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Objective: The aim of this study was to investigate the potential risk of drug-
induced liver injury (DILI) caused by the CDK4/6 inhibitors (CDK4/6is abemaciclib,
ribociclib, and palbociclib by comprehensively analyzing the FDA Adverse Event
Reporting System (FAERS) database. Moreover, potential toxicological
mechanisms of CDK4/6is-related liver injury were explored via drug–gene
network analysis.

Methods: In this retrospective observational study, we collected reports of DILI
associated with CDK4/6i use from the FAERS dated January 2014 to March 2023.
We conducted disproportionality analyses using the reporting odds ratio (ROR)
with a 95% confidence interval (CI). Pathway enrichment analysis and drug-gene
network analyses were subsequently performed to determine the potential
mechanisms underlying CDK4/6i-induced liver injury.

Results: We found positive signals for DILI with ribociclib (ROR = 2.60) and
abemaciclib (ROR = 2.37). DILIs associated with liver-related investigations, signs,
and symptomswere confirmed in all three reports of CDK4/6is. Moreover, ascites
was identified as an unlisted hepatic adverse effect of palbociclib. We isolated
189 interactive target genes linking CDK4/6 inhibitors to hepatic injury. Several
key genes, such as STAT3, HSP90AA1, and EP300, were revealed via protein-
protein analysis, emphasizing their central roles within the network. KEGG
pathway enrichment of these genes highlighted multiple pathways.

Conclusion: Our study revealed variations in hepatobiliary toxicity among the
different CDK4/6 inhibitors, with ribociclib showing the highest risk of liver injury,
followed by abemaciclib, while palbociclib appeared relatively safe. Our findings
emphasize the need for cautious use of CDK4/6 inhibitors, and regular liver
function monitoring is recommended for long-term CDK4/6 inhibitor use.
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1 Introduction

Cyclin-dependent kinase 4/6 inhibitors (CDK4/6is), such as
palbociclib, ribociclib, and abemaciclib, have been approved for
treating patients with hormone receptor-positive and human
epidermal growth factor receptor 2-negative breast cancer (Finn
et al., 2015; Cristofanilli et al., 2016; Finn et al., 2016; Hortobagyi
et al., 2016; Dickler et al., 2017; Goetz et al., 2017; Sledge et al., 2017;
Slamon et al., 2018; Tripathy et al., 2018; Turner et al., 2018; Johnston
et al., 2020; Royce et al., 2022). With a median progression-free survival
(PFS) exceeding 2 years in first-line metastatic patients, indicating long-
term use, evaluating the enduring safety of CDK4/6is in breast cancer
treatment is imperative (Gao et al., 2020; Harbeck et al., 2021).

While these drugs exhibit similar clinical efficacy, their adverse
event (AE) spectra differ markedly (Asghar et al., 2015; Desnoyers et al.,
2020; George et al., 2021). To assess the safety of CDK4/6is, it is essential
to evaluate their risk for rare adverse effects, such as drug-induced liver
injuries (DILIs), which can range from mild test result abnormalities to
severe liver failure (David and Hamilton, 2010; Bøttcher et al., 2019;
Desnoyers et al., 2020). Despite the low incidence of DILI, the severity of
this disease is concerning. Current adverse drug reaction (ADR) data for
CDK4/6is are predominantly from short-term clinical trials and cohort
studies and may not capture rare DILI events (Bøttcher et al., 2019;
Desnoyers et al., 2020). Therefore, collecting additional data from real-
world settings and extending the follow-up duration are necessary to
accurately measure DILI risk.

Spontaneous adverse event reporting, a valuable source of real-
world evidence, is facilitated by databases such as the Food and Drug
Administration Adverse Event Reporting System (FAERS) (Goldman,
1998; Toki and Ono, 2018). Disproportionality methods are often used
to automatically obtain signals about drug safety from large databases
(Montastruc et al., 2011). To determine whether DILI is associated with
CDK4/6is, we analyzed the FAERS database using disproportionality
analysis. To inform clinical practice, we compared signals for hepatic
injuries caused by different CDK4/6is.

