
AMFGNN: an adaptive multi-view
fusion graph neural network
model for drug prediction

Fang He1,2,3,4†, Lian Duan1,3,4,5†, Guodong Xing1,3,4,5†,
Xiaojing Chang1,3,4,5, Huixia Zhou1,3,4,5* and Mengnan Yu1,3,4,5*
1Faculty of Pediatrics, The Chinese PLA General Hospital, Beijing, China, 2Department of Child Growth
and Development Clinic, The Seventh Medical Center of PLA General Hospital, Beijing, China, 3National
Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China,
4Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China, 5Department of Pediatric Surgery, The
Seventh Medical Center of PLA General Hospital, Beijing, China

Introduction: Drug development is a complex and lengthy process, and drug-
disease association prediction aims to significantly improve research efficiency
and success rates by precisely identifying potential associations. However,
existing methods for drug-disease association prediction still face limitations
in feature representation, feature integration, and generalization capabilities.

Methods: To address these challenges, we propose a novel model named
AMFGNN (Adaptive Multi-View Fusion Graph Neural Network). This model
leverages an adaptive graph neural network and a graph attention network to
extract drug features and disease features, respectively. These features are then
used as the initial representations of nodes in the drug-disease association
network to enable efficient information fusion. Additionally, the model
incorporates a contrastive learning mechanism, which enhances the similarity
and differentiation between drugs and diseases through cross-view contrastive
learning, thereby improving the accuracy of association prediction. Furthermore,
a Kolmogorov-Arnold network is employed to perform weighted fusion of
various final features, optimizing prediction performance.

Results: AMFGNN demonstrates a significant advantage in predictive
performance, achieving an average AUC value of 0.9453, which reflects the
model‘s high accuracy in prediction.

Discussion: Cross-validation results across multiple datasets indicate that
AMFGNN outperforms seven advanced drug-disease association prediction
methods. Additionally, case studies on Hepatoblastoma, asthma and
Alzheimer‘s disease further confirm the model‘s effectiveness and potential
value in real-world applications.
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1 Introduction

Since the outbreak of the COVID-19 pandemic, the global healthcare system has faced
unprecedented challenges (Vaz et al., 2023; Meng et al., 2024), making the need for safe and
effective treatment strategies more urgent than ever. Drug repositioning has attracted
widespread attention because of its ability to rapidly identify new therapeutic options,
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effectively reducing both the cost and timeline of new drug
development (Pushpakom et al., 2019; Tang et al., 2023). Recent
breakthroughs in high-throughput screening technologies and
continuous improvements in computational methods have
significantly enhanced the efficiency and accuracy of computer-
aided drug repositioning in identifying potential drug-disease
associations (Singh et al., 2024; Zeng et al., 2024).

In the field of drug-disease association (DDA) prediction,
research methods have gradually evolved from traditional
machine learning models to deep learning techniques (Lavecchia,
2015). Traditional machine learning-based DDA prediction
identifies potential drug-disease associations through data
modeling and feature extraction, and the application of diverse
algorithms has further expanded the depth of research in this area.
For example, Gao et al. (2022a) combined similarity fusion
technology with Laplacian regularization algorithms to accurately
predict new indications for drugs and diseases; Yang et al. (2021)
developed the MKDGRLS model, employing a multi-kernel
approach and Laplacian regularization to handle complex
interactions and optimizing model parameters through
alternating least squares; additionally, Zhang et al. (2020)
proposed the Bayesian inductive matrix completion (DRIMC)
method, which integrates features from multiple data sources for
analysis in latent space, effectively predicting new drug applications;
Niu et al. (2024) introduced the SRR-DDI model, which utilizes a
self-attention mechanism to represent drug substructures finely and
incorporates drug similarity features, significantly enhancing the
stability and performance of drug interaction predictions.

Compared to traditional methods, drug-disease association
(DDA) prediction methods based on graph neural networks
(GNNs) have made significant breakthroughs in recent years
(Zhang et al., 2021; Meng et al., 2024; Zeng et al., 2024). Their
unique advantage lies in the ability of GNNs to effectively process
multimodal data and model complex network structures, a
characteristic that has also gained attention in other fields (Liu
et al., 2023). For example, Gao et al. (2022b) proposed the CTST
model, which constructs a heterogeneous network of drugs and
diseases, using graph convolutional autoencoders to encode shared
and unique features of nodes. The model also integrates features
through an attention mechanism, significantly improving prediction
accuracy. Zhao et al. (2022a) developed the HINGRL model, which
leverages a heterogeneous information network encompassing drug-
disease and protein-protein interactions, enhances feature
recognition through graph representation learning, and combines
a random forest algorithm for precise drug indication prediction.
Yang et al. (2024) designed the GCNGAT model, which integrates
graph convolutional networks with graph attention networks,
particularly suitable for drug repositioning. This model analyzes
drug-disease associations by constructing heterogeneous graphs and
extracts key interaction features in multi-disease contexts.
Additionally, Liu et al. (2024) proposed the AMDGT framework,
which uses a dual-graph transformer technique to integrate
similarity data and complex biochemical information, deeply
merging drug and disease features to efficiently predict potential
drug associations. Wang et al. (2025) proposed an automatic
collaborative learning framework that integrates neighbor
interaction metrics with the message-passing mechanism of
Graph Neural Networks to enhance prediction accuracy.

