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In the current study, Neosetophomone B (NSP–B) was investigated for its anti-
cancerous potential using network pharmacology, quantum polarized ligand
docking, molecular simulation, and binding free energy calculation. Using
SwissTarget prediction, and Superpred, the molecular targets for NSP-B were
predicted while cancer-associated genes were obtained from DisGeNet. Among
the total predicted proteins, only 25 were reported to overlap with the disease-
associated genes. A protein-protein interaction network was constructed by
using Cytoscape and STRING databases. MCODE was used to detect the densely
connected subnetworks which revealed three sub-clusters. Cytohubba predicted
four targets, i.e., fibroblast growth factor , FGF20, FGF22, and FGF23 as hub genes.
Molecular docking of NSP-B based on a quantum-polarized docking approach
with FGF6, FGF20, FGF22, and FGF23 revealed stronger interactions with the key
hotspot residues. Moreover, molecular simulation revealed a stable dynamic
behavior, good structural packing, and residues’ flexibility of each complex.
Hydrogen bonding in each complex was also observed to be above the
minimum. In addition, the binding free energy was calculated using the MM/
GBSA (Molecular Mechanics/Generalized Born Surface Area) and MM/PBSA
(Molecular Mechanics/Poisson-Boltzmann Surface Area) approaches. The total
binding free energy calculated using the MM/GBSA approach revealed values
of −36.85 kcal/mol for the FGF6-NSP-B complex, −43.87 kcal/mol for the
FGF20-NSP-B complex, and −37.42 kcal/mol for the FGF22-NSP-B complex,
and −41.91 kcal/mol for the FGF23-NSP-B complex. The total binding free energy
calculated using the MM/PBSA approach showed values of −30.05 kcal/mol for
the FGF6-NSP-B complex, −39.62 kcal/mol for the FGF20-NSP-B
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complex, −34.89 kcal/mol for the FGF22-NSP-B complex, and −37.18 kcal/mol for
the FGF23-NSP-B complex. These findings underscore the promising potential of
NSP-B against FGF6, FGF20, FGF22, and FGF23, which are reported to be essential
for cancer signaling. These results significantly bolster the potential of NSP-B as a
promising candidate for cancer therapy.

KEYWORDS

network pharmacology, protein-protein interactions, hub gene, quantumpolarized ligand
docking, molecular simulation, free energy calculation, Neosetophomone B, cancer

Introduction

Cancer is a growing major public health concern globally and
has been reported to be the second leading cause of death in the
United States. The characteristic features involve abnormal cellular
growth with the capability of spreading to other parts of the body
(Cleeland, 2000). Potential indicators and manifestations may
encompass the presence of a lump, unusual bleeding, persistent
cough, unexpected weight loss, and alterations in bowel movements
(Woodgate et al., 2003). In 2015, approximately 90.5 million
individuals worldwide were diagnosed with cancer. By 2019, the
annual number of cancer cases had surged by 23.6 million, resulting
in 10 million global deaths. This marked an increase of 26% and
21%, respectively, over the preceding decade. Projections for
2023 anticipate 1,958,310 new cancer cases and 609,820 deaths in
the United States. Notably, prostate cancer witnessed a 3% annual
rise from 2014 to 2019, countering a two-decade decline and
resulting in an additional 99,000 cases (You et al., 2021; Siegel
et al., 2023). The majority of cancers, 90%–95%, are attributed to
genetic mutations arising from environmental and lifestyle factors,
while the remaining 5%–10% are due to inherited genetics.
Environmental factors encompass various non-inherited causes,
including lifestyle, economic, and behavioral factors, with tobacco
use (25%–30%), diet and obesity (30%–35%), infections (15%–20%),
radiation (both ionizing and non-ionizing, up to 10%), lack of
physical activity, and pollution being common contributors to
cancer mortality. Despite its impact on cancer outcomes,
psychological stress does not seem to be a risk factor for cancer
onset (Berenguer et al., 2023; Yang et al., 2023).

The treatment of cancer typically involves a combination of
radiation therapy, surgery, chemotherapy, and targeted therapies
(Gerber, 2008). The advancement of innovative strategies in
neoplastic cancer or precision drugs relies on understanding the
distinct pathways and characteristics of various tumor types (Miller
et al., 2019). Chemotherapy, often employed alone or alongside
radiotherapy, is recognized as a highly effective treatment modality,
leveraging genotoxicity to target tumor cells by generating reactive
oxygen species, leading to significant tumor cell destruction (Anand
et al., 2023). Hormonal treatments, widely utilized for cancer
malignancies, act as cytostatic agents by impeding tumor
development. This is achieved through mechanisms such as
restraining hormonal growth factors, hormone receptor blockade,
and limiting adrenal steroid synthesis, thus influencing the
hypothalamic–pituitary–gonadal axis (HPGA) (Abraham and
Staffurth, 2016).

