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Purpose: This study introduces a sophisticated computational pipeline, eVir,
designed for the discovery of antiviral drugs based on their interactions within
the human protein network. There is a pressing need for cost-effective
therapeutics for infectious diseases (e.g., COVID-19), particularly in resource-
limited countries. Therefore, our team devised an Artificial Intelligence (AI) system
to explore repurposing opportunities for currently used oral therapies. The eVir
system operates by identifying pharmaceutical compounds that mirror the effects
of antiviral peptides (AVPs)—fragments of human proteins known to interfere with
fundamental phases of the viral life cycle: entry, fusion, and replication. eVir
extrapolates the probable antiviral efficacy of a given compound by analyzing
its established and predicted impacts on the human protein-protein interaction
network. This innovative approach provides a promising platform for drug
repurposing against SARS-CoV-2 or any virus for which peptide data is available.

Methods: The eVir AI software pipeline processes drug-protein and protein-
protein interaction networks generated from open-source datasets. eVir uses
Node2Vec, a graph embedding technique, to understand the nuanced
connections among drugs and proteins. The embeddings are input a Siamese
Network (SNet) and MLPs, each tailored for the specific mechanisms of entry,
fusion, and replication, to evaluate the similarity between drugs and AVPs. Scores
generated from the SNet and MLPs undergo a Platt probability calibration and are
combined into a unified score that gauges the potential antiviral efficacy of a drug.
This integrated approach seeks to boost drug identification confidence, offering a
potential solution for detecting therapeutic candidates with pronounced antiviral
potency. Once identified a number of compounds were tested for efficacy and
toxicity in lung carcinoma cells (Calu-3) infected with SARS-CoV-2. A lead
compound was further identified to determine its efficacy and toxicity in K18-
hACE2 mice infected with SARS-CoV-2.

Computational Predictions: The SNet confidently differentiated between similar
and dissimilar drug pairs with an accuracy of 97.28% and AUC of 99.47%. Key
compounds identified through these networks included Zinc, Mebendazole,
Levomenol, Gefitinib, Niclosamide, and Imatinib. Notably, Mebendazole and
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Zinc showcased the highest similarity scores, while Imatinib, Levemenol, and
Gefitinib also ranked within the top 20, suggesting their significant
pharmacological potentials. Further examination of protein binding analysis
using explainable AI focused on reverse engineering the causality of the
networks. Protein interaction scores for Mebendazole and Imatinib revealed
their effects on notable proteins such as CDPK1, VEGF2, ABL1, and several
tyrosine protein kinases.

Laboratory Studies: This study determined thatMebendazole, Gefitinib, Topotecan
and to some extent Carfilzomib showed conventional drug-response curves, with
IC50 values near or below that of Remdesivir with excellent confidence all above
R2>0.91, and no cytotoxicity at the IC50 concentration in Calu-3 cells.
Cyclosporine A showed antiviral activity, but also unconventional drug-response
curves and low R2 which are explained by the non-dose dependent toxicity of the
compound. Additionally, Niclosamide demonstrated a conventional drug-
response curve with high confidence; however, its inherent cytotoxicity may be
a confounding element that misrepresents true antiviral efficacy, by reflecting
cellular damage rather than a genuine antiviral action. Remdesivir was used as a
control compound and was evaluated in parallel with the submitted test article and
had conventional drug-response curves validating the overall results of the assay.
Mebendazole was identified from the cell studies to have efficacy at non-toxic
concentrations and were further evaluated in mice infected with SARS-CoV-2.
Mebendazole administered to K18-hACE2 mice infected with SARS-CoV-2,
resulted in a 44.2% reduction in lung viral load compared to non-treated
placebo control respectively. There were no significant differences in body
weight and all clinical chemistry determinations evaluated (i.e., kidney and liver
enzymes) between the different treatment groups.

Conclusion: This research underscores the potential of repurposing existing
compounds for treating COVID-19. Our preliminary findings underscore the
therapeutic promise of several compounds, notably Mebendazole, in both
in vitro and in vivo settings against SARS-CoV-2. Several of the drugs explored,
especially Mebendazole, are off-label medication; their cost-effectiveness position
them as economical therapies against SARS-CoV-2.
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1 Introduction

The need for cost-effective, safe, and accessible oral therapeutic
antivirals for infectious diseases caused by a virus like SARS-CoV-2,
responsible for COVID-19, continues to be required particularly in
low and middle-income countries (LMICs) (Maxwell et al., 2021;
Wang and Yang, 2023). LMICs are particularly challenged in
managing COVID-19 due to constrained healthcare resources,
notably in the domain of inpatient care. While the global focus
has predominantly been on vaccine development, there is an equally
critical need for identifying therapeutics with the potential for rapid
deployment and ease of administration (Maxwell et al., 2021). This
paper introduces a novel computational Artificial Intelligence (AI)
platform, named eVir, specifically developed for the identification of
pharmacological agents with potential efficacy against viral
pathogens, including SARS-CoV-2. The core methodology of
eVir involves a comparative analysis of the systemic
pharmacodynamic profiles of candidate drugs against the known
effects of antiviral peptides (AVPs) in the context of the complete

human protein-protein interactome. This comprehensive approach
assesses how these drugs might interact with and influence the
complex network of protein interactions in the human body. AVPs,
essentially fragments of human proteins, are instrumental in the
innate immune response to viral infections. They act by disrupting
vital stages in the viral replication cycle: binding of the virus to
the cell surface and its subsequent internalization into endosomal
compartments (entry phase), release of the virus from these
compartments into the cytosol (fusion phase), and the
processing of viral proteins coupled with the replication of the
viral genome (replication phase). eVir leverages this biological
paradigm to systematically evaluate and rank potential
therapeutic agents based on their mechanistic alignment with
the antiviral actions of AVPs (Hancock et al., 2016; Agarwal and
Gabrani, 2020). eVir is a part of DeepDrug AI, an AI-based drug-
discovery pipeline that can create and evaluate novel small
molecules as well as repurpose existing ones to rapidly address
outbreaks (Naderi et al., 2016; Liu et al., 2017; Pu et al., 2019; Bess
et al., 2022).
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Each mechanism is critical when considering the effectiveness of
antiviral therapy. Entry is critical to inhibit as it reduces the viral
load acting on the cell. Similarly, curtailing viral replication is
essential to diminish the viral load produced and the subsequent
spread to other cells post-infection. Finally, fusion is the process by
which a virus can merge directly with the cell membrane, thereby
causing infection. Although this process occurs at a rate
approximately one-tenth of the standard entry mechanism, it
remains a crucial mechanism to target for inhibition (Amidei
and Dobrovolny, 2022).

Our eVir pipeline (Figure 1) begins by constructing a human
proteome and a corresponding, comprehensive network of the
proteins involved in all encompassing processes. We then
compute feature vectors for a set of drugs as well as feature
vectors in the graph’s same vector space for AVPs. The antiviral
peptides (AVPs) utilized in this study were targeted toward these
three distinct mechanisms of viral interaction. The most effective
peptides were then filtered and used to create three distinct neural
networks, each based on the known mechanism of action of a
respective peptide. This facilitated identifying pharmaceutical
compounds exhibiting specificities aligned with these
mechanisms. We then juxtapose these AVP fingerprints with
fingerprints of drugs thus identifying drugs which exert a similar
(antiviral) effect on the human proteome, akin to the AVPs. eVir
thus produces a composite score on the predicted impact of a drug
on the entry, fusion, and replication of a virus.

eVir is an Artificial Intelligence (AI) application that stands at
the intersection of computational biology, systems biology, and
pharmaceutical research, embodying a novel paradigm where
computational intelligence aids in drug discovery. This project
utilizes advanced Deep Learning and Graph Analysis Algorithms,
integrating sophisticated neural network architectures such as
Siamese Networks and Artificial Neural Networks (Multi-layer
Perceptrons), alongside tools for specialized calculating graph

embeddings. These algorithms empower eVir to facilitate the
identification of novel therapeutic candidates by analyzing
intricate biological networks, thereby enhancing the efficiency
and efficacy of pharmaceutical research and development. This
integration of deep learning with graph analysis places eVir at
the forefront of leveraging AI for complex biological data
interpretation and drug discovery.

