment. The random sequence generation was specified in
24 trials (72.7%). Although 18 trials (54.5%) reported allocation
concealment, one trial had a high risk of bias. Only one trial did not

FIGURE 1
Flow chart of search strategy to identify the eligible randomized controlled trials (RCTs).
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TABLE 1 Characteristics of studies.

Study
(author/
year)

Country Sample Size
(intervention/

control)

Gender
(M/F)

Mean
Age

ASA
Status
(Ⅰ/Ⅱ/Ⅲ)

Intervention Type of
Surgery

Does of
Opioid

W. Jaksch
2002

Austria 15/15 15/15 31.5 NA S (+)-ketamine
0.5 mg/kg IV +
2.0 µg/kg· min

continuous infusion

Arthroscopic
anterior cruciate
ligament repair

Remifentanil
0.125–1.0 μg/kg·

min

B. Guignard
2002

France 25/25 14/16 62.5 9/35/7 Ketamine 0.15 mg/kg
IV + 2.0 µg/kg· min
continuous infusion

Open colorectal
surgery

Remifentanil
0.25 μg/kg· min

A. Sahin 2004 Turkey 17/16 16/17 47.4 NA Ketamine
0.5 mg/kg IV

Lumbar disk
operation

Remifentanil
0.1 μg/kg· min

A. C. Van
Elstraete 2004

France 20/20 20/20 29.0 NA Ketamine 0.5 mg/kg
IV + 2.0 µg/kg· min
continuous infusion

Elective
electrodissection
tonsillectomy

Remifentanil
0.125–1.0 μg/kg·

min

D. G.
Snijdelaar

2004

Canada 11/10 21/0 60.0 8/12/1 Amantadine 200 mg
orally at night and at
1 h before surgery

and 100 mg at 8, 20,
and 32 h after surgery

Radical
prostatectomy

NA

V. Joly 2005 France 24/25 18/32 57.5 21/22/7 Ketamine 0.5 mg/kg
IV + 5.0 µg/kg· min
continuous infusion
+2.0 µg/kg· min for
48 h after surgery

Abdominal
surgery

Remifentanil
0.4 μg/kg· min

J. H. Ryu 2008 Korea 25/25 0/50 42.4 37/13/0 Magnesium sulphate
50 mg/kg IV +
15 mg/kg· h

continuous infusion

Total
abdominal

hysterectomy

Remifentanil TCI
4 ng/mL

S. Kaya 2009 Turkey 20/20 NA 50.0 NA Magnesium sulphate
30 mg/kg IV +

500 mg/h continuous
infusion

Elective
abdominal

hysterectomy

Remifentanil
0.25 μg/kg· min

H. R. Jo 2011 Korea 20/20 0/40 46.1 34/6/0 Pregabalin 150 mg
orally

Non-malignant
total abdominal hysterectomy

Remifentanil TCI
3–4 ng/mL

C. Lee 2011 Korea 25/25 50/0 63.4 NA Magnesium sulfate
80 mg/kg IV

Robot-assisted
laparoscopic
prostatectomy

Remifentanil
0.3 μg/kg· min

C. Lee 2011 Korea 30/30 38/22 38.2 NA Adenosine 80 µg/kg·
min continuous

infusion

Tonsillectomy Remifentanil
0.1 μg/kg· min

J. W. Song
2011

Korea 28/28 11/45 46.0 NA Magnesium sulphate
30 mg/kg IV +
10 mg/kg· h

continuous infusion

Thyroidectomy Remifentanil
0.2 μg/kg· min

H.
Bornemann-
Cimenti 2012

Germany 13/13 11/15 56.9 NA Pregabalin 300 mg
orally

Elective
transperitoneal
nephrectomy

Remifentanil
0.1–0.5 μg/kg·

min

C. Lee 2013 Korea 28/29 0/57 48.7 NA Dexmedetomidine
1.0 µg/kg IV +
0.7 µg/kg· h

continuous infusion

Laparoscopically
assisted vaginal
hysterectomy

Remifentanil
0.3 μg/kg· min

C. Lee 2013 Korea 31/29 31/29 50.7 NA Pregabalin 300 mg
orally

Laparoendoscopic
single-site urologic

surgery

Remifentanil
0.3 μg/kg· min

S. Treskatsch
2014

Germany 16/17 8/25 66.0 NA Amantadine 200 mg/
500 mL solution

Intra-abdominal
surgery

Remifentanil
0.2 μg/kg· min

(Continued on following page)
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TABLE 1 (Continued) Characteristics of studies.