The significance of chemotherapy in achieving cancer cures is on
the rise, particularly in its application as an adjuvant to local

therapies (Chu and Sartorelli, 2018). Additionally, in cases of
advanced disease where the tumor has spread beyond its original
site, chemotherapy plays an increasingly crucial role in alleviating
cancer-related symptoms and extending life. Despite its limitations,
chemotherapy remains a vital and enduring treatment approach in
the field of oncology, likely retaining its importance for a substantial
duration (Amjad et al., 2020). Until now many chemotherapeutic
agents have been discovered for the treatment of cancer. For
instance, bevacizumab in non-small cell lung cancer (NSCLC);
Latrcitinib and Entrecitinib in ovarian cancer; Tazemetostate in
multiple cancers; Certinib and Lorlatinib in adenocarcinoma;
Trastuzumab deruxtecan in metastatic breast cancer; and
Irinotecan in ovarian cancer have been discovered to target
different proteins that are indispensable for the initiation and
progression of cancer (Kifle et al., 2021). The emergence of gene
mutations and other phenomena contribute to the resistance to the
existing drugs (Khan et al., 2021; Khan et al., 2022). In the quest for
effective treatments, innovative therapeutic approaches employing
cutting-edge methods have proven to be valuable.

The conventional one-drug/one-target/one-disease approach to
drug discovery currently faces challenges related to safety, efficacy,
and sustainability. Recently, there has been a growing appreciation
for network biology and polypharmacology methodologies, which
involve integrating omics data and developing drugs targeting
multiple pathways (Ali et al., 2022). The fusion of these
approaches has given rise to a novel paradigm known as network
pharmacology, which assesses the impact of drugs on both the
interactome and diseasome levels. Network pharmacology utilizes
computational tools to comprehensively document the molecular
interactions of drug molecules within living cells. This approach
proves valuable in unraveling complex relationships between
botanical formulas and the entire body, enabling the
identification of new drug leads, and targets, and the repurposing
of existing molecules for diverse therapeutic conditions
(Muhammad et al., 2018; Khan et al., 2022; Ghufran et al., 2022).
Beyond expanding therapeutic options, network pharmacology
analysis also strives to enhance the safety and efficacy of current
medications (Sliwoski et al., 2014; Chandran et al., 2017).

Neosetophomone B (NSP-B), a meroterpenoid fungal secondary
metabolite, has been recently reported to target the AKT/SKP2 axis
in leukemic and multiple myeloma cell lines (Kuttikrishnan et al.,
2022a; Kuttikrishnan et al., 2023a). Furthermore, NSP-B was shown
to effectively inhibit FOXM1, a master regulator of the cell cycle and
a transcription factor, and its downstream targets in cutaneous
T-cell lymphoma and leukemia thereby paving the way for novel
and safer chemotherapeutic regimens that provide a promising
alternative for cancer treatment (Kuttikrishnan et al., 2022b;
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Kuttikrishnan et al., 2023b). Considering the anti-cancerous
potential of NSP-B, the current study uses network
pharmacology combined with quantum-polarized ligand docking
(QPLD) andmolecular simulation to discover novel targets for NSP-
B. Furthermore, binding free energy was calculated for the top hub
genes-NSP-B complexes. This study will guide the selective
inhibition of cancer targets in the clinical trials.

Materials and methods

Targets prediction for NSP-B

To predict targets for NSP-B (Compound CID: 146683131), we
used three different databases. SMILES of NSP-B were submitted as
the input and targets were predicted using SwissTarget Prediction
(http://www.swisstargetprediction.ch/) (Daina et al., 2019), and
Superpred (https://prediction.charite.de/) (Gallo et al., 2022). The
disease-related genes were obtained from DisGeNet (https://www.
disgenet.org/search) by searching the term “cancer” to retrieve all the
disease-related proteins/genes associated with cancer (Piñero et al.,
2016). Among the predicted targets and the disease-associated targets,
the common targets were selected for the PPI network construction.
The methodological workflow is summarized in Figure 1.