The uniqueness and strength of eVir lie in its versatility. The
pipeline, while demonstrated here specifically for SARS-CoV-2 virus
interactions, is fundamentally virus agnostic. Its design allows for
the seamless integration of new data, making it adaptable to a wide
range of viruses. Thus, eVir stands as a forward-looking tool, capable
of addressing not only present viral challenges but also preemptively
gearing up for potential future pandemics. With every new virus or
strain that emerges, the core architecture of eVir remains robust and
ready to assist, allowing for timely and effective responses to global
health threats.

2 Artificial Intelligence software: eVir

2.1 Methods

2.1.1 Dataset aggregation and drug-protein
network construction

The first step in our process is to construct a network from
known protein-protein, known drug-protein interactions, and a
selection of AVP datasets. Our network structure was created
using the datasets shown in Table 1.

We also collected data on the median lethal dose (LD50) and
standard human dosage concentrations for approximately
2000 FDA Approved drugs. We then devised a normalization
function called the Concentration Distribution Transformation
(CDT), to convert the Ki, Kd, EC50, and IC50 values into

FIGURE 1
The input to the eVir software pipeline is a combination drug-protein and protein-protein interaction network. We use theNode2Vectool to
generate embeddings for the drugs and AVPs. We then use four distinct multi-layer perceptrons (MLPs) to compute probabilities for likelihood of a drug
distinctly having an impact on entry, replication, and fusion. We simultaneously use the AVP embeddings and drug embeddings as input into a Siamese
Neural Network (SNet) to acquire probabilities of a specific drug effecting each mechanism. Last, we score the input drug by combining MLP and
SNet probabilities.
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weights (Figure 2). The CDT was developed by considering both the
expected distribution of the drug dosage concentration and a dose-
response effect distribution characterized by a sigmoidal curve.
Additionally, this approach provided us with a uniform method
to integrate results across different drug effect metrics, namely Ki,
Kd, EC50, and IC50.

2.1.2 Embedding generation with Node2Vec
Machine learning techniques work over n-dimensional spaces of

continuous values. Therefore, one of the most common problems in
machine learning is to take an existing space S of potentially non-
numeric data and mapping those data to a numeric space. Such a
map, π, generates a latent space E, or more commonly, an
embedding: π: S → E. Ideally, E captures as much of the

semantics of points in S. It is also desirable for the resulting
n-dimensional vectors in E to be dense with a minimum number
of dimensions. Hence, in defining π and its resulting space Ewe have
sub-goals in decreasing its sparsity and reducing its dimension.

For eVir, we take our space S as a multigraph in which nodes are
drugs or proteins and edges are either protein-protein interaction
(PPI) edges or drug-protein (DP) edges. We then apply Node2Vec
(Grover and Leskovec, 2016) as π to summarize the information in
the multigraph. Node2Vec is a graph embedding technique based on
the Skip-gram architecture (Mikolov et al., 2013a; Mikolov et al.,
2013b), which aims to learn a continuous feature representation for
nodes in a network. The core idea of Node2Vec is to apply a random
walk strategy to generate context for every node, both proteins and
drugs. A walk leverages the connections in a graph by capturing

TABLE 1 Dataset used for constructing the eVir Drug-Protein and Protein-Protein Interaction network.

Dataset Description of data

AVPdb Qureshi et al. (2014) 2,683 AVPs including 98 from SARS-CoV-1

HIPDB Qureshi et al. (2013) 981 HIV antiviral peptides

hu.map Drew et al. (2021) 17.5 million protein-protein interactions;

CORUM Giurgiu et al. (2019) 4,274 mammalian protein complexes

STRING Snel et al. (2000); Mering et al. (2003); Szklarczyk et al. (2019); Szklarczyk et al. (2023) 4,584,628 proteins from 5,090 organisms;

DrugBank Wishart et al. (2006); Wishart et al. (2008); Wishart et al. (2018) 13,491 drugs

BindingDB Liu et al. (2007); Gilson et al. (2016) 846,857 drugs and 7,605 protein targets

FIGURE 2
The CDT function simulates the Gaussian distribution of expected drug concentrations, centered around a defined mean with a specific variance.
This approach is typically used tomodel the distribution patterns of a substance’s concentration, assuming it follows a normal distribution. For established
drugs, the function utilizes their known dosing and lethal dose (LD50) means and variance to project the expected distribution and influence the
outcome. Conversely, for drugs without established parameters, it defaults to using the median concentration value from the entire dataset to
estimate the distribution.
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topological information around a node by considering different
neighborhoods. Each embedding thus encodes insightful feature
representations for each node type thus capturing properties of
drugs, proteins, and AVPs amongst cellular protein interactions.

As a more detailed description of the Node2Vec embedding
construction algorithm, think of our multigraph S as a city map,
where every node (drugs and proteins) is a location, and every
interaction between nodes is a street connecting these locations. Just
as a human may wander through a city, Node2Vec ‘explores’ the
network using a random walk: it creates a chain of visited locations
by starting at a location, randomly choosing a street to another
location, and repeating a fixed number of times. Walks are guided by
two parameters that decide whether to revisit a location we have
visited before (going in circles) or to venture out into an unexplored
territory. The random walks serve as input to a Skip-gram model, a
variant of the Word2Vec model, which then predicts the context of
a node.

Just as a human would learn much about a city (especially a
surrounding neighborhood) through a sequence of random walks
starting at the same location, we can distill and learn much about a
node, a neighborhood of nodes, and the overall network. For each
node, in our multigraph S, this information results in a unique node
embedding for each drug, protein, and AVP. Each node embedding
in E is a vector of continuous values where nodes in S with similar
roles or connections in the multigraph have similar embeddings in
E. Therefore, the degree of similarity between a drug’s embedding
and the embedding of an AVP can indicate the potential
effectiveness of a drug: the closer a drug embedding to an AVP
embedding, the more likely it is that the drug will similarly inhibit
the virus’s mechanism of action.

The Node2Vec algorithm was run with a walk length of 20 steps,
reflecting the longest distance between connected protein nodes in
the dataset. The algorithm performs 300 such walks for each root
node, extensively sampling their local neighborhoods. The return
parameter (p) is set to a high value of 20.0, significantly reducing the
likelihood of the walks returning to the source node, encouraging
exploration away from it. Conversely, the in-out parameter (q) is
finely tuned to 2.0, striking a balance between exploring the
immediate neighborhood and venturing towards more distant
nodes. This setting delicately encourages a breadth-first search
strategy for nearby nodes, while still maintaining a general
inclination towards extending the walks to farther reaches of the
network. Additionally, the walks are weighted, meaning edge
weights in the graph will influence the walk trajectories, an
important consideration in a network like a protein interaction
graph where edge weights can represent the strength or frequency of
interactions. This configuration ensures a thorough and balanced
exploration of both local and extended graph structures for the
analysis of the network structure.

2.1.3 Technological framework: eVir tools and
architecture

In the development of eVir, our team employed a sophisticated
array of tools and software packages, each selected for its specific
strengths in handling the complexities of our algorithms and data
processing needs. Central to our architecture is TensorFlow, a robust
platform whose advanced functionalities enabled seamless
integration and implementation of intricate computational

architectures. Complementing TensorFlow, we utilized Pandas
and Numpy for their efficiency in data preprocessing, ensuring
that our datasets were optimally prepared for analysis. Keras, as an
integral part of our toolkit, facilitated streamlined model
optimization, allowing for rapid iteration and enhancement of
our algorithms.

Further enhancing our capability in network analysis were
Gensim and StellarGraph. These packages provided specialized
functionalities to augment our capabilities in network analysis
and were critical in handling the nuances of network-based data
structures and algorithms.