Although machine learning and deep learning methods have
made significant progress in drug-disease association (DDA)
prediction, existing approaches still face challenges in handling
complex, multidimensional data and efficiently integrating
information from multiple perspectives. To address this issue, we
propose an Adaptive Multi-view Fusion Graph Neural Network
(AMFGNN) model. The model first constructs drug-drug similarity
networks and disease-disease similarity networks, using graph
attention networks to extract drug and disease features, which
are then used as initial features for the downstream drug-disease
association network nodes. To further improve the accuracy of drug-
disease association prediction, the model incorporates a contrastive
learning mechanism that enhances the similarity and dissimilarity
between drugs and diseases through cross-view contrastive learning.
The final features are predicted using a Kolmogorov-Arnold
Networks (KAN), further improving the prediction accuracy of
drug-disease associations. By integrating multi-source
heterogeneous information and achieving adaptive weighted
fusion, the model flexibly handles complex drug and disease data,
dynamically adjusting the weights of different information sources,
thereby improving the accuracy, stability, and generalization of
predictions. This approach establishes deeper connections
between multidimensional data and multi-view information,
providing stronger support for drug discovery and
personalized medicine.

2 Materials and methods

In this section, we first describe the benchmark datasets used in
the proposed model. Next, we introduce the AMFGNN model
framework, which consists of three main components. As shown
in Figure 1, the framework includes: (i) construct similarity network,
(ii) feature extraction and fusion module, and (iii)
prediction module.

2.1 Dataset

To comprehensively evaluate the performance of the proposed
model, we adopted three benchmark datasets: Gottlieb et al. (2011),
Luo et al. (2016), and Liang et al. (2017), which are widely used in
drug repositioning research. Fdataset is a validated dataset
containing 1,632 known drug-disease associations, involving
468 drugs and 298 diseases, providing a reliable reference
standard for drug repositioning studies. Cdataset includes
663 drugs, 409 diseases, and 2,352 drug-disease interaction pairs,
with the data first appearing in Luo et al.’s study. LRSSL consists of
3,051 validated drug-disease associations, involving 763 drugs and
681 diseases, and has been widely applied in drug
repositioning research.

2.2 Graph attention networks

In this study, Graph Attention Network (GAT) (Veličković
et al., 2017) is introduced for drug-disease prediction tasks.
Graph Neural Networks (GNNs) (Wu et al., 2020) learn
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interactions between nodes and edges in a graph to perform tasks
such as node classification, graph classification, and link prediction.
GAT extends this by assigning different weights to each node and its
neighbors using an attention mechanism. These weighted features
are aggregated to learn the node’s embedding representation.We use
a three-layer twin GAT network to extract features for both drugs
and diseases. Taking the drug similarity network as an example, the
drug similarity graph consists of a feature matrix Fa and an
adjacency matrix Aa. To construct the adjacency matrix Aa, we
use a k-nearest neighbors (KNN) algorithm to identify the K most
similar drugs to a drug ai, and establish connections. For drugs that
do not belong to the K nearest neighbors, no connection is made.

In GAT, the attention mechanism computes the importance of a
drug aj for its neighboring drug ai.Specifically, the attention
coefficient between drug ai and its neighbor aj is calculated as
follows Equation 1:

α � exp LeakyReLU Whi‖Whj( )( )∑k∈Ne ai( )exp LeakyReLU Whi‖Whk( )( ) (1)

Here,W is the learnable weight matrix, and hi and hj represent
the feature vectors of drugs ai and aj, respectively. The LeakyReLU
function serves as the activation function, and the attention
coefficient αij represents the importance of neighboring drug
node aj to the central drug node ai. A higher value of αij
indicates a greater contribution from the features of node aj to
updating the representation of node ai. Through this mechanism,
GAT effectively identifies and emphasizes connections in the drug
similarity network that carry higher predictive significance, thus
enhancing the quality of drug embedding representations and
ultimately improving the accuracy of drug-disease association
predictions.