Construction of PPI network

The construction of the PPI network for NSP-B’s candidate
targets against cancer was achieved using the STRING database

(https://string-db.org/cgi/input?sessionId=btWeOUvPdvTt&input_
page_active_form=single_identifier) with parameters set at the
highest confidence level (0.900) (Szklarczyk et al., 2021;
Doncheva et al., 2022). Subsequently, the resulting PPI network
was imported into Cytoscape v3.8.2 for subnetwork identification
and core target screening, employing the MCODE plugin with
specific parameters: “Degree Cutoff = 2, Node Score Cutoff = 0.2,
and K-Core = 2”. The top 4 core targets were then selected based on
the Cytohubba analysis (Lotia et al., 2013; Chin et al., 2014; Otasek
et al., 2019).

Structural retrieval and quantum-polarized
ligand docking (QLPD)

The available crystallographic coordinates were retrieved from
RCSB while the non-available coordinates were modeled using
Alpha Fold 2.0 (Burley et al., 2019; Jumper et al., 2021). Each
structure was prepared using the protein preparation wizard in
the Schrodinger Maestro (Maestro et al., 2020). The structures were
pre-processed by using the default setting while refined by using the
pH 7.0 and OPLS 2.1 force field for minimization. Restrained
minimization was carried out where the convergence of heavy
atoms to RMSD was set to 0.30 Å. The ligand molecule was
downloaded from PubChem and minimized by using the
MMFFx force field. For the binding site detection sitemap
module was used. Advanced docking methods, including scoring
functions, aim to estimate binding energies, providing quantitative
insights into ligand-protein interactions (Ferreira et al., 2015). To
determine the activity of NSP-B against the selected targets we also

FIGURE 1
Hierarchical workflow of the study involving various steps from target prediction to target retrieval, PPI construction, identification of hub genes,
molecular docking, and molecular simulation.
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used the quantum-polarized ligand docking (QPLD) approach
which is the most accurate method in evaluating the binding
potential of small molecules by combining the quantum
mechanical and molecular mechanics properties (Cho et al.,
2005). This approach provides a more accurate description of the
electronic interactions between the ligand and the protein, taking
into account the polarization effects that occur due to the charge
distribution in the ligand and the protein than the traditional
docking methods. It uses the density functional theory (DFT) or
semi-empirical methods properties to quantify the protein and
ligand properties. We used QPLD approaches by considering the
ligand vdW scaling as 0.8, RMSD deviation less than 0.5 while a
maximum of 10 poses were allowed using the Schrodinger Maestro
software. We used Jaguar for the QM charges assignment while the
re-docking was performed by employing the XP approaches with the
maximum atomic displacement of 1.3 Å. The best pose was then
visualized in PyMOL for molecular interactions analysis
(DeLano, 2002).

All-atoms simulation in explicit solvent

To perform molecular simulations of all the systems the
coordinates, and topology files were prepared using the
“tLeap” an integrated module in AMBER21 (Case et al., 2005;
Salomon-Ferrer et al., 2013). A solvent box (OPC) optimal point
charge was added around each system, and ions were added to
neutralize the charge. The ligand molecule was parameterized by
using the GAFF2 force file while the initial topology and frcmod
file was generated with antechamber and parmchk2. Next, each
system underwent energy minimization using a minimization
algorithm such as steepest descent and conjugate gradient. The
minimization process continued until the system reached a
convergence criterion, such as a maximum force or energy
change threshold. To allow each system to reach the desired
simulation temperature and equilibrate, a temperature coupling
algorithm (such as Langevin Dynamics or Berendsen thermostat)
was used to gradually heat the system from a low temperature.
Long-range electrostatic interactions were calculated using the
Particle Mesh Ewald (PME) method, while van der Waals forces
were calculated using Lennard-Jone’s potential (Toukmaji et al.,
2000). Each system was equilibrated at the target temperature and
pressure for a certain period of time in several stages, including
positional restraint, slow heating, and equilibration without
restraints. To maintain covalent bond lengths, the SHAKE
algorithm was used to constrain bond lengths and angles. The
pressure of the system was controlled using a barostat such as
Berendsen or Andersen (Fyta, 2016). After equilibration, each
system was simulated for a production time of 300 ns using a
molecular dynamics algorithm such as NPT or NVT ensemble
(Salomon-Ferrer et al., 2013). In this step, simulation parameters
including time step and cut-off distances were set. Finally, the
trajectory obtained from the production simulation was analyzed
using CPPTRAJ or PTRAJ modules (Roe and Cheatham, 2013).
We calculated RMSD, RMSF, Rg, and hydrogen bonding for each
system (Cooper, 1976; Maiorov and Crippen, 1994; Lobanov
et al., 2008).