2.1.4 Predicting similarity between drugs and AVPs:
Siamese Network

With input as the set of drug embeddings and AVP embeddings
generated by Node2Vec, we predict the effect of an AVP on each
mechanism: entry, fusion, and replication. As shown in Figure 3, in a
parallel manner, we use drug embeddings also generated by
Node2Vec to also predict the effect of drugs on the same
mechanisms. Using these two sets of predictions of mechanism
effect, we can thus compare a drug embedding for similarity to an
AVP embedding thus establishing a measure of similarity and a
likelihood for a drug to inhibit as a given AVP. To repurpose a drug,
we assess the similarity between drugs and top-performing AVPs,
thus pinpointing potential drug candidates exhibiting properties
akin to highly efficacious AVPs. As shown in Figure 3, we built a
Siamese Network (SNet) (BROMLEY et al., 1993; Koch, 2015)
model to predict drug/AVP similarity; we explain our training,
tuning, and testing procedures below. To be clear, we constructed
three independent Siamese network outputs based on AVP sets, one
for each antiviral mechanism (entry, fusion, and replication) from
known coronavirus peptides.

Training. The SNet was trained using a curated training set
consisting of drug pairs. AVP embeddings were selected primarily
for their pronounced antiviral potency against particular protein
pathways of SARS-CoV-1. In the training of our model, we
employed the Tanimoto Coefficient (TC) as the foundation for
generating our training datasets. Tanimoto Coefficient is a measure
of similarity between two sets and is widely used to compare
molecular fingerprints and quantify their similarity. Pairs of
drugs manifesting high TC values were integrated as positive
instances, whereas those with low TC values were incorporated
into the negative dataset. In a novel approach, we leveraged protein
pathway information to curate an auxiliary negative dataset. For
each protein, the pathways in which it is actively involved were
identified. Proteins that did not share these pathways were then
paired, resulting in pairs that are presumably functionally dissimilar.
These pairs proved invaluable as robust negative instances for our
similarity-based sample set.

We also subjected all AVPs to a process commonly known as
masking that indicates to the model (un)available information when;
this enhances the performance of the model. As negative training
examples, we chose AVPs with low cosine similarity to ensure
diversity and robustness of the model. To optimize the SNet, we
employed the contrastive loss function during training. This loss
function encourages AVPs with similar properties to have
embeddings close together in the feature space, while pushing
dissimilar AVPs further apart. Such an approach aids the model
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in effectively learning meaningful representations for AVP
prediction.

Testing. Every model was then evaluated and validated using a
distinct test set to assess the model performance with greater
unfamiliarity of drug pairs.

We compute the probability of the effectiveness of a particular
drug inhibiting entry, fusion, or replication using the formula:

PSNet x( )� 1− 1 − PSNet: Entry x( )( ) 1 − PSNet: Fusion x( )( )
1 − PSNet: Replication x( )( ).

Calibration. We observed a high correlation in prediction scores
for entry, fusion, and replication, which led us to take the mean of
these three distances before calibration. To calibrate output from the
SNet, the positive set was drugs targeting cyclin-dependent kinase.
This class of drugs has been proposed as possible treatments for
COVID-19 (Gargouri et al., 2021). This hypothesis was supported
by the SNet consistently favoring scores for these drug classes.

2.1.5 Predictive differentiation between drugs and
AVPs: MLP classification

For each antiviral mechanism, we architected, trained, and
tested a multilayer perceptron (MLP): a straightforward form of
neural network. Our goal for the set of MLPs is to predict whether a
drug can be classified as having entry, fusion, and replication
proximal to AVPs. We trained each MLP model using SARS-
CoV-1 AVPs as positive examples and a comprehensive dataset

comprising 800,000 pharmaceutical compounds as negative
examples. The input data consisted of drug and AVP
embeddings. Given the imbalance in the number of drugs
compared to AVPs, each drug was assigned a minimal weight to
maintain balance within the training set.

Our underlying hypothesis for theMLPs is that a drug exhibiting
dissimilarity to AVPs yields an extremely low output value (close to
0). In contrast, a drug that cannot be differentiated from AVPs
would produce output values approaching 1. The training process
for each MLP (architecture presented in Figure 4) employed the
Adam optimizer with hyperparameters, including: a learning rate of
0.00001 and momentum parameters (beta_1 = 0.9, beta_2 = 0.999)
for optimization. The model is trained using cross-entropy loss,
which is a prevalent and well-established choice for binary
classification tasks. The performance is averaged over
10 independent runs of the training process to ensure robustness
and reliability.

As shown in Figure 4, the output layer of each MLP contains a
single neuron with a sigmoid activation function, producing a score
for drug classification. L2 regularization is applied to the input and
hidden layers with a coefficient of 0.03 to prevent overfitting, and
dropout layers with a rate of 0.5 is used in the input and first hidden
layer to enhance generalization. The proposed model shows
promising results and presents a potential solution for accurate
and practical drug classification tasks involving AVPs.

We compute the probability of the effectiveness of a particular
drug using the formula in which x is a given drug:

FIGURE 3
The neural network architecture of the Siamese Network (SNet). The training process utilizes the Adam optimizer with hyperparameters, including a
learning rate of 0.00001, epsilon set to 1e-7, and momentum parameters (beta_1 = 0.9, beta_2 = 0.999). Adam’s adaptive learning rate and momentum
help accelerate convergence and improve the model’s ability to learn complex patterns from the data.

FIGURE 4
Architecture of the MLP Networks. The model consists of an input layer with 512 neurons, followed by two hidden layers with 256 and 128 neurons,
respectively. Each hidden layer utilizes the Rectified Linear Unit (ReLU) activation function, promoting non-linearity and feature extraction. To enhance
the model’s learning ability, weight masking is incorporated to selectively emphasize important connections and reduce noise.
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PMLP x( ) � PMLP: Corona x( )
· 1 − 1 − PMLP: Entry x( )( ) 1 − PMLP: Fusion x( )( )(

1 − PMLP: Replication x( )( )).
This formula attempts to compute a single probability for the

MLP subsystem by determining whether a given drug acts on
Coronavirus by having high scores for inhibiting entry, fusion,
and replication.

Calibration. For the MLP calibration, we used drugs that directly
target SARS-CoV-1 as our positive set.

2.1.6 Transforming a score into a probability
To systematically consolidate the predictions generated by both the

SNet and the MLPs into a unified score, we used a Platt probability
calibration (Niculescu-Mizil and Caruana, 2005a; Niculescu-Mizil and
Caruana, 2005b): using positive and negative datasets, we used one-
dimensional logistic regression to fit a sigmoid function to the scores. As
the sigmoid function is a monotonically increasing function, this
calibration function alters the scale of the scores, while leaving the
relative ranking among different unaltered. The negative set was
constructed of drugs lacking common pathways with known
antivirals or those drugswith a TC less than 0.2 to known antiviral drugs.

2.1.7 The final drug score
After calibration of MLP prediction scores and SNet prediction

scores, a final probability score is calculated assuming statistical
independence:

Pfinal(x) � PMLP(x) + PSNet(x) − PMLP(x) · PSNet(x) where x
is a given drug.

This method inherently assumes that these probabilities are
independent variables, meaning the occurrence of one event does
not affect the probability of the others. This is a standard
assumption in probabilistic models, especially when variables
are derived from different data sets or represent distinct
biological processes.

If either the MLP or the SNet model accords a drug with a
favorable score, it is considered adequate for potential identification.
If both models yield positive predictions (e.g., values close to 1), the
final score of a drug is also close to 1. In such a case, where both
models assign high probabilities, it indicates a heightened
confidence level in the classification of a drug.

By applying this statistical independence assumption and
considering the contributions of both models, we aim to increase
the robustness and interpretability of the final drug classification
process, allowing for more confident identification of potential
candidates.