The exploration of drug‒gene interactions has advanced our
understanding of drug toxicity (Hahn and Roll, 2021). Recent
studies have proposed combined analyses using FAERS and
drug–gene interaction data to enhance our knowledge of adverse
events (AEs) (Tanaka et al., 2021). However, the mechanisms
underlying CDK4/6i-induced liver injury are unclear. To address
this gap, we constructed a drug‒gene interaction network utilizing
datasets of human genes interacting with CDK4/6 inhibitors and
genes associated with liver injury. Functional enrichment analyses
were subsequently applied to determine the potential toxicological
mechanisms of CDK4/6 inhibitor-associated liver injury.

2 Materials and methods

2.1 FAERS data extraction and mining

We executed a retrospective observational pharmacovigilance study
using OpenVigil 2.1-MedDRA (http://openvigil.sourceforge.net), a
publicly available tool for pharmacovigilance analysis on the FAERS
database that does not require any special licenses or statistical
programs (Böhm et al., 2016). Our study collected adverse reaction
data from January 2014 to March 2023 and categorized the patients

according to the Medical Dictionary for Regulatory Activities
(MedDRA) classification system. We analyzed preferred terminology
(PT), high-level terminology (HLT), and standardized MedDRA
queries (SMQs) to comprehensively identify and classify ADRs
(Pearson et al., 2009; Vogel et al., 2020; MedDRA, 2022).

To improve signal detection, we applied eight SMQs (as shown
in Table 1) in the “Drug-related hepatic disorders - comprehensive
search” and 324 PTs at lower SMQs to classify adverse events related
to liver disorders.

2.2 Disproportionality analysis and
signal detection

Disproportionality analysis is a statistical method used in
pharmacovigilance to identify possible AEs (Montastruc et al., 2011).
For this study, it compares the frequency of reporting of a specific liver-
related AE associated with a CDK4/6 inhibitor with the frequency of
that event for all other drugs in the database. To determine whether
CDK4/6 inhibitors have a higher-than-expected rate of reported adverse
events, statistical metrics such as the reporting odds ratio (ROR) were
calculated, indicating a potential safety signal (Bate and Evans, 2009).

The analysis focused on reports that were marked as “major
suspicious” for the drugs “palbociclib,” “ribociclib,” and
“abemaciclib” in the FAERS database. To ensure accuracy, duplicate
reports were removed (as shown in Figure 1). The ROR method was
applied using OpenVigil 2.1-MedDRA-v24. To identify liver-related AE
signals associated with CDK4/6 inhibitors compared to other drugs in
the FAERS database. The criteria for positive AE signals included at
least three AE reports and a lower limit of the 95% confidence interval
(CI) of the ROR greater than 1 to minimize false positive signals
(Rothman et al., 2004; Bate and Evans, 2009; Montastruc et al., 2011).

2.3 Network analysis of CDK4/6is-hepatic
injury gene interactions

Network analysis is an interdisciplinary approach that delves
into the interactions between drugs and biological systems at the
network level. It integrates various types of biological data, including
drug-target interactions, protein‒protein interactions, gene
expression profiles, and disease associations, into comprehensive
network models (see Table 2 for definitions). In this study, biological
entities such as CDK4/6is, targets, genes, and proteins associated
with liver injury are depicted as nodes in the network, while their
interactions are represented as edges. By employing graph theory
and network analysis techniques to scrutinize the properties of these
networks, we aimed to predict the potential targets and pathways
involved in liver injury induced by CDK4/6is.

2.3.1 CDK4/6is- hepatic injury gene interaction
network dataset

We utilized SwissTargetPrediction (http://www.
swisstargetprediction.ch) and SuperPred (https://prediction.charite.de)
databases to identify genes linked with CDK4/6is (abemaciclib,
ribociclib, palbociclib). Genes associated with liver injury were
extracted from (https://www.genecards.org) and OMIM (https://
www.omim.org) databases using “liver injury” as the keyword.
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TABLE 1 Standardized MedDRA query (SMQ) terms for performing liver injury signal evaluation.

Code SMQ terms

20000008 Liver related investigations, signs and symptoms (SMQ)

20000013 Hepatic failure, fibrosis and cirrhosis and other liver damage-related conditions (SMQ)

20000009 Liver tumors of unspecified malignancy (SMQ)

20000010 Hepatitis, noninfectious (SMQ)

20000209 Liver tumors of unspecified malignancy (SMQ)

20000208 Liver malignant tumors (SMQ)

20000015 Liver-related coagulation and bleeding disturbances (SMQ)

20000012 Liver neoplasms, benign (incl cysts and polyps) (SMQ)

FIGURE 1
Flow chart of data extraction. A detailed description of the data extraction process for drug-induced liver injury (DILI) adverse events for CDK4/6
inhibitors in the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS).