RMSD �
��������∑d2i � 1
Natoms

√
(ii)

Where:
di is the difference of position between atoms and i refers to the

original and superimposed structure. Whereas the root mean square
fluctuation (RMSF) can be computed by employing B-factor (Chin
et al., 2014), which is the most imperative constraint to compute the
flexibility of all the residues in a protein. Mathematically the RMSF
can be calculated by using the following equation.

Thermal factor or B − factor � 8π**2( )/3[ ] msf( ) (iii)

The radius of gyration measures the compactness of a
protein structure.

R2
gyr �

1
M

∑N

i�1mi ri − R2( ) (iv)
where;

M � ∑N

i�1mi (v)
is the total mass and;

R � N−1∑N

i�1ri (vi)

is the center of mass of the protein consisting of N atoms.

Binding free energy estimation throughMM/
GBSA and MM/PBSA analysis

Insights into the process of how a protein identifies its
biologically significant ligand or a small molecule inhibitor
significantly impact the discovery of effective small molecule
treatments. This approach has the advantage over others as it is
less time-consuming and computationally inexpensive (Chen et al.,
2016). It has been widely used to determine the BFE for protein-
protein and protein-ligand complexes. We calculated the BFE for
each complex (Gcomplex, solvated) and the unbound states of NSP-B
(GNSP-B, solvated) and receptors (Greceptors, solvated). AMBER utilizes the
MM/GBSA (Molecular Mechanics/Generalized Born Surface Area)
methodology for binding free energy calculations. This approach
integrates molecular mechanics force fields, a generalized Born (GB)
implicit solvent model, and a surface area term. The MMPBSA.py
module within AMBER conducts the computation, with essential
parameters encompassing the molecular dynamics trajectory, force
field parameters, and implicit solvent specifications. The MM/GBSA
technique in AMBER presents a reliable computational framework
for the estimation of binding free energies in biomolecular systems
(Chen et al., 2016). The following equation was used to calculate
each term in the total binding energy.

ΔGbind � G complex,solvated( ) − G Neosetophomone B,solvated( )
− G receptors,solvated( ) (vii)

This equation can be used to determine the contribution of
interaction in the complex and can be expressed as;

G � EMolecularMechanics − Gsolvated − TS (viii)
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This equation can be further restructured to calculate the specific
energy term.

ΔGbind � ΔEMolecularMechanics + ΔGsolvated − ΔTS

� ΔGvaccum + ΔGsolvated (ix)
ΔEMolecularMechanics � ΔEint + ΔEelectrostatic + ΔEvdW (x)

ΔGsolvated � ΔGGeneralized born + ΔGsurface area (xi)
ΔGsurface area � γ.SASA + b (xii)

ΔGvaccum � ΔEMolecularMechanics − TΔS (xiii)

The total binding energy is a composite of various components.
Specifically, the free energy linked to the binding of ligand-protein,
PPI, or protein-nucleic acid is referred to as ΔGbind. The cumulative
gas phase energy, including ΔEinternal, ΔEelectrostatic, and ΔEvdw, is
denoted as ΔEMM. Solvation effects contribute through the
combination of polar (ΔGPB/GB) and nonpolar (ΔGSA)
components. Here, ΔGPB/GB represents the polar contribution
calculated using Poisson–Boltzmann (PB) or generalized Born
(GB) methods, while ΔGSA is the nonpolar solvation free energy,
often determined through a linear function of solvent-accessible
surface area (SASA). The conformational binding entropy, typically
evaluated through normal-mode analysis, is expressed as -TΔS.
However, the computation of conformational entropy was

omitted due to computational expense and associated
inaccuracies. In MM/PBSA and MM/GBSA, ΔEinternal consistently
remains zero in single trajectory complex calculations (Nadeem
et al., 2023).

Results and discussion

Drug and disease-related target retrieval

In order to investigate the mechanism of interaction of NSP-B
with the key cancer targets, different databases were used for
retrieval of drug and disease-related targets. The structure of
NSP-B was obtained from PubChem and targets were retrieved
from various databases. A total of 100 targets were retrieved for this
drug in the SwissTarget database while Superpred returned
76 targets. With regards to disease-associated genes, a total of
3,111 disease genes were predicted as cancer biomarkers in
DisGeNet database. Among these, 8 and 17 genes were common
with targets retrieved in the SwissTarget and Superpred databases,
respectively. A PPI network of these 25 common proteins was then
constructed using the STING protein database and imported into
Cytoscape. The 2D structure of NSP-B is shown in Figure 2A, while
the Venn diagrams for the predicted targets and disease-associated

FIGURE 2
Structure of NSP-B, Venn diagrams, and PPI of the selected compound and proteins are shown. (A) shows the 2D structure of NSP-B, (B) shows the
PPI network of the 25 common proteins in the selected databases, and (C) shows the common genes identified between the predicted and disease-
associated targets in breast cancer.
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targets are provided in Figure 2B. The PPI network of the common
25 targets was constructed and is depicted in Figure 2C.