After computing the attention coefficients, the feature vector of
drug ai is updated by aggregating the features of all its neighboring

drugs weighted by the attention coefficients. The updated feature
vector ĥi is calculated as follows Equation 2:

ĥi � σ ∑
j∈Ne ai( )

αWhj⎛⎝ ⎞⎠ (2)

where σ is the activation function, and LeakyReLU is used. To
capture the complex relationships between nodes, GAT introduces a
multi-head attention mechanism that learns multiple sets of
attention weights. The multi-head attention calculation is
expressed as Equation 3:

ĥi � ‖Kk�1σ ∑
j∈Ne ai( )

αkijW
khj⎛⎝ ⎞⎠ (3)

Here,K is the number of attention heads, and αkij represents the
weight of the k-th attention head between drug ai and drug aj.Wk is
the weight matrix for the k-th attention head.

The multi-head attention mechanism allows GAT to capture
diverse relationships between drugs from multiple perspectives,
alleviating information bottlenecks and enhancing the model’s
generalization ability. To integrate information from multiple
heads, GAT averages the outputs of the different heads in the
final layer, providing a more comprehensive and stable
embedding representation Equation 4:

ĥi � 1
K

∑K
k�1

ĥi
k

(4)

Through this multi-head attention mechanism, GAT can more
effectively capture the complex dependencies between drugs and
generate accurate drug embeddings. In this study, both the drug
similarity and disease similarity networks employ a three-layer GAT
structure to improve the accuracy of drug-disease prediction and the
model’s expressive power.

FIGURE 1
Illustration of the AMFGNN. The process begins with the construction of a similarity network, followed by feature extraction and fusion using the
Graph Attention Network (GAT) and Adaptive Fusion Layer with contrastive learning. Finally, the prediction module employs Kolmogorov-Arnold
Networks (KAN) for the final prediction.

Frontiers in Pharmacology frontiersin.org03

He et al. 10.3389/fphar.2025.1543966

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1543966


2.3 Adaptive fusion

The core idea of the Graph Attention Network (GAT) is to
update node features based on the importance weights of
neighboring nodes. However, as the depth of the GAT network
increases, an issue of over-smoothing may arise, where the features
of all nodes in the graph become too similar, severely affecting the
model’s prediction accuracy. To address this issue, we introduce
residual connections to ensure that GAT can adaptively retain the
original features while updating node features. The specific
operation is as follows Equations 5-8:

R H0
as( ) � Elu WaH

0
as + ba( ) (5)

R H0
ds( ) � Elu WdH

0
ds + bd( ) (6)

Rad � R H0
as( );R H0

ds( )( ) (7)
R H0

ad( ) � Elu WadH
0
ad + bad( ) � Elu Wad H0

as;H
0
ds( ) + bad( )

� Ra;Rd( ) (8)

Here, R(·) denotes the residual connection operation,H0
as

denotes the initial feature representation of the drug similarity
network (i.e., the pre-processed embedding derived from the
original drug feature matrix Fa), while H0

ds represents the initial
feature representation of the disease similarity network (i.e., the pre-
processed embedding derived from the original disease feature
matrix Fd). By introducing residual connections, the model
adaptively preserves initial feature information, effectively
addressing the issue of over-smoothing that typically occurs as
the depth of the network increases. H0

ad corresponds to the
feature of the drug-disease association view. The weight matrix is
represented by Wk, where k ∈ a, d, ad{ }, bk is the bias term, and Rk

denotes the residual result. The activation function used is the
Elu function.

We fuse the residual connections of different views with the
features from the previous layer, as shown in the following
Equations 9-11:

H 1( )
a � ϵ1Hl

as + 1 − ϵ1( )Ra (9)
H 1( )

d � ϵ2Hl
ds + 1 − ϵ2( )Rd (10)

Had � ϵ3Hl
ad + 1 − ϵ3( )Rad � H 2( )

a ;H 2( )
d( ) (11)

Here, H(q)
a denotes the feature vector of the q-th view of the

drug,Hl
as is the feature representation of the drug similarity

modality in the final layer of GAT, and ϵi is an adaptive variable
learned during training, used to control the fusion weight between
residual and original features.