TABLE 2 Definition of pharmacovigilance and pharmacogenetic terms.

Term Defination

FAERS FDA Adverse Event Reporting System, a database maintained by the U.S. Food and Drug Administration (FDA) that contains reports
of medication errors and adverse events

ROR Reporting Odds Ratio, a statistical tool frequently utilized in pharmacovigilance to detect signals in databases of reported adverse
events. It measures the degree of correlation between a specific drug and a particular adverse event in comparison to all other drugs
present in the database

Drug-gene interactions Interactions between drugs and specific genetic variants (polymorphisms) that influence drug metabolism, efficacy, or toxicity

Protein-protein interactions (PPI) Protein-protein interactions occur when two or more proteins physically bind within a biological system. Proteins rarely act
independently, but rather participate in complex networks of protein interactions

KEGG pathway analysis KEGG pathway analysis involves the use of the KEGG database to computationally analyze biological data and identify important
biological pathways
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Gene data underwent curation via the UniProt database. The
intersection of drug-associated genes and those related to liver injury
formed the basis for constructing the drug-gene network using
Cytoscape 3.7.2.

2.3.2 Protein-protein interaction network dataset
Protein-protein interactions were analyzed using the String (https://

string-db.org) database focusing on Homo sapiens species with a 0.
7 interaction score threshold. KEGG pathway analysis through the R
package “clusterProfiler (version 1.4.0)” provided insights into biological
pathways influenced by gene interactions, visualized using “ggplot2.”

This analysis aims to clarify the interaction between CDK4/
6 inhibitors and genes associated with hepatic injury, revealing
potential mechanisms underlying drug-induced liver damage.

3 Results

3.1 Descriptive analysis

A total of 84,462 records associated with CDK4/6is were
extracted, revealing 3,470 records (4.1%) linked to DILI AEs.
Table 3 outlines patient characteristics relevant to CDK4/6i-
induced DILI. The table demonstrates that palbociclib exhibited
the highest number of DILI-associated reports, followed by
ribociclib and abemaciclib. Notably, hospitalization was the
primary outcome among patients affected by DILI. The median
onset of DILI occurred approximately 30 days after treatment
initiation, with distinct median onset durations observed: 48 days
for palbociclib, 32 days for abemaciclib, and 42 days for ribociclib.
Intriguingly, during the data deduplication process, 101 patients
experienced DILI due to various CDK4/6 inhibitors.

3.2 Signal detection of DILI-related AEs in
the FAERS database

Signal detection at the SMQ and PT levels revealed associations
between CDK4/6 inhibitors and DILI (as shown in Table 4). A
comprehensive search was performed using the SMQ term “Drug-
related hepatic disorders.” Abemaciclib (ROR = 2.37) and ribociclib
(ROR = 2.60) were shown to be associated with increased incidences of
DILI, while palbociclib (ROR = 0.70) did not significantly affect the
incidence of DILI.

After identifying signals in 8 lower-level SMQ terms (Table 1;
Figure 2), all the CDK4/6 inhibitors were found to be associated with
liver-related signs and symptoms. Abemaciclib and ribociclib were
specifically correlated with hepatic failure, fibrosis, cirrhosis, and
other liver damage-related conditions, while ribociclib was associated
with unspecified liver tumors.

The results of AE signal detection under PT conditions are shown
in Table 5. Ribociclib had positive signals in 36 PT terms, including
196 patients with elevated alanine aminotransferase (ROR = 3.70) and
183 patients with increased aspartate aminotransferase (ROR = 3.99).
Abemaciclib had 19 positive signals, primarily related to hepatic
function abnormalities (ROR = 8.29). Conversely, palbociclib
exhibited seven positive signals, including ascites (ROR = 1.94) in
202 patients and hypertransaminasemia (ROR = 2.58). Moreover,
through data mining, several previously unreported adverse events
have been discovered that are not mentioned in the CDK4/6 inhibitor
labels. These included ascites (N = 323, 6.74%), jaundice (N = 79,
1.65%), hepatomegaly (N = 28, 0.58%), hepatic neoplasm (N = 21,
0.43%), hepatic cytolysis (N = 12, 0.25%), hepatic cirrhosis (N = 11,
0.22%), and hepatic cysts (N = 8, 0.17%).