2.2 eVir results

2.2.1 SNet
We demonstrate the effectiveness of the SNet by considering a

test set of drug-pairs as shown in Figure 5. Our test set for the SNet
contains known similar and non-similar drug pairs used for training
the model. Thus, an effective model will result in a strong bimodal
distribution in which one mode represents known, similar drug-
drug pairs and the other mode represents known, dissimilar drug-
drug pairs. We observe this strong bimodal distribution in Figure 5
over 15,000 similar drug-drug pairs and an equal number of

FIGURE 5
Histogram of predictions from the SNet on a test set of drug-drug pairs. Green peaks signify similar drug pairs and the red peaks display the drug pairs
that are dissimilar. The optimal threshold is based on a J-statistic to find the best separation between the two populations. Embedded figure: a Receiver
Operating Characteristic (ROC) curve verification of the SNet performance (97.28% Accuracy, 99.47% AUC). We have high confidence with known data
that SNet can discriminate between similar and dissimilar drug pairs.
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dissimilar drug-drug pairs. The inserted ROC curve in Figure 5
having an Area under the ROC Curve (AUC) of 0.9947 is strong
statistical evidence that the SNet acts reliably as a discriminator
model.

We present in Table 2 a list of the top 30 ranked, FDA-approved
compounds with the corresponding Euclidean distances (computed
as the square root of the sum of squared differences between
individual dimensions of the two points) for each viral
mechanism. We calculated the distance between each drug and
each AVP for each mechanism of action. The distances were
averaged over a selection of pharmacology-informed optimal
AVPs for each mechanism of action. Therefore, smaller values of

the Euclidean distance in Table 2 suggest that a drug’s effect closely
mirrors that of an AVP for a specific viral mechanism.

We describe some of the pharmaceutical compounds that received
notable scores from the SNet for entry, fusion, and replication:

• Zinc, an essential mineral that plays a vital role in various cellular
functions, including immune support and enzymatic reactions;

• Mebendazole, an anthelmintic agent commonly used to treat
parasitic worm infections;

• Levomenol, a natural compound (nutraceutical) found in
chamomile with known anti-inflammatory and antimicrobial
properties;

TABLE 2 SNet distance scores for a list of the top 30 ranked, FDA-approved compounds alongwith their corresponding Euclidean distance obtained from the entry,
fusion and replication clusters. The Euclidean distance ranges from 0 (highest possible score) to 2 (lowest possible score), indicating the similarity between the
compounds and AVPs corresponding to entry, fusion, and replication based on their pharmacological activities and therapeutic potential.

DrugBank ID Name Entry (SNet) Fusion (SNet) Replication (SNet)

DB01593 Zinc 0.0835 0.1365 0.1151

DB06626 Axitinib 0.1056 0.1258 0.1531

DB00465 Ketorolac 0.106 0.1088 0.1894

DB00643 Mebendazole 0.1072 0.0796 0.2033

DB08865 Crizotinib 0.1078 0.1098 0.1877

DB05109 Trabectedin 0.1154 0.0812 0.2136

DB06616 Bosutinib 0.1159 0.0733 0.2182

DB05294 Vandetanib 0.1269 0.0842 0.2267

DB11828 Neratinib 0.1285 0.1154 0.2061

DB00558 Zanamivir 0.1297 0.1658 0.1782

DB06616 Bosutinib 0.1327 0.0864 0.2305

DB13153 Levomenol 0.1329 0.1467 0.2079

DB06595 Midostaurin 0.1331 0.0877 0.2298

DB00742 Mannitol 0.134 0.1128 0.2234

DB00317 Gefitinib 0.1351 0.0916 0.2311

DB01259 Lapatinib 0.1362 0.1151 0.2225

DB12001 Abemaciclib 0.1376 0.1827 0.1292

DB09330 Osimertinib 0.1382 0.0837 0.2432

DB00864 Tacrolimus 0.1387 0.1033 0.2461

DB06803 Niclosamide 0.1395 0.1061 0.2244

DB00619 Imatinib 0.1455 0.0955 0.2424

DB08912 Dabrafenib 0.1467 0.0821 0.249

DB09073 Palbociclib 0.1469 0.1316 0.2082

DB08865 Crizotinib 0.1491 0.1029 0.2419

DB11689 Selumetinib 0.1493 0.1026 0.2426

DB11986 Entrectinib 0.1507 0.1133 0.2366

DB00398 Sorafenib 0.1556 0.1017 0.2525

DB00864 Tacrolimus 0.1575 0.1263 0.2618

DB00530 Erlotinib 0.1584 0.1066 0.2557
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• Gefitinib, a tyrosine kinase inhibitor commonly used in the
treatment of non-small cell lung cancer by targeting specific
proteins responsible for cancer growth and progression;

• Niclosamide, an antiparasitic drug with potential anti-cancer
properties currently being investigated for its role in inhibiting
tumor growth and metastasis; and

• Imatinib, one of the first discovered tyrosine kinase inhibitors
that revolutionized the treatment of chronic myeloid
leukemia.

Each of these compounds have shown promising
pharmacological properties in their respective therapeutic areas,
making each a significant candidate for further research and
clinical application. Mebendazole and Zinc obtained the highest
similarity scores, suggesting their potential as strong candidates for
therapeutic interventions due to their pharmacological activities.
Imatinib, Levemenol, and Gefitinib also scored favorably, ranking
within the top 20, indicating significant pharmacological activities in
their respective therapeutic areas. Levemenol and Zinc are

TABLE 3 MLP classification results for a list of FDA approved drugs alongside their corresponding probability scores obtained from Entry, Fusion, Replication and
Coronavirus predictive networks. The classification probability score ranges from 0 (lowest possible score) to 1 (highest possible score), indicating the probability
that a particular drug’s pharmacological activities and therapeutic potential is classified as a compound in the AVP set used to train the corresponding MLP.

DrugBank ID Name Corona (MLP) Entry (MLP) Replication (MLP) Fusion (MLP)

DB00558 Zanamivir 0.9094 0.813 0.4871 0.8796

DB04348 Taurocholic acid 0.8842 0.7994 0.4509 0.7902

DB00091 Cyclosporine 0.848 0.9071 0.2459 0.1886

DB00558 Zanamivir 0.8447 0.8762 0.6867 0.8223

DB09570 Ixazomib 0.843 0.87 0.8225 0.1155

DB08912 Dabrafenib 0.8273 0.1521 0.0753 0.9719

DB04835 Maraviroc 0.8073 0.9698 0.1608 0.0549

DB00091 Cyclosporine 0.7703 0.8646 0.5327 0.4575

DB00091 Cyclosporine 0.7694 0.7884 0.2206 0.1842

DB00091 Cyclosporine 0.7639 0.8271 0.1952 0.1424

DB06616 Bosutinib 0.7619 0.4362 0.1013 0.6597

DB00091 Cyclosporine 0.7587 0.8456 0.5234 0.4309

DB08889 Carfilzomib 0.754 0.6684 0.4825 0.2293

DB12001 Abemaciclib 0.7438 0.8836 0.2734 0.0157

DB08865 Crizotinib 0.7076 0.5645 0.0314 0.1091

DB06809 Plerixafor 0.6486 0.9087 0.0598 0.0366

DB06614 Peramivir 0.646 0.2581 0.1409 0.294

DB00643 Mebendazole 0.6323 0.3207 0.0847 0.3885

DB00558 Zanamivir 0.625 0.294 0.1492 0.378

DB13153 Levomenol 0.6191 0.1641 0.093 0.7499

DB00091 Cyclosporine 0.6132 0.6568 0.0518 0.1148

DB00369 Cidofovir 0.6037 0.2798 0.1857 0.8517

DB15102 Pemigatinib 0.5876 0.142 0.0433 0.6876

DB00722 Lisinopril 0.5759 0.2991 0.2068 0.7406

DB00465 Ketorolac 0.5698 0.1284 0.4934 0.3201

DB00619 Imatinib 0.5696 0.0892 0.0092 0.3522

DB06595 Midostaurin 0.563 0.251 0.0751 0.1797

DB09054 Idelalisib 0.5425 0.1665 0.0496 0.485

DB09073 Palbociclib 0.5362 0.2878 0.0881 0.1416

DB01301 Rolitetracycline 0.523 0.2362 0.6407 0.1007
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particularly interesting as potential therapies, given their
accessibility as nutraceuticals.