Identification of small subnetworks and
hub genes

Identifying small subnetworks in PPI networks using tools like
MCODE (Molecular Complex Detection) in Cytoscape offers
valuable insights into the organization and functionality of
biological systems. These subnetworks represent functional
modules or clusters of deeply associated proteins that are
essential for certain cellular processes such as signaling cascades,
metabolic pathways, or protein complexes. Understanding the
organization of proteins into functional modules provides
insights into the underlying biological processes. Furthermore,
subnetworks usually exhibit proteins that are associated with
specific diseases or pathological conditions and thus the
identification of such subnetworks can contribute to the
understanding of disease mechanisms and act as therapeutic
biomarkers for a particular disease. Hence, we also used the
MCODE module to identify the subnetworks in the PPI network.
Three small subnetworks were identified. In the first subnetwork,

FGFR1 (Fibroblast growth factor receptor 1), FGFR2, FGFR3, FGF4,
FGF6, FGF20, FGF22, and FGF23 were clustered. In the second
subnetwork, EHBP1 (EH domain-binding protein 1), HDAC2
(Histone deacetylase 2), HDAC3, HDAC4, HDAC6, and HDAC8
were clustered while in the third subnetwork, AZU1 (Azurocidin 1),
PRTN3 (Proteinase 3), MPO (Myeloperoxidase), and CTSG
(Cathepsin G) were clustered. The subnetworks are shown in
Figures 3A–C.

To predict the hub genes in the PPI network of 25 proteins,
Cytohubba was used. Among the 25 common proteins, only five
proteins were identified as hub genes based on the degree and are
presented in Figure 3D. Among the hub genes identified FGF6,
FGF20, FGF22, FGF23, and EHBP1 were identified as the key
biomarker genes. The FGF signaling network is ubiquitous in
normal cell growth, survival, differentiation, and angiogenesis,
but it has also been associated with cancer development. FGFs’
capacity to promote tumor growth is highly dependent on specific
FGFR signaling. FGF can overcome chemotherapy resistance by
boosting tumor cell survival, implying that chemotherapy may be
more effective when combined with FGF inhibitor treatment.
Previous studies have demonstrated that FGFs stimulate the
growth and invasion of numerous cancer types including non-
small lung cells, hepatocellular carcinoma (HCC), melanomas,

FIGURE 3
The identified sub-clusters and hub genes networks from thewhole PPI network. (A–C) shows the top three sub-networks in thewhole PPI network,
while (D) shows the key hub genes in the PPI network depicted in red, orange, and yellow colors. The blue-colored genes represent the sub-nodes that
interact with these hub genes.
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astrocytoma, breast, pancreatic, bladder, head and neck, and
prostate cancers making the FGF signaling pathway a promising
target for cancer therapy (Korc and Friesel, 2009; Ao et al., 2015;
Ropiquet et al., 2000; Francavilla and OBrien, 2022; Katoh, 2016).
FGFs are reported to be essential for cancer signaling (Ferguson
et al., 2021). For instance, the increased expression of FGF6 has been
reported by previous studies in different types of cancers particularly
breast cancer (Ropiquet et al., 2000; Francavilla and OBrien, 2022).
Another study reported that targeting the FGFR proteins using the
inhibitors acts as a starting point for the promising cancer therapy
(Katoh, 2016). Moreover, EHBP1 has been reported to be a well-
validated target in prostate cancer (Kolawole, 2012; Ao et al., 2015).
This further supports the validity of these selected hub genes as
potential targets for the treatment of cancer.

Quantum-polarized ligand docking of NSP-
B with the hub genes

Since the role of FGF family proteins is obvious in various
cancers, the top four FGF proteins acting as hub genes were selected
for the interaction with NSP-B using the 3D structures of the target
proteins retrieved from Protein databank, and active sites were
identified using the sitemap tool in Schrodinger Maestro. The 3D
structures of each selected protein, i.e., FGF6, FGF20, FGF22, and
FGF23 are given in Figures 4A–D.