3.3 Drug‒hepatic injury–related gene
interaction network analysis

After deduplicating the database, we identified 395 target genes
associated with abemaciclib, ribociclib, and palbociclib, as well as
2,697 genes linked to liver injury. By intersecting these gene sets, we
isolated 189 interactive target genes representing the intersection of
CDK4/6 inhibitor targets and genes involved in hepatic injury. The

TABLE 3 Characteristics of reports on CDK4/6i-associated DILIs in the
FAERS database (January 2014 to March 2023).

Palbociclib Abemaciclib Ribociclib

Gender

Female (%) 1,625 (91.39) 401 (87.94) 1,156 (93.53)

Male (%) 29 (1.63) 4 (0.88) 16 (1.29)

Missing (%) 124 (6.97) 51 (11.18) 64 (5.18)

Age

N (Missing) 1,475 (303) 273 (183) 710 (526)

Median (q1, q3) 63 (54.70) 62 (54.70) 59 (50.68)

Year of report

Before 2019 (%) 922 (51.84) 85 (18.64) 290 (23.46)

2020 (%) 223 (12.54) 97 (21.27) 214 (17.31)

2021 (%) 247 (13.89) 95 (20.83) 259 (20.95)

2022 (%) 292 (16.42) 134 (29.39) 340 (27.51)

2023 (%) 94 (5.29) 45 (9.87) 133 (10.76)

Reported by

Consumers (%) 606 (34.08) 234 (51.32) 505 (40.86)

Health
Professionals (%)

1,148 (64.57) 210 (46.05) 719 (58.17)

Unknown (%) 24 (1.35) 12 (2.63) 12 (0.97)

Outcome, n (%)

Life-Threatening 38 (2.14) 24 (5.26) 86 (6.96)

Hospitalization 430 (24.18) 141 (30.92) 371 (30.02)

Disability 8 (0.45) 6 (1.32) 18 (1.46)

Death 320 (18.00) 55 (12.06) 205 (16.59)

Other 596 (33.52) 139 (30.48) 373 (30.16)

Missing 386 (21.71) 91 (19.96) 183 (14.81)

Time-to-onset, days

N (Missing) 509 (1,269) 159 (297) 491 (745)

Median (q1, q3) 48 (14.146) 32 (13.63) 42 (14.120)
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intersecting genes were subjected to protein‒protein interaction
(PPI) prediction via the String database (https://string-db.org),
facilitating the construction of a protein interaction network
using Cytoscape 3.7.2 software. The results are shown in
Figure 3. Upon topological analysis, key targets (the centermost
circle of nodes) of the interaction were revealed, including STAT3,
HSP90AA1, EP300, HIF1A, ESR1, PIK3CA, NFKB1, STAT1,
PIK3R1, and CREBBP, revealing their centrality within the
network. In addition, we found that CCND1, SIRT1, and PPARG
are potential targets for interaction.

To better understand the involvement of CDK4/6 inhibitor-
induced liver injury target genes in biological signaling pathways, we
conducted KEGG pathway enrichment analysis. We focused on the top
20 pathways for comprehensive mapping, as illustrated in Figure 4. The
analysis revealed enrichment of genes interacting with CDK4/6is in
various pathways, notably, central carbon metabolism in cancer, the
FoxO signaling pathway, insulin resistance, the HIF-1 signaling
pathway, cellular senescence, microRNAs in cancer, PD-L1

expression and the PD-1 checkpoint pathway in cancer, the Toll-like
receptor signaling pathway, apoptosis, small cell lung cancer, and the
PI3K-Akt signaling pathway. These findings strongly suggest the
potential association of CDK4/6 inhibitors with the development of
liver injury through modulation of these pathways.