To effectively integrate multi-view features of drugs and
diseases, we adopt an adaptive feature fusion strategy Equations
12, 13:

Ha � η1H
1( )
a + 1 − η1( )H 2( )

a ;H 1( )
a ;H 2( )

a[ ] (12)
Hd � η2H

1( )
d + 1 − η2( )H 2( )

d ;H 1( )
d ;H 2( )

d[ ] (13)

Here,Ha is the drug embedding after multi-view fusion, Hd is
the disease embedding after multi-modal fusion, and ηi is the
adaptive variable learned during model training. Finally, we input
the fused drug embeddingMi and disease embedding Dj into KAN
to compute the predicted potential connection Ŝij Equation 14.

Ŝij � MT
i ·Dj (14)

During training, we use the cross-entropy loss function to
minimize the error between the model’s predictions and the true
labels Equation 15:

LCE � − ∑
i,j( )∈x+∪x−

Sij ln Ŝij + 1 − Sij( )ln 1 − Ŝij( )[ ] (15)

Here, x+ and x− represent the positive and negative sample sets
in the dataset, respectively, and Sij is the true association score
between drug ai and disease dj. To further improve the model’s
prediction accuracy and constrain the parameter updates across
modalities, we introduce multi-view contrastive learning as a
regularization term. This method reduces the distance between
features of the same sample from different views, while
increasing the distance between features of different samples
from different views, thereby enhancing the model’s feature
representation ability. The objective function is defined as follows
Equation 16:

dis x, x+( )≪d x, x−( ) (16)

For each drug sample ai, the contrastive learning loss function is
defined as Equation 17:

LMC � 1
N

∑N
j�1

dis m1
i , m

2
i( ) − dis m1

i , m
2
j( )( ) (17)

Here, N is the total number of drug samples,mp
i represents the

embedding of drug sample ai in the p-th modality, and d (u, v) is the
distance function calculated using cosine similarity Equation 18:

dis u, v( ) � − uTv

‖u‖ · ‖v‖ (18)

Similarly, for each disease sample dj, the loss function is defined
as Equation 19:

LDC � 1
N

∑N
k�1

dis d1
j , d

2
j( ) − dis d1

j , d
2
k( )( ) (19)

Finally, the overall loss function of the model is defined as
Equation 20:

L � LCE + ωMCLMC + ωDCLDC (20)

2.4 Kolmogorov-Arnold Networks

In the drug repositioning task, to improve the parameter
efficiency of the model, we modified the traditional multilayer
perceptron (MLP) structure by replacing the final MLP module
with Kolmogorov-Arnold Networks (KAN). KAN introduces
learnable activation functions, replacing traditional linear weight
matrices, which significantly enhance the network’s expressive
power while maintaining or even improving model performance.
The traditional MLP captures complex mappings through linear
transformations and fixed nonlinear activation functions, which
often limits model flexibility and increases parameter
redundancy. Mathematically, an MLP is expressed as Equation 21:
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MLP Z( ) � WK−1◦σ◦WK−2◦σ . . .◦W1◦σ◦W0( )Z (21)
Where Z is the input vector,Wk is the weight matrix, and σ is the
activation function. Although effective in learning complex
functions, the fixed linear transformations in MLPs may restrict
the adaptability of the network. KAN, in contrast, utilizes learnable
nonlinear activation functions instead of fixed linear weight
matrices, providing greater flexibility in capturing complex
relationships between input features. Specifically, each connection
in KAN is modeled by a combination of a parametric basis function
and B-spline functions Equation 22:

f x( ) � f x1, . . . , xn( ) � ∑2n+1
q�1

Φq ∑n
p�1

ϕq,p xp( )⎛⎝ ⎞⎠ (22)

Each layer’sΦi consists of a set of learnable activation functions,
represented as Equation 23:

Φ � ϕq,p{ }, p � 1, 2, . . . , nin, q � 1, 2, . . . , nout (23)

We assume that a KAN can be expressed as [n0, n1, . . . , nL] ni
represents the number of neurons in the i-th layer. We use (l, i) to
denote the i-th neuron in the l-th layer and X(l,i) to represent the
activation value of the neuron (l, i). Between the l-th and (l + 1)-th
layers, there are nl × nl+1 activation functions: the activation
function connecting (l, i) and (l + 1, i) is represented as Equation 24:

ϕl,j,i, l � 0, 1, . . . , L − 1, i � 1, 2, . . . , nl, j � 1, 2, . . . , nl+1

(24)
The pre-activation value of ϕl,j,i is x(l,i), and the post-activation

value of ϕl,j,i is represented as Equation 25:

x̂l,j,i � ϕl,j,i xl,i( ) (25)

The activation value of neuron x(l+1,i) is the sum of all incoming
post-activation values Equation 26:

xl+1,j � ∑nl
i�1

x̂l,j,i � ∑nl
i�1

ϕl,j,i xl,i( ), j � 1, . . . , nl+1 (26)