Study
(author/
year)

Country Sample Size
(intervention/

control)

Gender
(M/F)

Mean
Age

ASA
Status
(Ⅰ/Ⅱ/Ⅲ)

Intervention Type of
Surgery

Does of
Opioid

E. Choi 2015 Korea 25/25 0/50 44.1 NA Ketamine 0.5 mg/kg
IV + 5.0 µg/kg· min
continuous infusion

Elective laparoscopic
gynecological surgery

Remifentanil
0.3 μg/kg· min

P. C. Leal
2015

Brazil 28/28 9/47 44.6 28/28/0 Ketamine 5.0 µg/kg·
min continuous

infusion

Laparoscopic
cholecystectomy

Remifentanil
0.4 μg/kg· min

H.
Bornemann-
Cimenti 2016

Austria 37/19 31/25 60.5 4/24/28 S (+)-ketamine
0.25 mg/kg IV +
0.125 mg/kg· h

continuous infusion
or S (+)-ketamine
0.015 mg/kg· h

continuous infusion

Elective major abdominal
surgery

Remifentanil
0.1–0.3 μg/kg·

min

M. Kong 2016 China 25/25 32/18 51.5 NA Butorphanol
0.2 µg/kg IV +
0.02 µg/kg· min

continuous infusion

Laparoscopic
cholecystectomy

Remifentanil
0.3 μg/kg· min

C.-H. Koo
2016

Korea 27/26 33/20 63.7 NA Ibuprofen 800 mg IV
over 30 min

Pancreaticoduodenectomy Remifentanil TCI
4 ng/mL

Z. Yu 2016 China 57/29 0/86 46.1 NA Dexmedetomidine
0.5 µg/kg IV +
0.6 µg/kg h

continuous infusion
or flurbiprofen

1.5 mg/kg
combination with
dexmedetomidine

infusion

Laparoscopic assisted vaginal
hysterectomy

Remifentanil
0.3 μg/kg· min

L. Zhang 2016 China 56/28 0/84 46.0 67/
NA/NA

Butorphanol 20 µg/kg
IV or butorphanol
20 µg/kg combined
with flurbiprofen

0.5 mg/kg

Elective
laparoscopicgynaecological

surgery

Remifentanil
0.3 μg/kg· min

C. H. Koo
2017

Korea 30/31 20/41 47.0 50/11/0 Naloxone 0.05 µg/kg·
min continuous

infusion

Thyroid surgery Remifentanil TCI
4 ng/mL

M. Mercieri
2017

Italy 31/32 34/29 64.5 6/42/15 Buprenorphine
25 µg/h continuous

infusion

Lateral thoracotomy Remifentanil TCI
5 ng/mL

L. Zhang 2017 China 28/28 0/56 44.8 45/11/0 Flurbiprofen
1.0 mg/kg IV

Elective laparoscopic
gynecologic surgery

Remifentanil
0.3 μg/kg· min

H. Qiu 2018 China 32/16 24/24 NA NA Dexmedetomidine
0.2 µg/kg IV or

0.6 µg/kg

Thyroidectomy Remifentanil
0.2 μg/kg· min

B. Sng 2018 Singapore 45/44 0/89 48.1 NA S (+)-ketamine
0.25 mg/kg IV

Open abdominal
hysterectomy

NA

X. Du 2019 China 60/20 NA NA NA Parecoxib 40 mg IV
or dexmedetomidine

0.6 µg/kg· h
continuous infusion

or both

Laparoscopic
cholecystectomy

NA

R. Gutiérrez
2019

Chile 23/24 4/43 44.5 18/29/0 ACTZ 250 mg IV Total thyroidectomy without
neck dissection

Remifentanil TCI
4.5 ± 0.5 ng/mL

J. Hu 2020 China 24/24 11/37 50.2 24/24/0 Nalbuphine
0.2 mg/kg IV

Laparoscopic
cholecystectomy

Remifentanil
0.4 μg/kg· min

(Continued on following page)
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use blinding methods. Eight trials (24.2%) had selective reporting.
No trials were found to be at high risk of bias due to incomplete
outcome data and other bias. Overall, the included studies were of
relatively high quality.