Using the QPLD approach, FGF6 in complex withNSP-B reported
a docking score of −7.89 kcal/mol with three hydrogen bonds in the
complex. Among the hydrogen bonds, Arg207 established two
hydrogen bonds while Tyr168 reported a single hydrogen bond.
This shows the binding potential of NSP-B towards FGF6. The
interaction pattern of NSP-B-FGF6 is shown in Figure 5A. On the
other hand, FGF20 in complex with NSP-B reported a docking score
of −10.75 kcal/mol with several hydrogen bonds with the key residues.
The interactions involve Arg65 with two hydrogen bonds,
Arg67 established a single hydrogen bond, and Glu141 and
Pro192 also reported single hydrogen bonds. The binding pattern
for the FGF20-NSP-B complex is given in Figure 5B. The FGF22-NSP-
B complex reported a docking score of −9.61 kcal/mol with the four
hydrogen bonds in the interaction paradigm. As given in Figure 5C,
amino acids such as Arg128, Pro129, Thr146, and Arg147 are involved
in creating the hydrogen bonds. This also shows the binding potential
of this molecule towards diverse proteins. Unlike the others, the
FGF23- NSP-B complex reported five hydrogen bonds with the
highest docking score of −11.24 kcal/mol. The hydrogen bonding
involves Asn101, ile102, leu138 and Arg140. The interaction pattern
for the FGF23-NSP-B complex is given in Figure 5D. This consistent
interaction pattern with different proteins highlights the potential for
the ligand to selectively target and modulate the activity of this class of
proteins. The observed multi-protein hydrogen bonding reinforces the
ligand’s potential as a versatile and promising candidate for therapeutic
development against a range of closely related targets.

FIGURE 4
3D structures of the hub genes identified as the key targets for NSP-B. (A) Structure of FGF6. (B) Structure of FGF20. (C) Structure of FDF22. (D)
Structure of FGF23.
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Dynamic stability analysis of the complexes

Dynamic stability investigation determines the pharmacological
potential of the ligand-bound complex during the simulation. It is an
essential parameter in deciphering essential knowledge regarding

the binding stability of the drug to its target. To determine the
stability variation of these complexes we also calculated root mean
square deviation (RMSD) as a function of time. It can be seen that
the FGF6-NSP-B stabilized at 1.0 Å and maintained a similar level
throughout the simulation. The complex reported no significant

FIGURE 5
Interaction pattern of the selected hub genes with NSP-B. (A) shows the interaction pattern of NSP-Bwith FGF6, (B) shows the interaction pattern of
NSP-B with FGF20, (C) shows the interaction pattern of NSP-B with FGF22 while (D) shows the interaction pattern of NSP-B with FGF23.

FIGURE 6
Dynamic stability analysis of the NSP-B bound complex with the selected hub genes. (A) shows the RMSD for the NSP-B-FGF6 complex, (B) shows
the RMSD for the NSP-B-FGF20 complex, (C) shows the RMSD for the NSP-B-FGF22 complex while (D) shows the RMSD for the NSP-B-FGF23 complex
during the simulation.
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structural perturbation and therefore demonstrated the stable
binding of NSP-B with FGF6 during the simulation. The RMSD
results for the NSP-B-FGF6 are given in Figure 6A.

On the other hand, the FGF20-NSP-B complex reported two
minor deviations at 40 and 150 ns. With no significant structural
perturbation, the complex stabilized at 2.0 Å and thereafter
demonstrated a stable dynamic behavior. The RMSD results for
the NSP-B-FGF20 are given in Figure 6B. In the case of FGF22-
NSP-B, the complex initially reported significant dynamic instability
but after 100 ns the RMSD of the complex decreased and stabilized.
The structure attained stability after 100 ns and maintained a uniform
RMSD pattern until the end of the simulation. The RMSD results for
the NSP-B-FGF22 are given in Figure 6C. Moreover, the FGF23-NSP-
B complex reported a dynamically stable behavior with no significant
structural perturbation indicating the binding stability of NSP-B with
FGF23. The RMSD results for the NSP-B-FGF23 complex are given in
Figure 6C. These ligand-bound complexes exhibiting stable RMSD
with minimal perturbation throughout simulation time suggest a
robust and energetically favorable binding interaction. This
steadfast structural stability implies that the ligand maintains a
consistent and well-defined conformation within the binding site,
reinforcing the reliability of the ligand-protein complexes.
Furthermore, this unyielding stability indicates a promising
foundation for the development of a pharmacologically effective
molecule, with the potential for sustained and reliable interactions,
enhancing its candidacy for further drug development endeavors.