The activation function ϕ is composed of a weighted sum of a
basis function b(x) and a B-spline function spline(x) Equations
27-29:

ϕ x( ) � wbb x( ) + wsspline x( ) (27)
b x( ) � SiLU x( ) � x

1 + e−x
(28)

spline x( ) � ∑
i

ciBi x( ) (29)

Here,wb and ws represent the weights of the basis function and
B-spline function, respectively. ci are the trainable parameters in the
B-spline function, and Bi(x) is the B-spline basis function defined
on a grid. By using adaptive activation functions, KAN significantly
enhances the representational power of neural networks, allowing
the model to learn smoother and more complex transformations
without increasing model complexity excessively. This flexible
representation is particularly beneficial for integrating diverse
features from multi-view data, such as drug similarity, disease
similarity, and their interactions, leading to improved predictive
performance for drug-disease associations.

3 Results and discussion

3.1 Parameter settings

We perform 10-fold cross-validation to evaluate the
performance of AMFGNN. In the 10-fold cross-validation, all
known and unknown drug-disease associations are randomly
divided into 10 subsets of approximately equal size. Each subset
is used as the test set in turn, while the remaining nine subsets serve
as the training set.

We set the feature embedding size to 128 to achieve the best
prediction performance in drug-drug similarity, disease-disease
similarity, and drug-disease association graphs, and we set the
dropout rate to 0.2 to optimize the training process of the
network layers. For the graph model selection, we choose to use
a 3-layer GAT instead of GCN (Graph Convolution Network)
because GAT outperforms GCN in terms of AUC. The 3-layer
structure helps prevent both information redundancy and over-
smoothing issues. For optimization, we employed the Adam
optimizer with a learning rate of 0.001 and weight decay of
0.001, training the model for 300 epochs.

3.2 Model evaluation and cross-validation

To rigorously evaluate the performance of our proposed model,
we employed a standard 10-fold cross-validation approach.
Specifically, drug-disease associations from each benchmark
dataset were randomly divided into ten subsets of approximately
equal size. In each fold, nine subsets were combined to form the
training set, while the remaining subset served as the test set for
evaluating the model’s performance. This procedure was repeated
ten times, with each subset serving as the test set exactly once. We
reported the model’s performance using the average and standard
deviation across these ten evaluations. Furthermore, this cross-
validation procedure was independently conducted on all three
benchmark datasets (Fdataset, Cdataset, and LRSSL) to ensure
the reliability and generalizability of our results.

3.3 Baseline methods

To evaluate the performance of AMFGNN, we performed 10-
fold cross-validation on three public datasets: Fdataset, Cdataset,
and LRSSL. The models compared in this study include LBMFF,
SCPMFDD, SCPMF, MKGCN, and MNGACDA.

• LBMFF is a model for drug-disease relationship prediction
that combines latent bilinear matrix factorization and focal
loss. The model captures latent associations between drugs
and diseases through matrix factorization techniques and
introduces focal loss to address the class imbalance
problem, enhancing the model’s ability to handle sparse
data and hard-to-predict instances (Kang et al., 2023).

• SCPMFDD is a semi-supervised learning model for drug-
disease prediction. The model combines collaborative
projection matrix factorization and semi-supervised
learning strategies to enhance prediction performance by
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leveraging known drug-disease relationships and unlabeled
data (Li et al., 2022).

• SCPMF is a semi-supervised learning model for drug-disease
prediction. It learns the latent relationships between drugs and
diseases through collaborative matrix factorization, while also
utilizing semi-supervised learning to enhance the model’s
learning capability by incorporating unlabeled data. (Meng
et al., 2021).

• MKGCN is a model for complex drug-disease prediction tasks.
By introducing multiple kernel functions (Multi-Kernel), it
integrates different types of graph structure features. MKGCN
uses Graph Convolutional Networks (GCN) to process drug-
disease graph data and applies kernel functions to weight
different features, thereby more accurately capturing the
complex relationships between drugs and diseases and
improving the model’s ability to model and predict (Cui
et al., 2023).

• MNGACDA is a graph neural network model for drug-
disease prediction. The model combines multi-node graph
attention mechanisms and dual attention mechanisms,
effectively processing the drug and disease relationship
graph through Graph Convolutional Networks (Yang
and Chen, 2023).

• DDAGDL (Zhao et al., 2022b) is a model for drug–disease
prediction that applies geometric deep learning over
heterogeneous information networks. It integrates biological
information into the network structure and uses an attention
mechanism to learn effective representations of drugs and
diseases, enabling improved performance on non-Euclidean
biomedical data.