3.3 Network geometry of eligible
comparisons

The network geometry plot (Figure 2) represents the network of
eligible comparisons for postoperative pain intensity at rest at 24 h
(A) and the incidence of PONV (B). The postoperative pain
intensity at rest at 24 h after surgery was reported in 28 studies
involving 20 treatments, and the incidence of PONVwas reported in
27 studies involving 17 treatments. There was at least one placebo-
controlled trial for each treatment. When a direct comparison was
performed, each treatment was represented by a node and linked by
an edge. More sample sizes indicate a bigger node, while more
studies demonstrate a thicker edge.

3.4 Results of primary outcomes

The forest plot (Figure 3) displays the network meta-analysis
results for the primary outcomes. In terms of postoperative pain
intensity, amantadine, magnesium sulphate, pregabalin,
dexmedetomidine, ibuprofen, flurbiprofen plus dexmedetomidine,
parecoxib, parecoxib plus dexmedetomidine and S (+)-ketamine
plus methadone were all associated with milder pain intensity than
placebo, with SMDs ranging between −3.06 (95% CI: −4.67, −1.45)
for amantadine and −0.62 (95% CI: −1.23, −0.01) for magnesium
sulphate. Regarding the PONV incidence, intervention with
dexmedetomidine (OR = 0.25, 95% CI: 0.11, 0.54) or flurbiprofen
plus dexmedetomidine (OR = 0.27, 95% CI: 0.08, 0.87) results in a
lower incidence of PONV than placebo.

The league table (Figure 4) illustrates head-to-head comparisons
of all pharmacological intervention strategies and placebo for
postoperative pain intensity (lower left portion) and PONV
incidence (upper right portion). The results of pairwise
comparisons are expressed as SMD (95% CI) and OR (95% CI),
respectively. The two-dimensional graph (Figure 5) reveals that only
dexmedetomidine and flurbiprofen plus dexmedetomidine
outperform placebo in terms of postoperative pain intensity and
PONV incidence.

In the ranking probability plot (Supplementary Appendix S4,
Figure 4), amantadine appeared to be the best agent for
postoperative pain intensity among all 20 treatments with a
SUCRA value of 96.2. In terms of PONV incidence, it was
determined that dexmedetomidine appeared to be the best option
among all 17 PONV treatments, with a SUCRA value of 90.3.

3.5 Results of secondary outcomes

3.5.1 Pain threshold at 24 h after surgery
Ten studies involving 11 interventions reported pain thresholds

24 h after surgery (measured by QST and in g) (Supplementary
Appendix S4 and Supplementary Figure 4.1.1). Butorphanol
(SMD = 2.43, 95% CI: 1.65, 3.22), magnesium sulphate (SMD =
1.01, 95% CI: 0.14, 1.88) and dexmedetomidine (SMD = 1.01, 95%
CI: 0.14, 1.88) have higher pain thresholds than placebo at 24 h after
surgery (Supplementary Appendix S4 and Supplementary
Figure 4.1.2). The league table (Supplementary Appendix S4 and
Supplementary Figure 4.1.3) illustrates the comparison of each
intervention to one another. Flurbiprofen plus dexmedetomidine
was ranked first in the ranking probability plot (Supplementary
Appendix S4 and Supplementary Figure 4.1.4) among
11 interventions with a SUCRA value of 98.1.

3.5.2 Cumulative morphine consumption over
the 24 h

A total of 14 studies with 11 interventions reported cumulative
morphine consumption over a 24 h period (Supplementary Appendix
S4 and Supplementary Figure 4.2.1). Flurbiprofen (SMD = −17.36,
95% CI: −22.13, −12.59) and dexmedetomidine (SMD = −11.83, 95%
CI: −17.77, −5.90) caused more morphine consumption at 24 h after
surgery than placebo (Supplementary Appendix S4 and
Supplementary Figure 4.2.2). The league table (Supplementary
Appendix S4 and Supplementary Figure 4.2.3) compares the
outcomes of each intervention to one another. Flurbiprofen plus
dexmedetomidine was ranked first in the ranking probability plot
(Supplementary Appendix S4 and Supplementary Figure 4.2.4)
among 11 interventions with a SUCRA value of 100.

3.5.3 The time to first postoperative analgesic
requirement

The time to the first postoperative analgesic requirement
was reported in 14 studies involving 13 interventions

TABLE 1 (Continued) Characteristics of studies.