Structural compactness analysis

The radius of gyration (Rg) serves as a measure of the compactness
or structural stability of a ligand-protein complex during molecular
dynamic simulations. A consistent or decreasing Rg over the simulation
duration indicates that the complex maintains a compact and well-
defined conformation. In the context of ligand pharmacological
potential, a stable or decreasing Rg suggests that the ligand forms a
persistent and compact binding interface, reinforcing its structural
integrity and potential for pharmacological efficacy by maintaining a

stable interaction with the target protein. We also calculated Rg as a
function of time using the simulation trajectories. As shown in
Figure 7A, the FGF6-NSP-B complex maintained a stable compact
topology throughout the simulation. The size of the receptor increased a
little between 80 and 160 ns; however, then decreased back and
maintained a level at 13.70 Å. This shows the compact nature and
stabilized binding of the protein-ligand complex during the simulation.
On the other hand, the Rg for the FGF20-NSP-B started from 15.75 Å
and demonstrated awave-like patternwhere an increase and decrease in
the Rg levels were observed until 125 ns. Afterward, the Rg level
decreased abruptly and maintained a lower level at 15.50 Å. The Rg
pattern for the FGF20-NSP-B is given in Figure 7B. In the case of the
FGF22-NSP-B complex, the Rg level abruptly increased initially and
then decreased back at 15 ns. Afterward, the Rg level was maintained at
the same level with no notable variation in values. The Rg pattern for the
FGF22-NSP-B is given in Figure 7C.

On the other hand, the FGF23-NSP-B complex maintained an
Rg level of 14.0 Å with no significant variation thus showing a
uniform protein size during the simulation. The Rg pattern for the
FGF23-NSP-B is given in Figure 7D. In sum, the Rg results show that
these protein-ligand complexes maintained a compact topology with
minimal unbinding events throughout the simulation and thus show
the pharmacological potential of this molecule against these targets.

Residue’s flexibility analysis

In molecular dynamic (MD) simulations, the root mean square
fluctuation (RMSF) is a useful metric and can be used to compare the
flexibility of different regions within a molecule or between different
molecules. This can help identify flexible regions that may be
important for ligand binding or PPI interactions. RMSF is also an
important parameter for validating MD simulations. Experimental
measurements of RMSF can be used to validate the accuracy of the
simulation and the force field used. A good agreement between the
experimental and simulated RMSF values indicates that the simulation
is accurately capturing the flexibility and dynamics of the biomolecule.
All the complexes demonstrated minimal fluctuations except for

FIGURE 7
Structural compactness analysis of the NSP-B bound complex with the selected hub genes. (A) shows the Rg for the NSP-B-FGF6 complex, (B)
shows the Rg for the NSP-B-FGF20 complex, (C) shows the Rg for the NSP-B-FGF22 complex while, (D) shows the Rg for the NSP-B-FGF23 complex
during the simulation.
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FGF22-NSP-B which demonstrated the highest fluctuations. This
shows that the internal fluctuation is stabilized by the binding of
NSP-B and therefore produces the potential pharmacological
properties. The RMSF for each complex is given in Figure 8.

Hydrogen bonding analysis

Hydrogen bonds, especially in the realm of protein-ligand
interactions, play a pivotal role in gauging the strength of binding
interactions. They constitute a crucial element in unraveling the
intricacies of diverse biological processes, understanding disease
mechanisms, and assessing how mutations influence protein
coupling and molecular signaling. Given the fundamental
significance of hydrogen bonding in these processes, we quantified
the number of hydrogen bonds in each trajectory across different time
points, providing insights into the dynamic nature of these vital
interactions. Considering the importance of hydrogen bonding
calculation in the binding strength of the protein-ligand complex, we
also calculated the average number of hydrogen bonds in each complex.
In the FGF6-NSP-B complex, the average number of hydrogen bonds
was calculated to be 62. In the FGF20-NSP-B complex, the average
number of hydrogen bonds was calculated to be 82. In the FGF22-NSP-

B complex, the average number of hydrogen bonds was 72, while in the
FGF23-NSP-B complex, the average number of hydrogen bonds was
55 in number. The hydrogen bond graphs are shown in Figures 9A–D.