2.2.2 MLP network results
The MLPs module consists of 4 individual MLP models, one

for Coronavirus AVPs and one for each viral mechanism: entry,
fusion, and replication. Table 3 presents a list of the top 30 FDA-
approved compounds ranked according to the score from the
Coronavirus MLP. In contrast to the SNet, MLPs output a
probability, therefore, a score near 1 indicates a strong
likelihood that the drug is similar acting to the set of AVPs
used to train the network.

Among the pharmaceutical compounds that received high
scores from the MLP networks were Ixazomib, a proteasome
inhibitor; vitamin D; kinase inhibitors Dabrafenib and Bosutinib;
Cyclosporine, an immunosuppressant; and Levomenol, a compound
found in chamomile known for its anti-inflammatory and
antimicrobial properties (Wishart et al., 2006; Wishart et al.,
2008; Wishart et al., 2018). The consistently high scores observed
for the proteasome inhibitors and tyrosine kinase drug classes
suggest that these two classes of drugs might involve important
pathways considered significant by the predictive network. As a

result, they were passed to a team of pharmacologists for further
consideration.

Protein Pathway Causality Analysis. We conducted analyses on
each individual MLP model itself, focusing on the resulting ranking
of drugs. Our objective was to reverse engineer the causality of the
networks with the hopes of explaining some of the decisions of the
networks. We used known interactions of the drugs that received
high rankings to identify important proteins that each network
appeared to favor. Our goal was to gain insights into the underlying
mechanisms and pathways that contributed to a network’s
predictions and to uncover potential targets and pathways
associated with the pharmacological activities of each highly
ranked drug.

For Mebendazole, protein interaction scores for 22 proteins
were calculated based on p-values for statistical significance
and are presented in Table 4: The top four proteins with the
most significant interaction scores were calmodulin-domain
protein kinase 1 (CDPK1) from the parasite Toxoplasma gondii
(a score of 0.67), vascular endothelial growth factor receptor 2
(VEGF2) (0.62), Abelson tyrosine protein kinase 1 (ABL1)
(0.57), and proto-oncogene tyrosine protein kinase Src
(SRC) (0.55).

TABLE 4 A list of proteins (in)directly affected by Mebendazole with corresponding protein interaction scores derived from a causality analysis. Organism types
and UniProt ID are also provided. A higher score (green) indicates a larger effect of Mebendazole on the protein.

Protein Interaction Score for Mebendazole Protein Name Organism UniProt ID

0.67 Calmodulin-domain protein kinase 1 Toxoplasma gondii Q9BJF5

0.62 Vascular endothelial growth factor receptor 2 Human P35968

0.57 Abelson tyrosine-protein kinase 1 Human P00519

0.55 Proto-oncogene tyrosine-protein kinase Src Human P12931

0.43 Integrin alpha-5 Human P06756

0.4 Adenylate cyclase type 6 Human O43306

0.2 Genome polyprotein West Nile Virus P06935

0.16 Lysosomal-associated membrane protein 3 Human P08962

0.15 Trans-activator protein BZLF1 Epstein-Barr Virus P03206

0.15 RNA-directed RNA polymerase subunit P3 Influenza A Virus P03428

0.11 Capsid protein Hepatitis B Virus Q76R61

0.09 Integrin alpha-3 Human P26006

0.09 Tyrosine-protein kinase Yes Human P07947

0.08 Protein LANA1 Herpes Virus Q9QR71

0.08 Signal peptide peptidase-like 2A Human Q8TCT8

0.07 Tyrosine-protein kinase Lyn Human P07948

0.02 Tyrosine-protein kinase Fyn Human P06241

0.02 Insulin-like growth factor 1 receptor Human P08069

0.02 Protein kinase C alpha type Human P17252

0.02 Insulin receptor Human P06213

0.02 Ephrin type-A receptor 2 Human P29317

0.01 Casein kinase I isoform gamma-3 Human Q9Y6M4
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TABLE 5 A list of proteins (in)directly affected by Imatinib and the corresponding protein interaction scores derived from a causality analysis. Organism types and
UniProt ID are also provided. A higher score (green) indicates a larger effect of Imatinib on the protein.

Protein interaction score for imatinib Protein name Organism UniProt ID

0.83 Serine/threonine-protein kinase Chk1 Human O14757

0.83 Protein kinase C eta type (PKC-L) Human P24723

0.83 Myotonin-protein kinase Human Q09013

0.83 cGMP-dependent protein kinase 1 Human Q13976

0.83 Aurora kinase B Human Q96GD4

0.83 Serine/threonine-protein kinase D2 Human Q9BZL6

0.83 Interleukin-1 receptor-associated kinase 3 Human Q9Y616

0.8 Platelet-derived growth factor receptor beta Human P09619

0.8 Discoidin domain-containing receptor 2 Human Q16832

0.79 Platelet-derived growth factor receptor alpha Human P16234

0.76 Breakpoint cluster region protein Human P11274

0.75 Phosphatidylinositol 5-phosphate 4-kinase type-2 gamma Human Q8TBX8

0.75 Tyrosine-protein kinase Blk Human P51451

0.73 Homeodomain-interacting protein kinase 4 Human Q8NE63

0.73 Cyclin-G-associated kinase Human O14976

0.73 Interleukin-1 receptor-associated kinase 1 Human P51617

0.72 Ephrin type-A receptor 8 Human P29322

0.72 Tyrosine-protein kinase FRK Human P42685

0.72 Platelet-derived growth factor receptor beta Rat Q05030

0.72 RAF proto-oncogene serine/threonine-protein kinase Human P04049

0.72 Maternal embryonic leucine zipper kinase Human Q14680

0.71 Dual specificity protein kinase CLK4 Human Q9HAZ1

0.71 Tyrosine-protein kinase Fgr Human P09769

0.71 Mitogen-activated protein kinase kinase kinase 20 Human Q9NYL2

0.7 Tyrosine-protein kinase Fyn Human P06241

0.7 Mitogen-activated protein kinase 10 Human P53779

0.7 Serine/threonine-protein kinase B-raf Human P15056

0.7 Serine/threonine-protein kinase TNNI3K Human Q59H18

0.7 Dual specificity protein kinase CLK1 Human P49759

0.69 Mitogen-activated protein kinase 8 Human P45983

0.69 Serine/threonine-protein kinase 17A Human Q9UEE5

0.69 Serine/threonine-protein kinase PLK4 Human O00444

0.64 Inner centromere protein Human Q9NQS7

0.61 Vascular endothelial growth factor receptor 2 Human P35968

0.61 Abelson tyrosine-protein kinase 1 Human P00519

0.61 Proto-oncogene tyrosine-protein kinase Src Human P12931
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In Table 5, a similar analysis for Imatinib identified 36 proteins,
including several tyrosine protein kinases.

2.2.3 The eVir generated list of recommended oral
therapeutics

Table 6 presents our list of the recommended oral therapies
from eVir.

3 Cell studies

3.1 Methods

eVir software identified several potential antiviral drugs through
analysis of host cell–SARS CoV-2 virus, protein-protein interactions.
The validation of therapeutics recommended by eVir was performed
in vitro using human lung cancer (Calu-3) cells seeded into 96 well
plates, at 40,000 cells/well. The concentration where drug toxicity
occurred was determined using MTT assay. For the infection assays
cells were inoculated with SARS-CoV-2 WA-1 strain at a
0.01 multiplicity of infection (MOI) and incubated for 60–90 min.
The cells were provided with EMEMwith 2% FBS and test compounds
and incubated for an additional 48 h. Absorbance readings for each well
were collected by Softmax Pro software and imported into a Microsoft
Excel spreadsheet. Outliers were detected by Grubbs’ test in the built-in
analysis of Graphpad Prism 9.