Study
(author/
year)

Country Sample Size
(intervention/

control)

Gender
(M/F)

Mean
Age

ASA
Status
(Ⅰ/Ⅱ/Ⅲ)

Intervention Type of
Surgery

Does of
Opioid

E. Tognoli
2020

Italy 24/24 29/19 58.6 19/24/5 S (+)-ketamine 5.0,
2.5 and 2 µg/kg· min
continuous infusion

+ methadone
2.0 mg IV

Open laparotomy for anterior
resection of the rectum

Remifentanil TCI
5–7 ng/mL

Z. Wu 2020 China 60/29 28/61 40.0 74/15/0 Dexmedetomidine
0.2 µg/kg continuous
infusion or 0.5 µg/kg

Thyroidectomy Remifentanil
0.3 μg/kg· min
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(Supplementary Appendix S4 and Supplementary Figure 4.3.1).
When compared with placebo, flurbiprofen plus dexmedetomidine
(MD = 43.05, 95% CI: 28.49, 57.60), adenosine (MD = 26.90, 95% CI:
11.98, 41.82), magnesium sulphate (MD= 23.29, 95%CI: 12.27, 34.30)
and dexmedetomidine (MD = 11.39, 95% CI: 0.93, 21.84) have a
longer time to require first postoperative analgesic (Supplementary
Appendix S5 and Supplementary Figure 5.3.2). The league table
(Supplementary Appendix S4 and Supplementary Figure 4.3.3)
compares the outcome of each intervention to one another.

Flurbiprofen plus dexmedetomidine was ranked first in the
ranking probability plot (Supplementary Appendix S4 and
Supplementary Figure 4.3.4) among 13 interventions with SUCRA
value of 98.5.

3.5.4 Incidence of shivering
Nine studies involving nine interventions reported the incidence

of shivering (Supplementary Appendix S4 and Supplementary
Figure 4.4.1). Dexmedetomidine (OR = 0.16, 95% CI: 0.06, 0.43),

FIGURE 2
Network meta-analysis of eligible comparisons for postoperative pain intensity at rest at 24 h (A) and the incidence of PONV (B).
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flurbiprofen plus dexmedetomidine (OR = 0.12, 95% CI: 0.03, 0.49),
magnesium sulphate (OR = 0.07, 95% CI: 0.02, 0.36) and S (+)
-ketamine (OR = 0.05, 95% CI: 0.00, 0.99) have a lower incidence of

shivering than placebo (Supplementary Appendix S4 and
Supplementary Figure 4.4.2). The league table (Supplementary
Appendix S4 and Supplementary Figure 4.4.3) compares the

FIGURE 3
Forest plots of network meta-analysis of all trials for postoperative pain intensity at rest at 24 h (A) and the incidence of PONV (B).
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outcomes of each intervention to one another. S (+) -ketamine was
ranked highest in the ranking probability plot (Supplementary
Appendix S4 and Supplementary Figure 4.4.4) among nine
interventions with SUCRA value of 82.0.

4 Discussion

Because of the morbidity concealment, complex pathogenesis,
and treatment uncertainty of OIH, the best strategy is to avoid it.
This is the first systematic review and network meta-analysis to
compare various pharmacological interventions and investigate the
best strategy for preventing the increase in postoperative pain caused
by OIH in adults following general anesthesia. The following aspects
of the 20 treatments were compared and analyzed: pain intensity,
opioid-related adverse effects, pain threshold, time first to rescue
analgesia, and morphine consumption. We identified that no such
perfect drug performs best in all indicators. This emphasizes the
significance of individualized treatment selection and a multimodal
approach.

Our findings reveal that amantadine, magnesium sulphate,
pregabalin, dexmedetomidine, ibuprofen, flurbiprofen plus
dexmedetomidine, parecoxib, parecoxib plus dexmedetomidine
and S (+)-ketamine plus methadone all have the potential to
prevent the increase in postoperative pain intensity, with
amantadine appearing to be the best option among the
20 interventions studies. Although the mechanisms underlying
OIH are not fully understood. Preclinical models implicate the
glutaminergic system and pathological NMDA receptor activation
in the development of central sensitization (Mao et al., 1994; Mao
et al., 2002; Zhao et al., 2012). Amantadine, magnesium sulphate,
methadone, and S (+)-ketamine are known to be the NMDA
receptor’s antagonists, where its primary effects are thought to

FIGURE 4
League table of head-to-head comparisons for postoperative pain intensity at rest at 24 h and the incidence of PONV of all pharmacological
interventions and placebo. PLA = placebo. SKET = S (+)-ketamine. KET = ketamine. AMA = amantadine. MAG = magnesium sulphate. PRE = pregabalin.
ADE = adenosine. DEX = dexmedetomidine. BUT = butorphanol. IBU = ibuprofen. FLU + DEX = flurbiprofen + dexmedetomidine. FLU + BUT =
flurbiprofen + butorphanol. NALO = naloxone. BUP = buprenorphine. FLU = flurbiprofen. PAR = parecoxib. PAR + DEX = parecoxib +
dexmedetomidine. NALB = nalbuphine. SKET + MET = S (+)-ketamine + methadone.