4 Discussion

With the expansion of CDK4/6is for the treatment of breast
cancer, the balance between efficacy and safety has become critical.
Our study revealed the safety of ribociclib, abemaciclib and
palbociclib, emphasizing the differences in the relative risk of
DILI. Ribociclib and abemaciclib demonstrated significant signs
of hepatobiliary toxicity, whereas palbociclib appeared relatively
safe. Our findings are consistent with previous randomized
controlled trials in which hepatobiliary toxicity was more
prominent in patients treated with ribociclib and abemaciclib

TABLE 4 Disproportionality analyses for CDK4/6i-related DILIs.

CDK4/6 inhibitor Number of DILIs reports ROR (95%CI)

Palbociclib 2,256 0.70 (0.67, 0.73)

Abemaciclib 587 2.37 (2.18, 2.58)

Ribociclib 1949 2.60 (2.48, 2.72)

ROR, reporting odds ratio; 95% CI, 95% confidence interval.

FIGURE 2
Positive signal distribution for CDK4/6 inhibitors using the standardized MedDRA queries (SMQs). (A) Liver-related investigations, signs and
symptoms (SMQ); (B) hepatic failure, fibrosis and cirrhosis and other liver damage-related conditions (SMQ); (C) liver tumors of unspecified malignancy
(SMQ). ROR=Reporting odds ratio, statistically positive signals with a lower limit of the 95% confidence interval of ROR greater than 1. Negative signals are
not displayed in the figure.
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TABLE 5 Positive signal strength for liver injuries associated with CDK4/6is based on PT levels of FAERS.

High-level terminology (HLT) Preferred
terminology (PT)

Palbociclib Abemaciclib Ribociclib

N ROR
(95% CI)

N ROR
(95% CI)

N ROR
(95% CI)

Cholestasis and jaundice Hyperbilirubinaemia — — — — 16 1.91 (1.17, 3.13)

Jaundice — — 20 2.51 (1.62, 3.90) 59 2.44 (1.89, 3.15)

Hepatic and hepatobiliary disorders NEC Hepatic cyst — — — — 8 2.78 (1.39, 5.57)

Hepatic lesion 30 2.06 (1.44, 2.95) — — 42 12.13 (8.95, 16.45)

Hepatic mass — — — — 26 17.44 (11.83,
25.71)

Hepatobiliary disease — — — — 7 15.01 (7.12, 31.68)

Liver disorder 192 1.28 (1.11, 1.48) 43 3.65 (2.71, 4.93) 107 2.99 (2.47, 3.61)

Hepatic enzymes and function abnormalities Hepatic function abnormal — — 79 8.29 (6.65, 10.35) — —

Hypertransaminasaemia 39 2.58 (1.88, 3.54) 7 5.85 (2.79, 12.29) 14 3.85 (2.28, 6.51)

Hepatic failure and associated disorders Hepatic failure — — 30 3.50 (2.44, 5.00) 52 1.99 (1.52, 2.61)

Hepatic fibrosis and cirrhosis Hepatic cirrhosis — — 11 2.28 (1.26, 4.11) — —

Hepatobiliary function diagnostic procedures Alanine aminotransferase abnormal — — — — 9 5.82 (3.02, 11.20)

Alanine aminotransferase increased — — 38 2.18 (1.58, 2.99) 196 3.70 (3.22, 4.26)

Aspartate aminotransferase abnormal — — — — 4 3.78 (1.42, 10.09)

Aspartate aminotransferase increased — — 36 2.38 (1.71, 3.30) 183 3.99 (3.45, 4.61)

Bilirubin conjugated increased — — — — 5 2.47 (1.03, 5.95)

Blood bilirubin abnormal — — — — 8 8.25 (4.11, 16.54)

Blood bilirubin increased — — 23 2.95 (1.96, 4.45) 74 3.13 (2.49, 3.93)

Gamma-glutamyltransferase
abnormal

— — — — 4 9.13 (3.41, 24.45)

Gamma-glutamyltransferase increased — — 17 2.58 (1.60, 4.15) 81 4.05 (3.25, 5.04)

Hepatic enzyme abnormal 39 2.33 (1.70, 3.20) 4 3.03 (1.13, 8.07) 21 5.24 (3.41, 8.05)

Hepatic enzyme increased — — 38 2.21 (1.61, 3.04) 177 3.40 (2.93, 3.94)

Liver function test abnormal — — — — 61 2.25 (1.75, 2.90)

Liver function test decreased — — — — 3 11.73 (3.76, 36.64)