A. Experimental Methods: Efficacy and cytotoxicity were
determined for each test article (TA) and control compound
at eight concentrations in Calu3 cells, in triplicate.
1. Cytotoxicity: Calu-3 cells were seeded at 40,000 cells/well in

separate 96-well plates 48 ± 2 h prior to the day of assay, and half

of the media was replaced at 24 ± 1 h. At the study’s initiation,
cells exhibited over 90% confluency. Diluted TA was incubated
with the cells in a humidified chamber at 37°C ± 2°C in 5% ± 2%
CO2. Post 48 ± 2 h of incubation, cellular metabolic activity was
measured using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide) assay, indicative of cell
viability, proliferation, and cytotoxicity. Absorbance was
determined at 540 nm using a microplate reader.

2. Efficacy of viral inhibition. For efficacy testing, Calu-3 cells were
prepared similarly as in the cytotoxicity assessment. Post seeding,
cells were inoculated with SARS-CoV-2 at a multiplicity of
infection (MOI) of 0.01 TCID50/cell and incubated for
60–90min. Immediately following incubation with SARS-CoV-
2, virus inoculum was removed, cells were washed twice with
warmed PBS, and the appropriate wells were overlaid with 1x
EMEM supplemented with 2% FBS pre-warmed to 37°C
containing test compounds at the concentrations specified in
the section II-C. Plates were then incubated in a humidified
chamber at 37°C ± 2°C in 5% ± 2% CO2. After 48 ± 2 h post
infection, cells were fixed and evaluated for the presence of virus
using an immunostaining assay (see below).

3. Controls: The virus control (VC) wells contained only SARS-
CoV-2 and Calu-3 cells and acted as the infected control. The
cell control (CC) wells contained cells only, no virus, and
served as the background control. VC (n = 12) and CC (n =
12) were loaded in each 96 well-plate.

B. Immunostaining Assay: Cells were fixed with 80% cold acetone and
blotted with anti-coronavirus nucleoprotein (NP) monoclonal
antibodies (EastCoast Bio Cat No. HM1056 and HM1057),
followed by peroxidase-conjugated goat anti-mouse IgG
(Fitzgerald, Cat No. C21010801, 1:1500). Wells were then
developed using ABTS Peroxidase Substrate System (SeraCare,

TABLE 6 This table presents the prioritized list of drug therapies as determined by aggregate AI evaluations across multiple models. The “Score” column
represents the comprehensive AI-derived rating, “SNet” denotes a weightedmean derived from the scores of the Siamese networks, and “CoronaMLP” pertains to
the ratings generated by the MLP model specifically trained for coronaviruses. Chemical structures of these compounds can be found at https://www.
chemspider.com/.

Name IITRI EC50 IC50 from the literature Score SNet Corona (MLP)

Cholecalciferol 22.3 mM 3–10 μM Pickard et al. (2021) 0.9 0.03 0.89

Bosutinib 0.92 0.56 0.82

Isoxsuprine 1095 nM 0.86 0.53 0.7

Levomenol ~1651 nM 0.35 μM (VIDO) 0.82 0.51 0.64

Mebendazole 48.55 nM 102 nM 0.82 0.57 0.58

Ketorolac 0.81 0.56 0.56

Imatinib ~6.310 nM 9.8–17.6 μM Weston et al. (2020) 0.75 0.52 0.48

Niclosamide 982.5 nM 0.28 μM Gassen et al. (2021) 0.72 0.52 0.41

Gefitinib 62 nM 44 nM 0.58 0.53 0.1

Tacrolimus ~807.8 nM 5.4 μM Dittmar et al. (2021) 0.47 0.43 0.06

Zinc 959.9 nM 0.13 0.6 0.21

Cyclospirine A ~5 μM 2.1 μM 16 μM Dittmar et al. (2021) 0.88 0.34 0.82

Topotecan 9.362 nM 35 nM 0.19 0.08 0.12

Carfilzomib 5.741 nM 27 nM 0.84 0.27 0.81
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Cat No. 10531349). The development was stopped, and the plates
were read at 405 nm with a 490 nm reference using an ELISA plate
reader (Molecular Devices SpectraMax M2).

C. Data Analysis: Absorbance readings for each well were collected by
Softmax Pro software (version 7.0.3 GXP; San Jose, CA) and
imported into a Microsoft Excel spreadsheet for further
calculations. Outliers were detected by Grubbs’ test in the built-
in analysis of Graphpad Prism 9. For each well, virus inhibition was
quantified by calculating the percentage reduction in absorbance
(measured at 405 nm) relative to both the mean absorbance of the
virus control wells and the mean absorbance of the cell control wells
on the same plate. This was achieved using the following formula:

Percentage Virus Reduction

� 100− Well A405−Mean Cell Control A405
Mean Virus Control A405−Mean Cell Control A405

( )× 100[ ]
The data was plotted using Graphpad Prism 9 and

concentration-response curves and inhibition concentrations
(IC50’s) for each test article was calculated by 4-parameter non-
linear regression curve fitting.

IC50 � a + d − a

1 + x
c( )b⎛⎜⎝ ⎞⎟⎠

Where: a = upper asymptote b = slope at inflection point, c =
inflection point, d = lower asymptote (g = asymmetry factor could be
also included).

The IC50 is defined as the calculated reciprocal of the
log10 dilution resulting in a 50% reduction of the absorbance
value of the virus control wells (50% A405 reduction), indicating
a 50% reduction in viral activity. The Selectivity index (SI) was
calculated to evaluate the safety margin of the TA. It is defined as the
ratio of the TA’s CC50 to the TA’s IC50 values (SI = CC50/IC50z).

3.2 Results

Test compounds were evaluated against SARS-CoV-2 in Calu-3
cells. The cellular toxicity (CC50) and antiviral efficacy (IC50) data
are summarized in Figure 6: In vitro IC-50 drug-response curves for
Calu-3 cells. Mebendazole, gefitinib, topotecan, and, to a lesser
extent, carfilzomib showed conventional drug-response curves,
with IC50 values near or below that of remdesivir with excellent
confidence that were all above R2 > 0.91 with no cytotoxicity at the
IC50 concentration (Figure 6). Cyclosporine A showed antiviral
activity, but also unconventional drug-response curves and low R2,
which are explained by the dose-independent toxicity of the
compound. Additionally, Niclosamide demonstrated a
conventional drug-response curve with high confidence; however,
its inherent cytotoxicity may be a confounding element that
misrepresents true antiviral efficacy, by reflecting cellular damage
rather than a genuine antiviral action. Remdesivir was used as a
control compound and was evaluated in parallel with the submitted
test articles and had conventional drug-response curves validating
the overall results of the assay.

Taken together, these preliminary findings indicate that several
novel compounds exhibit noteworthy in vitro activity against

SARS-CoV-2. Specifically, Mebendazole, Gefitinib, Topotecan,
Niclosamide, and Carfilzomib stand out for their pronounced
antiviral activity with minimal to no apparent cytotoxic effects,
as indicated by their lack of influence on cell viability. The discovery
of these repurposed compounds’ efficacy against SARS-CoV-
2 establishes a foundation for further exploration into their
potential therapeutic applications in the context of SARS-CoV-
2 infections.

4 Preliminary animal study

4.1 Methods

Experimental Design: Six hours following challenge with 5 × 103
TCID50 SARS-CoV-2, human transgenic female K18-hACE2
(B6.Cg-Tg(K18-ACE2)2PrlmnJ) mice were administered placebo,
Mebendazole at 50 mg/kg po once a day for 6 consecutive. Following
the treatment period, the mice were humanely euthanized, and the
viral load in their lungs was quantified using an RT-qPCR assay.
For the RT-qPCR assay, RNA was extracted from lung samples
preserved in RNA/DNA Shield using the Quick-RNA Viral Kit
(Zymo Research), adhering to the manufacturer’s instructions.
The RT-qPCR cycling conditions were as follows: 50°C for 15 min
(RT), then 95 °C for 2 min (denature), then 40 cycles of 10s at 95°C,
45s at 62°C. Primers used for SARS-CoV-2 detection: 2019-nCoV_
N1-F 5′-GACCCCAAAATCAGCGAAAT-3′ 2019-nCoV_N1-R
5′-TCTGGTTACTGCCAGTTGAATCTG -3′ Probe: 2019-nCoV_
N1-P: 5′-FAM-ACCCCGCATTACGTTTGGTGGACC-BHQ1-3’.
Additional Experimental endpoints were also determined including
body weight and body weight change and clinical chemistry
determinations such as BUN, AST, and ALT.