FIGURE 5
Two-dimensional graphs for postoperative pain intensity at rest
at 24 h and the incidence of PONV. 1 = placebo; 2 = S (+)-ketamine;
3 = ketamine; 4 = amantadine; 5 = magnesium sulphate; 6 =
pregabalin; 7 = dexmedetomidine; 8 = butorphanol; 9 =
ibuprofen; 10 = flurbiprofen + dexmedetomidine; 11 = flurbiprofen +
butorphanol; 12 = naloxone; 13 = buprenorphine; 14 = flurbiprofen;
15 = nalbuphine; 16 = S (+)-ketamine + methadone; 17 = ACTZ.
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occur.Wu L et al. found that perioperative administration of NMDA
receptor antagonists effectively reduced postoperative pain intensity
and morphine consumption (Wu et al., 2015), without evident
psychological effects. However, our findings suggest that
amantadine may be the best option when either ketamine or S
(+)-ketamine fails to show significant superiority in preventing the
rise of postoperative pain intensity. A possible explanation for this
discrepancy is that Wu L et al.’s conclusion requires extraordinary
caution in interpretation due to high heterogeneity even after
subgroup analysis. The studies involved were small (only
14 studies included 3 drugs which directly act on NMDA
receptors), with possible overestimation of the risk of Type II
statistical error. However, the effect of an intervention may be
influenced to varying degrees by other factors in NMDA.
Therefore, we suggest that future studies should consider
confirming the findings of our meta-analysis.

Ibuprofen, flurbiprofen, and parecoxib are NSAIDs that have
potent anti-inflammatory, analgesic, and antipyretic activities and
are used globally. One of their primary mechanisms of action is
the inhibition of cyclo-oxygenase (COX), an enzyme involved in
the biosynthesis of prostaglandins and thromboxane (Bacchi et al.,
2012). Prostaglandins have been demonstrated to modulate
nociceptive processing (Baba et al., 2001) and stimulate the
release of the excitatory amino acid glutamate in the dorsal
horns of the spinal cord (O’Rielly Darren and Loomis
Christopher, 2006). Moreover, COX constitutively expressed in
the spinal cord and is activated in response to peripheral stimuli
that cause pain, primarily through the involvement of NMDA and
substance P signaling (Yaksh and Malmberg, 1993). As such,
NSAIDs have been demonstrated to inhibit the heightened
sensitivity to pain triggered by the activation of spinal NMDA
and substance P receptors (Malmberg and Yaksh, 1992; Yaksh and
Malmberg, 1993). Clinical studies or meta-analyses about the
effect of COX inhibitors on OIH are still lacking, even though
it has been proved in animal models (Li et al., 2018; Peng et al.,
2019) and human volunteers (Koppert et al., 2004; Lenz et al.,
2011).

It has been indicated that opioid-induced pronociceptive
effects are caused by central and peripheral nervous system
sensitization, similar to the mechanism of hyperalgesia
associated with nerve injury (Mao et al., 1995). Pregabalin is a
3-substituted analogue of γ-aminobutyric acid used to treat
neuropathic pain (Guay, 2005) with the side effects of dizziness
and drowsiness. It has a similar structure and mechanism of action
to gabapentin but has fewer side effects (Ben-Menachem, 2004).
Pregabalin binds strongly to the α2δ-1 subunit of voltage-gated
calcium channels. This binding impairs channel trafficking and
reduces the release of various neurotransmitters, including
glutamate, noradrenaline, and substance P (Bannister et al.,
2011). These effects result in interactions with spino-bulbo-
spinal loop-comprising projection neurons in the superficial
dorsal horn and brainstem, leading to facilitation of 5-
hydroxytryptamine3 receptor-mediated effects in pain
modulation. It has been indicated that pregabalin reduce
hyperalgesia and allodynia in human volunteers (Chizh et al.,
2007) and rat models (Field et al., 1999). However, A J Lederer
et al. reviewed the effects of pregabalin on OIH and concluded that,
despite strong support by theoretical considerations, the

recommendation as a clinical use still lacks clinical evidence
(Lederer et al., 2011). Stoicia et al. reached a similar conclusion,
stating that applying gabapentin in mitigating OIH still requires
support from large-scale standardized patient studies (Stoicea
et al., 2015).