• RGLDR (Zhao et al., 2025) combines regulation-aware graph
representation learning with meta-path-based connectivity
patterns to capture diverse regulatory mechanisms in
heterogeneous biological networks. It enhances drug and
disease embeddings using a multi-view attention
mechanism and predicts drug-disease associations with an
XGBoost classifier. Experimental results demonstrate its
superior performance over state-of-the-art methods on
benchmark datasets.

According to the results shown in Table 1, AMFGNN achieves
the highest AUC in all three datasets. AMFGNN demonstrates
outstanding performance across different datasets. On the F
dataset, the AUC value of AMFGNN is 0.9328, significantly
higher than other models such as LBMFF (0.7953), SCPMFDD
(0.7740), and others. Similarly, on the C dataset and LRSSL dataset,
AMFGNN also shows higher prediction accuracy, with AUC values
of 0.9443 and 0.9588, respectively.

The results indicate that the AUC (Area Under the Curve) of the
AMFGNN model outperform those of other models. This
demonstrates that the AMFGNN model effectively improves the
accuracy and stability of drug-disease association prediction by
integrating multi-source heterogeneous information and
dynamically adjusting the weights of different information
sources. In addition, based on the results of Recall (Table 2) and
F1-score (Table 3), AMFGNN also performs excellently in these
metrics. In terms of Recall, AMFGNN effectively captures positive
samples and reduces false negatives, indicating its high recall ability.
A high Recall value means the model can identify more positive
samples, which is especially important for drug-disease association
prediction, as missing positive samples could lead to the omission of
crucial information. Regarding F1-score, AMFGNN demonstrates a
good balance between Precision and Recall, indicating its advantages
in both accuracy and recall ability. A high F1-score means the model
reduces false positives while effectively capturing more positive
samples, avoiding the performance imbalance that may arise
from optimizing a single metric. Overall, AMFGNN shows
outstanding performance in improving prediction accuracy,
stability, and comprehensiveness, further confirming its
effectiveness in drug-disease association prediction, especially on
complex and imbalanced datasets.

As shown in Figure 2, the AUC (Area Under the Curve) values of
the AMFGNN model outperform those of other models. This
demonstrates that the AMFGNN model effectively improves the
accuracy and stability of drug-disease association prediction by
integrating multi-source heterogeneous information and
dynamically adjusting the weights of different information sources.

3.4 Ablation studies

To thoroughly investigate the effectiveness of different
components in our proposed AMFGNN model, we conduct
comprehensive ablation studies. Specifically, we evaluate four
variants of our model:

• Full Model: The complete AMFGNN architecture with all
components, including the Kolmogorov-Arnold Networks
and contrastive learning loss.

• AMFGNN w/o KAN: A variant without the Kolmogorov-
Arnold Network, while maintaining the contrastive
learning mechanism.

• AMFGNN w/o CL: A variant that removes the contrastive
learning loss while retaining the Kolmogorov-Arnold
Networks, utilizing only the main task loss function for
optimization.

TABLE 1 Performance comparison of different methods across datasets using AUC.

Datasets LBMFF SCPMFDD SCPMF MKGCN MNGACDA DDAGDL RGLDR AMFGNN

Fdataset 0.7953 ± 0.035 0.7740 ± 0.001 0.8957 ± 0.001 0.8870 ± 0.001 0.8179 ± 0.005 0.9266 ± 0.001 0.9311 ± 0.005 0.9328 ± 0.014

Cdataset 0.9069 ± 0.001 0.7937 ± 0.001 0.9117 ± 0.002 0.9109 ± 0.001 0.8406 ± 0.005 0.9256 ± 0.001 0.9359 ± 0.003 0.9443 ± 0.012

LRSSL 0.9139 ± 0.002 0.7668 ± 0.001 0.8977 ± 0.001 0.8596 ± 0.001 0.7936 ± 0.002 0.8990 ± 0.001 0.8032 ± 0.005 0.9588 ± 0.006

Avg 0.8720 0.7782 0.9017 0.8858 0.8173 0.9171 0.8901 0.9453
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• AMFGNN w/o KAN & CL: The baseline variant that removes
both the Kolmogorov-Arnold Network and contrastive
learning loss, maintaining only the basic MLP and
main task loss.

As shown in Figure 3,the experimental results demonstrate
several key findings: The full AMFGNN model achieves the best
performance across all metrics, validating the effectiveness of our
proposed architecture. Removing the Kolmogorov-Arnold
Networks (w/o KAN) leads to a performance decrease of AUC
and AUPR, highlighting the importance of KAN layer in our model.
The absence of contrastive learning (w/o CL) also results in a drop,
indicating that the contrastive learning mechanism plays a crucial
role in learning more discriminative feature representations. The
baseline variant (w/o KAN & CL) shows the most significant
performance degradation, confirming that both components
contribute substantially to the model’s effectiveness.