Liver function test increased 119 1.91 (1.59, 2.29) 34 6.93 (4.95, 9.70) 119 8.01 (6.69, 9.60)

Transaminases abnormal — — — — 3 6.57 (2.11, 20.44)

Transaminases increased — — 12 1.93 (1.09, 3.40) 78 4.13 (3.31, 5.16)

Hepatobiliary neoplasms benign Haemangioma of liver — — — — 3 3.25 (1.05, 10.10)

Hepatobiliary neoplasms malignancy
unspecified

Hepatic neoplasm — — — — 21 7.57 (4.93, 11.63)

Hepatobiliary signs and symptoms Hepatic pain 27 1.81 (1.24, 2.64) — — 19 5.31 (3.39, 8.34)

Hepatomegaly — — — — 28 3.15 (2.18, 4.57)

Hepatocellular damage and hepatitis NEC Drug-induced liver injury — — 31 4.68 (3.29, 6.66) 34 1.68 (1.20, 2.36)

Hepatic cytolysis — — 12 4.79 (2.72, 8.45) — —

Hepatitis — — — — 42 1.98 (1.46, 2.68)

Hepatitis acute — — — — 12 2.20 (1.25, 3.87)

(Continued on following page)
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TABLE 5 (Continued) Positive signal strength for liver injuries associated with CDK4/6is based on PT levels of FAERS.

High-level terminology (HLT) Preferred
terminology (PT)

Palbociclib Abemaciclib Ribociclib

N ROR
(95% CI)

N ROR
(95% CI)

N ROR
(95% CI)

Hepatitis toxic — — — — 9 3.88 (2.01, 7.46)

Hepatotoxicity — — 35 6.08 (4.36, 8.47) 95 5.43 (4.44, 6.65)

Liver injury — — 15 2.98 (1.79, 4.94) 40 2.61 (1.91, 3.56)

Peritoneal and retroperitoneal disorders Ascites 202 1.94 (1.69, 2.22) 17 2.06 (1.28, 3.32) 104 4.16 (3.43, 5.05)

NEC, not elsewhere classified; ROR, reporting odds ratio; CI, confidence interval; N, number of reports; statistically significant (lower limit of the 95% CI>1 and N>3).

FIGURE 3
Protein-protein interaction network by Cytoscape. The size and color of nodes in the network represent the degree value, indicating the number of
interactions each protein has with other proteins. Larger nodes indicate higher degrees, suggesting greater centrality in biological processes. Edge
thickness reflects the magnitude of the combined score, with thicker edges indicating higher combined scores. A higher combined score suggests a
stronger likelihood of genuine interactions between proteins, providing insights into the network’s overall connectivity and functional relevance.
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than in controls, making our study the first to comprehensively
compare the risk of liver injury with that of these CDK4/6is
(Johnston et al., 2020; Onesti and Jerusalem, 2021; Lu et al., 2022).

There is a potential association between hepatic and biliary toxicity
and factors such as lipolysis, mitochondrial injury, metabolism and
hepatic transporters (Gu andManautou, 2012). The high lipophilicity of
abemaciclib may be the factor responsible for its association with more
hepatic adverse effects than palbociclib (Chen et al., 2016). Ribociclib
inhibits hepatic transporters, such as bile salt efflux pumps (BSEPs), and
the basal outflow system and may therefore induce additional DILI
signals (Rana et al., 2019; Jetter and Kullak-Ublick, 2020). Moreover,
palbociclib lacks BSEP inhibition and mitochondrial toxicity and
therefore has a relatively low hepatotoxicity signal (Rana et al., 2019;
Raschi and De Ponti, 2019).

Notably, our study revealed previously undetected hepatotoxic
adverse events associated with CDK4/6is. While clinical trials have

focused on laboratory-sensitive AEs, spontaneous reporting data
have provided essential real-world insights, emphasizing the
significance of vigilant pharmacovigilance for identifying rare
adverse reactions (FDA, 2009; Lucas et al., 2022). AE analysis of
palbociclib revealed liver-related signals (ascites, liver disorders,
increased liver function), consistent with increased risk in new
and long-term users (Beachler et al., 2021; Finn et al., 2021).
However, palbociclib labels lack specific liver risk warnings, and
no recommended liver function tests may pose safety risks during
prolonged use. Healthcare providers should consider regular liver
function monitoring for long-term palbociclib patients.