Challenge Virus Administration: Prior to challenge, the
mice were anesthetized using an injection of a ketamine
(100 mg/kg)/xylazine (10 mg/kg) mixture. Once anesthetized,
each mouse was held with its nose pointing upward, and
0.030 mL of challenge material was delivered dropwise into
the nares. Mice were held upright to allow the challenge
virus solution to be inhaled thoroughly before being returned
to their cage. The challenge dose was 5 × 103 TCID50 SARS-
CoV-2 per animal.

Dose Administration: Placebo or test material dosing
formulations were administered once daily by oral gavage to each
surviving mouse on Study Days 0–10. On Study Day 0, doses were
administered 4–6 h after challenge. On Study Days 1–10, doses were
administered 24 ± 2 h after the preceding dose.

Mortality and Moribundity: During the quarantine period, all
mice were observed at least once daily for survival. Following
challenge (on Study Day 0) and throughout the remainder of the
study, all surviving mice were observed twice daily for mortality or
evidence of moribundity. Any abnormal clinical signs were recorded
in ToxData®. The Study Director (or designee) was notified of any
severely ill or moribund animal prior to euthanasia. Animals
meeting a previously determined definition of moribundity in
accordance with accepted animal care practices (ACUP) and
relevant standard operating procedures (SOPs) were euthanized
within 6 hours of this determination and counted as dead for the
study.
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Body Weights: All surviving mice were individually weighed at
the following time points:

• Within 2 days of receipt (not reported)
• Prior to randomization (not reported)
• Prior to challenge on Day 0
• Once daily on Study Days 114

The percent change in body weight from the Day 0 body weight
was calculated for each mouse.

Euthanasia and Necropsy: On Study Day 6 (77/group) or Study
Day 14 (all surviving) mice were euthanized via an intraperitoneal
(IP) injection of Beuthanasia-D solution (0.67 mL/kg; Pentobarbital/
Phenytoin solution) and exsanguinated. Death was confirmed by the
absence of an observable heartbeat and respiration for a period of
3–5 min.

• In the IITRI ABSL-3 suite, a gross necropsy examination was
performed on the lungs of each sacrificed mouse on Study Day
6 and 14. The necropsy for viral titers was conducted on Study
Day 6. The left lung was harvested from 7 study animals per
treatment group (if available) for viral titers. Tissues for both
TCID50 and RTqPCR viral titers were weighed and flash frozen
in liquid nitrogen. Samples were stored at ≤-65°C until analyzed.

• The following organs were also collected from each sacrificed
mouse on Study Day 6 and 14 and fixed in 10% neutral
buffered formalin (NBF) for microscopic examination.

• Nasal turbinate
• GI tract (stomach, jejunum, ileum, and colon)
• Leg bone
• Bronchial lymph nodes
• Right lung
• The right lung of each sacrificed mouse was removed, inflated
by intratracheal infusion of 10% NBF, and then immersed in
10% NBF for fixation. Fixed tissues were sent to Charles River
Laboratories, Pathology Associates (PAI) for histopathological
evaluation.

• Animals that were found dead, died accidently or were
determined to be moribund were euthanized with
beuthanasia (if necessary) and removed from the study
without further processing.

Clinical Chemistry: On Study Day 6 and Study Day 14, blood
was collected from the retro-orbital sinus of each mouse for clinical
chemistry determinations during euthanasia. Blood was collected
into tubes, allowed to clot, and centrifuged to obtain serum. Liver
and kidney enzymes AST, ALT and BUN were evaluated using a
Beckman Coulter AU480 Clinical System (Beckman Coulter, Inc.;
Brea, CA).

Histopathology: All tissues and organs listed above were
evaluated microscopically by a board-certified veterinary
pathologist. Tissues to be examined microscopically were
trimmed, processed routinely, embedded in paraffin and stained
with hematoxylin and eosin.

TCID50 Analysis of Lung Tissue: Vero C1008 (E6) cell
monolayers were observed for ≥80% confluency using an
inverted microscope. Lung tissue sample was quickly thawed in a
37°C ± 2°C water bath and immediately homogenized in 1x PBS and
used for assay. Dilutions of the homogenized samples were prepared
with infection media [e.g. DMEM-2: Dulbecco’s Modified Eagle’s
Medium (DMEM) + 2%Heat Inactivated Fetal Bovine Serum (FBS),
1% Penicillin/Streptomycin] in sterile 96 deep wells (typically tested
from 10 to 1 to 10-8 or 10-1 to 10-11) of each sample by making a
10-fold dilution series (e.g. add 60 µL of sample to 540 µL of
infection media). Dilution schemes were adjusted when
appropriate and cited with a study note. Cells were removed
from the incubator and the growth media was removed by
aspiration and 100 µL of warm sample dilution media was then
transferred to the cells, in triplicate. Plates were incubated at 37°C ±
2°C, 5% ± 1% CO2, ≥70% relative humidity for 120 h. After 120 h
plates were removed from the incubator and scored for the presence
of cytopathic effects (CPE) using an invertedmicroscope. If CPE was
present the wells were scored as “+” and if there was no presence of
CPE the wells were scored as “-”.

FIGURE 6
In vitro IC-50 drug-response curves for Calu-3 cells.

Frontiers in Pharmacology frontiersin.org14

Bess et al. 10.3389/fphar.2023.1297924

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1297924


RT-qPCR Viral Titer Analysis of Lung Tissue: One-step RT-
qPCR was performed using isolated RNA from left lung tissue
samples to estimate viral copy number. Briefly, RNA was
extracted from the lung tissue samples that were stored in RNA/
DNA Shield using the Quick-RNA Viral Kit (Zymo Research).
Following the manufacturer’s protocol, RT-qPCR analysis was
performed using the BlazeTaq Probe One-Step RT-qPCR Kit
(GeneCopoeia; Rockville, MD) using isolated RNA as template.
The following RTqPCR cycling conditions were used: 50°C for
15 min (RT), 95°C for 2 min (denature), then 40 cycles of 10 s at
95°C followed by 45 s at 62°C (extension). The following primers and
probe were used for SARS-CoV-2 detection:

Primers:
2019-nCoV_N1-F:
5′-GACCCCAAAATCAGCGAAAT-3′
2019-nCoV_N1-R:
5′-TCTGGTTACTGCCAGTTGAATCTG -3′
Probe:
2019-nCoV_N1-P:
5′-FAM-ACCCCGCATTACGTTTGGTGGACC-BHQ1-3′
For estimating viral copy number, samples were compared against a

standard curve with synthetic RNA, this particular reagent (BlazeTaq)
produces a copy number calculation ~1 log higher in comparison to
copy number calculation with other suppliers (i.e. Bio-Rad reagent,
iTaq) however, for samples, the copy number is comparable.

Data Analysis: Descriptive statistics (mean and standard
deviation) were calculated for clinical chemistry data using the
ToxData® system. Descriptive statistics for body weight, body
weight change (from baseline), and viral titer data were
calculated using Microsoft Excel.

4.2 Results

Mebendazole alone resulted in a 44.2% reduction respectively in
lung viral load compared to non-treated placebo control (Table 7).
There were no significant differences in body weight (data not
shown).