Dexmedetomidine is a potent and highly selective α-2
adrenoceptor agonist with sympatholytic, sedative, amnestic,
and analgesic properties (Khan et al., 1999). Its anti-
hyperalgesia effects are closely associated with NMDA receptors.
Animal studies reveal that dexmedetomidine modulates spinal cord
NMDA receptor activation by suppressing tyrosine
phosphorylation of NR2B in the superficial spinal cord, which
was found to be upregulated during remifentanil-induced
hyperalgesia (Zheng et al., 2012). Furthermore, another study
has provided evidence supporting the prevention of OIH by
dexmedetomidine through the regulation of spinal NMDA
receptors, as well as the levels of protein kinase C (PKC) and
calcium/calmodulin-dependent protein kinase II (CaMKII), both
of which are involved in neuronal signaling (Yuan et al., 2017).
Similarly, its anti-hyperalgesia effect in clinical practice requires
further investigation.

The findings of the present meta-analysis also revealed that
dexmedetomidine and flurbiprofen plus dexmedetomidine are
interventions associated with a lower PONV incidence compared
to placebo. It is worth noting that flurbiprofen alone has no superior
effect. This appears to imply that dexmedetomidine plays a
significant role in preventing PONV, consistent with previous
studies (Le Bot et al., 2015; Jin et al., 2017; Grape et al., 2019).
Jin S et al. (Jin et al., 2017) investigated the effect of
dexmedetomidine on PONV in patients undergoing general
anesthesia. They identified that dexmedetomidine (irrespective of
administration mode) had a significantly lower incidence of PONV
than placebo. It was thought that this additional antiemetic effect of
α2 agonists might be explained by inhibiting catecholamines by
parasympathetic tone, even though the biological basis remains
unknown. Alternatively, dexmedetomidine may reduce
intraoperative anesthetics and opioids, which have been
considered risk factors for PONV (Gan et al., 2020).

The treatment risk/benefit ratio is an important consideration in
clinical decision-making. Our findings revealed that, while there is
the best option in every index, dexmedetomidine is the only
pharmacological intervention that outperformed placebo in all
indicators. In addition, the multifaceted benefit of
dexmedetomidine in improving the quality of emergence from
anesthesia (Aouad et al., 2019), reducing postoperative delirium
incidence (Duan et al., 2018), enhancing recovery after surgery
(Kaye et al., 2020) and providing organ-protective effects (Bao
and Tang, 2020) has already been fully demonstrated and widely
accepted. Despite the side effects of hypotension and bradycardia, it
is difficult to deny that dexmedetomidine is an attractive anesthetic
adjuvant (Weerink et al., 2017).

This network meta-analysis had several possible limitations.
First, because multiple interventions were included in the
analysis, several had data from only one study, resulting in a
relatively small sample size, which could have led to possible bias
and overestimation of the treatment effect. Second, some non-
pharmacological interventions, such as gradual withdrawal of
remifentanil (Comelon et al., 2016), opioid rotation (Mercadante
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and Arcuri, 2005) and combination with a regional nerve block
(Rivat et al., 2013), were not included in the comparison. Third, it is
important to acknowledge that despite conducting comprehensive
literature research prior to designing the retrieval strategy and
considering commonly used drugs in clinical anesthesia, there is
a possibility that our study may have omitted other drugs that have
been investigated for their effects on OIH. Finally, there was
variation in gender, opioid dosage, timing, administration
regimens, surgery duration, and anesthesia maintenance. These
disparities limit the amount of data pooled in a meta-analysis,
posing significant challenges in interpreting and applying the results.

Overall, this systematic review and network meta-analysis
provides the most comprehensive summary of the comparative
effect of various pharmacological interventions on improving the
intensity of postoperative pain caused by OIH.

5 Conclusion

In summary, a meta-analysis of eligible RCTs identified that
amantadine was the best at preventing an increase in postoperative
pain and non-inferior to placebo in the incidence of PONV. In
contrast, dexmedetomidine was the only intervention superior to
placebo in all indicators.
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