These ablation studies clearly demonstrate that each component
in our proposed AMFGNN makes meaningful contributions to the
overall performance, and their combination leads to the
optimal results.

3.5 Case study

To evaluate the practical application value of the model, we
conducted a case study. Specifically, the model was trained on the
Fdataset to predict potential drugs associated with asthma and
hepatoblastoma. The predicted drugs were ranked in descending
order based on their probability scores, and the top ten candidates
were selected for further analysis. To assess the reliability of the
model’s predictions, comprehensive validation was performed using
multiple authoritative data sources, including DrugCentral, Avram
et al. (2021) CTD, and ClinicalTrials databases.

TABLE 2 Recall comparison of various models across multiple datasets.

Datasets LBMFF SCPMFDD SCPMF MKGCN MNGACDA DDAGDL RGLDR AMFGNN

Fdataset 0.7328 0.0255 0.4128 0.0098 0.0801 0.4560 0.8814 0.9152

Cdataset 0.7006 0.0217 0.4767 0.0644 0.1695 0.4830 0.8724 0.9443

LRSSL 0.7165 0.0151 0.3812 0.0233 0.0737 0.4328 0.6975 0.9371

Avg 0.7166 0.0208 0.4236 0.0325 0.1078 0.4573 0.8171 0.9322

TABLE 3 F1 -Score performance of different approaches across datasets.

Datasets LBMFF SCPMFDD SCPMF MKGCN MNGACDA DDAGDL RGLDR AMFGNN

Fdataset 0.0577 0.1174 0.4024 0.0195 0.1475 0.6007 0.8615 0.8699

Cdataset 0.2343 0.0857 0.4556 0.1210 0.2875 0.6013 0.8806 0.8890

LRSSL 0.2304 0.0249 0.3548 0.0452 0.1352 0.5538 0.7194 0.9040

Avg 0.1741 0.0760 0.4043 0.0619 0.1901 0.5853 0.8205 0.8876

FIGURE 2
The ability of various methods to predict potential drugs for novel diseases is evaluated on public datasets using AUROC serving as the metric: (a)
Fdataset (b) Cdataset (c) LRSSL.
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Hepatoblastoma is a malignant liver tumor primarily occurring
in children, typically diagnosed during infancy or early childhood
(Sharma et al., 2017). Table 4 highlights five potential therapeutic
agents for hepatoblastoma predicted by the AMFGNN model, four
of which have been validated by authoritative databases.
Furosemide, widely used in both adults and children to manage
hypertension and edema caused by liver dysfunction, was identified
by the AMFGNN model as a promising candidate for
hepatoblastoma treatment. This prediction has been corroborated
by the DrugCentral database. Furthermore, the model predicted
citalopram as another potential therapeutic agent for
hepatoblastoma, with this conclusion supported by both the
DrugCentral and CTD databases. These findings provide new

perspectives and directions for drug development targeting
hepatoblastoma.

Asthma is a chronic inflammatory disease influenced by both genetic
and environmental factors (Toskala and Kennedy, 2015), making it a
complex hereditary condition. Table 5 lists the top five potential asthma
treatments predicted based on the F dataset, of which four are verified
through reliable databases or clinical trials, further supporting the
accuracy and practicality of the model’s predictions. AMFGNN
predicts flunisolide as a potential drug for treating asthma, a
conclusion supported by both DrugBank and ClinicalTrials.gov.
Additionally, studies show that uncontrolled asthma is often associated
with gastroesophageal reflux disease (GERD) (Harding, 2003). As a
proton pump inhibitor, esomeprazole is widely used to treat GERD,
and AMFGNN also predicts that esomeprazole might have therapeutic
effects on asthma, a prediction that is verified by ClinicalTrials.gov.

Alzheimer’s Disease (AD) is a neurodegenerative disorder
characterized primarily by progressive cognitive decline and memory
impairmentAbubakar et al. (2022). Table 6 lists five potential drug
candidates for the treatment of Alzheimer’s Disease as predicted by the
AMFGNN model, four of which have already been validated by
authoritative pharmaceutical databases. Memantine, an approved
N-methyl-D-aspartate (NMDA) receptor antagonist, was identified
by AMFGNN as an effective therapeutic agent for Alzheimer’s
Disease. Additionally, Methylphenidate and Levothyroxine were also
predicted as promising therapeutic candidates, with supporting
evidence from clinical trials documented in the ClinicalTrials.gov
database, suggesting their potential clinical application in the future.