On Day 6, serum biochemistry markers were assessed for liver or
renal injury and no significant changes in ALT, AST, or BUN levels
were observed for mebendazole-treated mice, suggesting no
significant toxicities following drug treatments. Furthermore, no
abnormal histopathological findings in tissues and samples collected
(nasal turbinates, stomach, jejunum, ileum, colon, femur, bronchial
lymph node, and right lung) at necropsy were observed, supporting
a favorable safety profile of mebendazole (data not shown).

ALT, AST, and BUN, as a measure of drug hepatic and renal
toxicity were measured on Study Day 6. ALT (normal range 17–77 U/
L). However, all other levels were within acceptable reference values for
mouse serumALT, AST (54–298 U/L), and BUN (8–33 mg/dL) values.

As treatment was up to Day 6, values suggest that the acute treatment of
mebendazole did not result in liver or renal injury.

5 Discussion

The identification and deployment of cost-effective, safe, and
accessible therapeutics to treat COVID-19 within LMIC (Low- and
Middle-Income Countries) communities remains a challenge
(Hancock et al., 2016; Maxwell et al., 2021). Using our AI
platform in a short time frame we have identified potential
candidates that could be potentially used for the prevention and
treatment of COVID-19 particularly in patients with mild to
moderate symptoms of the disease (Naderi et al., 2016; Liu et al.,
2017; Pu et al., 2019; Bess et al., 2022).

In our AI analysis, several compounds were identified to potentially
inhibit the entry, fusion, and replication of SARS-CoV-2. Based on this
analysis several compounds were tested in lung cancer cells infected
with the virus to determine potential antiviral activity and non-toxic
doses. One such drug widely used in the developing world to treat
pinworm that is cost-effective, safe, and accessible is Mebendazole. Our
cell results and subsequent animal studies suggested that Mebendazole
could be an effective oral therapeutic for COVID-19.

Mebendazole is approved in the United States, Canada and Europe
for treatment of gastrointestinal infections caused by helminths (parasitic
worms) (Janssen, 2019b, 2021). It inhibits microtubules in the parasites,
and this mechanism of action may afford some antiviral effects against
SARS-CoV-2 by obstructing the trafficking of SARS-CoV-2 and viral
structural proteins within the cell, resulting in decreased viral entry, viral
replication, and assembly and egress (exocytosis) of newly made SARS-
CoV-2 virions from the cell (Figure 1).

Importantly, mebendazole is a potent inhibitor of several
tyrosine protein kinases, including mitogen-activated-protein-
kinase 14 (MAPK14) and ABL1 (Abelson tyrosine protein kinase
1) (Ariey-Bonnet et al., 2020). Based on strong evidence from the
literature, MAPK14 inhibition is thought to decrease SARS-CoV-
2 replication and significantly reduce the hyper-inflammatory
response associated with SARS-CoV-2 infection (Bouhaddou
et al., 2020; Klann et al., 2020). Based on this dual mechanism of
action (microtubule and MAPK14 inhibition), mebendazole may
exhibit both antiviral and anti-inflammatory effects.

However, based on the low oral bioavailability of mebendazole, it
was likely not absorbed in sufficient quantities to affect concentrations
of virus in the lungs (Kuhlmann and Fleckenstein, 2017). Indeed, its low
systemic bioavailability accounts for its relative lack of activity in
extraintestinal infections. However, mebendazole has been used to
treat human alveolar echinococcosis, a lethal pulmonary helminthic
infection (Sasaki et al., 2002). Although echinococcosis requires long-
term treatment with mebendazole, the incidence of severe side effects is
low. Daily doses of 50 mg/kg (for up to 30 days) together with other

TABLE 7 Lung RT-qPCR data for SARS-CoV-2 virus following 6 days of treatment in K18-hACE2 mice orally administered with Mebendazole) (50 mg/kg) once daily
for 6 consecutive days.

Treatment group N Lung RT-qPCR mean ± SD(×107) % Reduction compared to control

Untreated control 7 7.81 ± 6.0 —

Mebendazole 7 4.36 ± 2.2 44.2%
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drugs to improve its absorption was observed to increase the efficacy of
mebendazole in the context of pulmonary infections (Shcherbakov
et al., 1993; Simbulan-Rosenthal et al., 2017; Ariey-Bonnet et al., 2020).
Because its delivery to human peripheral lung tissue has few or no side
effects, mebendazole is a promising antiviral therapeutic against SARS-
CoV-2 at the planned clinical dose based on the AI analysis and
preliminary in vivo data. While our findings appear promising, we
acknowledge a limitation in our pilot animal study: it was conducted
using only a single dose within an acute model of COVID-19. Further
in-depth dose response studies in milder COVID-19 models are
necessary to more comprehensively assess the therapeutic potential
of mebendazole.

Another drug that showed promising antiviral activity in our
preliminary cell studies was Imatinib (data not shown). Imatinib is
approved in the United States, Canada and Europe for treatment of
adult and pediatric patients with Philadelphia chromosome positive
chronic myeloid leukemia (Ph+ CML) and acute lymphoblastic
leukemia (Ph+ ALL) (Dalziel et al., 2005; Peng et al., 2005;
Talarico et al., 2005; Kantarjian et al., 2009; Abou Dalle et al.,
2019). Imatinib is a strong anti-inflammatory agent that, like
mebendazole, may decrease the hyper-inflammatory response
associated with SARS-CoV-2 infection and prevent severe tissue
damage. Through inhibition of ABL1, which has been shown to be
involved in actin polymerization/formation of actin tails and cell-to-
cell transmission of new virions, imatinib may also demonstrate
direct antiviral activity (Reeves et al., 2011; García et al., 2012;
Gancheva et al., 2013).

However, several studies from the literature were identified in
which imatinib inhibited SARS-CoV-2, SARS-CoV-1 and MERS-
CoV replication at concentrations of ~10 µM (ASSAAD and
ASSAAD-KHALIL, 2020; ClinicalTrials, 2020; Zhao et al., 2020) In
parallel experiments in one of the studies, imatinib did not show an
inhibitory effect on SARS-CoV-2 entry/infection at concentrations up
to 10 μM (Zhao et al., 2020). The conclusion from these reports is that
imatinib is not a potent inhibitor of viral entry but at clinically
achievable dose ranges (400–800 mg/day), imatinib may have some
effect on SARS-CoV-2 replication. Though imatinib is not a potent
antiviral agent, it still holds promise for the treatment of COVID-19
through its anti-inflammatory effects (i.e., reduced cytokine-induced
inflammatory response and tissue injury).

In an era where novel viruses can emerge rapidly and spread
globally within months, a tool like eVir becomes indispensable. Such
a framework provides a proactive approach to viral threats, rather
than a reactionary one. By being virus agnostic, eVir offers a
foundational platform upon which specific viral data can be
integrated and analyzed quickly. This speed and adaptability are
crucial for early intervention and the development of effective
treatments. Furthermore, as research advances, tools that can
swiftly assimilate and make sense of vast datasets become
paramount. eVir not only helps in identifying potential
therapeutic interventions for current viral outbreaks but also
serves as a research scaffold for the scientific community.
Researchers can build upon this framework, refining algorithms,
adding newer datasets, and improving prediction accuracy. This
continuous evolution ensures that we remain one step ahead, better
prepared and more informed, for any future viral challenges.

Our future direction will pivot toward testing other predicted
compounds that eVir flagged with high confidence. While AI has

been used in diverse domains, its widespread use in drug discovery
has been hindered by the uncertainty in the predictions. In future,
we plan to quantify the uncertainty associated with predictions from
engines like eVir in a formal reasoning framework. While AI drug
discovery platforms have begun to proliferate, their efficacy varies,
and some holistic systemic details of the treatments are occasionally
overlooked. One fascinating direction is the results of the MLP/SNet
models and its possible correlation with post-acute sequelae of
SARS-CoV-2 infection (often termed ‘Long Covid’) remain
critical areas of exploration (Lazebnik, 2021). As the fight against
COVID-19 progresses, AI-integrated drug discovery promises to be
a beacon in uncovering new therapeutic vistas, especially within
LMIC communities.
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