Binding free energy calculation

Validation of the docking results can be performed by using the
binding free energy calculation approach which is an accurate, fast, and
computationally inexpensive approach. This approach has been widely
employed to determine the binding potential of various protein
complexes in different diseases. Therefore, considering the potential
of this approach, we also calculated the binding free energy using the
MM/GBSA andMM/PBSAmethods. Using the MM/GBSA andMM/
PBSA methods, the vdW was calculated to be −33.84 kcal/mol for the
FGF6-NSP-B complex, −39.07 kcal/mol for the FGF20-NSP-B
complex, −36.87 kcal/mol for the FGF22-NSP-B complex,
and −40.25 kcal/mol for the FGF23-NSP-B complex. On the other
hand, the electrostatic energy was calculated to be −5.76 kcal/mol for
the FGF6-NSP-B complex, −6.41 kcal/mol for the FGF20-NSP-B
complex, −3.87 kcal/mol for the FGF22-NSP-B complex,
and −4.17 kcal/mol for the FGF23-NSP-B complex. Using the MM/
GBSA approach, the total free binding energy was calculated to

FIGURE 8
Residues’ flexibility analysis of the NSP-B bound complexes.

FIGURE 9
Hydrogen bonding (H-bonds) analysis of the NSP-B bound complex with the selected hub genes. (A) shows the H-bonds for the NSP-B-
FGF6 complex, (B) shows the H-bonds for the NSP-B-FGF20 complex, (C) shows the H-bonds for the NSP-B-FGF22 complex while (D) show the
H-bonds for the NSP-B-FGF23 complex during the simulation.
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be −36.85 kcal/mol for the FGF6-NSP-B complex, −43.87 kcal/mol for
the FGF20-NSP-B complex, −37.42 kcal/mol for the FGF22-NSP-B
complex, −41.91 kcal/mol for the FGF23-NSP-B complex. The binding
free energy results using theMM/GBSA approach are given in Table 1.

The MM/PBSA approach was also used to estimate the binding
free energy and revealed similar results for vdW and electrostatic
energies as those found with MM/GBSA approach while variations in
the total binding free energy were observed. The total binding free
energy using the MM/PBSA approach revealed values of −30.05 kcal/
mol for the FGF6-NSP-B complex, −39.62 kcal/mol for the FGF20-
NSP-B complex, −34.89 kcal/mol for the FGF22-NSP-B complex,
while the FGF23-NSP-B complex demonstrated a value
of −37.18 kcal/mol. Overall, these results demonstrate that NSP-B
exhibits excellent pharmacological properties against FGF6, FGF20,
FGF22, and FGF23. This further supports the potential of NSP-B as a
promising anti-cancer therapy. The binding free energy results using
the MM/PBSA approach are summarized in Table 2.

Conclusion

This study investigated the anti-cancer potential of NSP-B using
a comprehensive strategy that combined network pharmacology,
quantum polarized ligand docking, molecular simulation, and
binding free energy calculation. The results of our study revealed
that FGF6, FGF20, FGF22, and FGF23 are crucial biomarker
proteins that NSP-B specifically targets for the therapy of cancer.
By utilizing a quantum-polarized docking method, we were able to
detect strong interactions between NSP-B and the critical hotspot
residues of these target proteins. In addition, molecular simulations
unveiled the stable dynamic behavior, favorable structural packing,
hydrogen bonding, and flexibility of residues within each complex.

The computed binding free energy findings highlight the
remarkable pharmacological characteristics of NSP-B in relation
to FGF6, FGF20, FGF22, and FGF23. These collective insights
strongly endorse the potential of NSP-B for further advancement
as an anti-cancer medication, highlighting its promising suitability
in furthering cancer treatment efforts. The study lacks
experimental validation, and the predicted interactions and
binding affinities need to be confirmed through laboratory
experiments. To enhance the credibility of the findings, future
research should aim to integrate computational results with
experimental validation to provide a more comprehensive
understanding of NSP-B’s anti-cancer potential.
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TABLE 1 Binding free energy calculation results using the MM/GBSA
approach. The results are provided in kcal/mol.

MM/GBSA

Parameters FGF6 FGF20 FGF22 FGF23

vdW −33.84 −39.07 −36.87 −40.25

Electrostatic Energy −5.76 −6.41 −3.87 −4.17

EGB 4.21 5.24 6.21 4.28

ESURF −1.46 −3.63 −2.89 −1.77

Total Binding Energy −36.85 −43.87 −37.42 −41.91

TABLE 2 Binding free energy calculation results using the MM/PBSA
approach. The results are provided in kcal/mol.

MM/PBSA

Parameters FGF6 FGF20 FGF22 FGF23

vdW −33.84 −39.07 −36.87 −40.25

Electrostatic Energy −5.76 −6.41 −3.87 −4.17

EPB 10.75 8.65 9.32 9.67

ENPOLAR −1.2 −2.79 −3.47 −2.43

Total Binding Energy −30.05 −39.62 −34.89 −37.18
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