FIGURE 3
Results of ablation experiments on three datasets.

TABLE 4 TOP 5 candidate drugs for Hepatoblastoma predicted by AMFGNN.

Rank DrugBank IDs Candidate drugs Evidences

1 DB00397 Phenylpropanolamine DrugCentral

2 DB00313 Valproic acid DrugCentral,
CTD

3 DB00215 Citalopram DrugCentral,
CTD

4 DB00448 Lansoprazole DrugCentral,
CTD

5 DB00167 Isoleucine Unconfirmed

TABLE 5 TOP 5 candidate drugs for asthma predicted by AMFGNN.

Rank DrugBank IDs Candidate drugs Evidences

1 DB00180 Flunisolide DB, ClinicalTrials.gov

2 DB00736 Esomeprazole ClinicalTrials.gov

3 DB00182 Amphetamine DrugCentral, ClinicalTrials.gov

4 DB00181 Baclofen Unconfirmed

5 DB00695 Furosemide ClinicalTrials.gov
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Moreover, we selected five asthma-related target proteins and
conducted molecular docking simulations to assess their binding
abilities with five candidate drugs using AutoDock Vina (Trott and
Olson, 2010). The interactions between the ligands and target proteins
were further analyzed using Discovery Studio (DS) visualization
software. Regarding the relevance of baclofen to asthma, we chose
acidic mammalian chitinase (AMCase, PDB code: 3FY1) as the target
protein and found that baclofen has a binding energy of −6.6 kcal/mol

with AMCase (Table 7). Figure 4 shows the van der Waals interactions
between baclofen and several specific amino acid residues (ALA:183,
MET:385,MET:210, TYR:267, GLU:140, GLY:98, PHE:58). In addition,
other types of molecular interactions are observed. For example, the
oxygen atom forms conventional hydrogen bonds with residues TYR:
212, ASP:213, TRP:99, and NA:1, while the nitrogen atom exhibits
carbon-hydrogen bond interactions with residue ASP:138.
Furthermore,π − σ interactions are observed between the small
molecule and residues TYR:27 and TRP:360, and covalent bonds
form between the oxygen atom and the functional group of
residue NA:1.

4 Conclusion

This paper presents the Adaptive Multi-View Fusion Graph Neural
Network (AMFGNN), a novel model designed for drug-disease
association prediction. AMFGNN integrates multiple data sources,
including drug similarity, disease similarity, and drug-disease
interactions, using an adaptive multi-view feature fusion strategy. The

TABLE 6 TOP5 candidate drugs for Alzheimer’s Disease predicted by AMFGNN.

Rank DrugBank IDs Candidate drugs Evidences

1 DB01043 Memantine ClinicalTrials.gov, CTD, DrugCentral

2 DB00642 Methylphenidate ClinicalTrials.gov

3 DB00636 Clofibrate Unconfirmed

4 DB00413 Pramipexole ClinicalTrials.gov, DrugCentral

5 DB00337 Levothyroxine ClinicalTrials.gov

TABLE 7 Molecular binding energies (kcal/mol) between the top
5 candidate drugs for asthma predicted by AMFGNN and 5 target proteins.

Drug 1KTJ 3FY1 4P0I 5BOW 7XXW

Flunisolide −7.4 −9.6 −9.6 −7.5 −6.8

Esomeprazole −8.0 −8.5 −6.6 −7.0 −5.9

Amphetamine −5.7 −5.5 −4.8 −5.1 −4.4

Baclofen −6.0 −6.6 −5.7 −6.4 −4.3

Furosemide −6.2 −7.4 −6.2 −6.8 −5.9

FIGURE 4
Docking and interactions of Baclofen (DrugBank ID: DB00181) with AMCase (PDB code: 3FY1).
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model combines Graph Attention Networks (GAT) with contrastive
learning to improve the accuracy of drug-disease predictions by
effectively capturing relationships between nodes in the graph.
Additionally, replacing traditional multilayer perceptron (MLP) layers
with Kolmogorov-Arnold Networks (KAN) enhances the model’s
flexibility, expressive capability, and overall predictive performance.

Through 10-fold cross-validation on three benchmark datasets
(F dataset, C dataset, and LRSSL), AMFGNN outperforms existing
models, achieving high area under the curve (AUC) scores of 0.9328,
0.9443, and 0.9588, respectively. These results demonstrate that
AMFGNN significantly improves drug-disease prediction accuracy,
making it a valuable tool in drug repositioning and
personalized medicine.
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