The integration of pharmacogenetic network analysis revealed
important insights into the underlying molecular mechanisms
involved in CDK4/6is-induced DILI. The constructed protein
interaction network highlighted STAT3, HSP90AA1 and
EP300 as key players, suggesting that they play important roles

FIGURE 4
KEGG pathway enrichment analysis. Each bubble represents a specific pathway. The horizontal axis represents the number of genes enriched in
each pathway, while the size of the bubbles indicates the extent of enrichment for the corresponding pathway. Color indicates significance, with a
gradient from blue to red representing decreasing p-values.
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in mediating the interaction between CDK4/6is and liver injury
pathways (Gao et al., 2012; Jiao et al., 2023). The association of
STAT3 with hepatic inflammation and fibrosis is particularly
noteworthy, providing a further avenue for exploring the effects
of CDK4/6is on these processes. It is known that activating hepatic
STAT3 can prevent inflammation by inhibiting the
proinflammatory signaling of STAT1 (Gao et al., 2012). However,
it may also promote inflammation by inducing hepatocyte-derived
acute-phase proteins. In terms of fibrosis, inhibiting components of
hepatic STAT3 activation has shown promise in attenuating hepatic
fibrosis, suggesting a complex interplay in liver pathophysiology
(Zhao et al., 2021; Lee and Hoe, 2023).

HSP90AA1, a molecular chaperone involved in protein folding
and stabilization, is potentially implicated in alcoholic hepatitis and
cirrhosis (Choudhury et al., 2020; Costa et al., 2020). EP300, a
histone acetyltransferase, has been linked to multiorgan fibrosis
through the TGFβ pathway, suggesting epigenetic regulation of
fibrogenesis and progression (Rubio et al., 2023). These findings
provide avenues for future studies of the precise mechanisms by
which CDK4/6 inhibitors influence these key molecular players in
liver pathophysiology.

SIRT1 (Sirtuin 1) is a member of the Sirtuin family and acts as a
nicotinamide adenine dinucleotide (NAD)-dependent deacetylase.
It plays an important role in various physiological processes,
including metabolism and aging (Rahman and Islam, 2011;
Martins, 2016; Martins, 2017a; Martins, 2017b). Our investigation
revealed that SIRT1 could be one of the proteins that interact with
CDK4/6 inhibitors leading to liver injury. Given its integral role in
liver function, prior studies have linked the downregulation of
SIRT1 to the onset and progression of non-alcoholic fatty liver
disease (NAFLD) (Colak et al., 2011; Martins, 2017c). Consequently,
we posited that hepatic SIRT1 activity might be attenuated by
CDK4/6 inhibitors, potentially precipitating hepatotoxicity.
However, no empirical study has yet confirmed the impact of
CDK4/6 inhibitors on SIRT1 activity. As a result, further
empirical investigations are required to validate this assumption.

Understanding the differential risks and underlying
mechanisms of CDK4/6 inhibitor-induced liver injury has pivotal
clinical implications for treatment decisions and drug development.
Our findings pave the way for targeted interventions, biomarker
discoveries, and personalized treatment strategies aimed at
mitigating hepatotoxicity risks associated with CDK4/6 inhibitors.

Despite the advantages of utilizing the FAERS database and data
mining techniques in our study, there are inherent limitations (self-
reporting nature of the database, incomplete data and bias) (Alomar,
2014). Second, the database included only reported cases of AEs, and
the denominator for the incidence of AEs was unknown. Finally,
FAERS-based disproportionality analyses cannot indicate causality or
quantify risk; rather, they can only show signal strength and statistical
associations without pharmacological mechanism studies. Although
our study investigated the potential mechanisms of liver injury caused
by CDK4/6is through the examination of drug–gene networks, further
research is necessary to validate and expand upon our findings.

5 Conclusion

In conclusion, our study sheds light on the differential risk of
drug-induced liver injury among CDK4/6 inhibitors, unravels
potential mechanistic insights through drug–gene network
analysis, and highlights central molecular targets. These findings
hold significant clinical implications and pave the way for further
investigations, potentially guiding the development of safer and
more effective therapies for breast cancer patients.
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