a' frontiers ‘ Frontiers in Pharmacology

’ @ Check for updates

OPEN ACCESS

EDITED BY
Carla Denise Bonan,

Pontifical Catholic University of Rio Grande do
Sul, Brazil

REVIEWED BY
Yang Jiang,

Beijing University of Chinese Medicine, China
Chang Zhou,

Guangzhou University of Chinese Medicine,
China

*CORRESPONDENCE

Fei Huang,
szhuangfei@126.com

Li Luo,
luoli@suda.edu.cn

These authors have contributed equally to this
work and share first authorship

RECEIVED 29 April 2025
ACCEPTED 30 August 2025
PUBLISHED 23 September 2025

CITATION
Qin Y, Hu S, Mawen S, Pan S, Huai Y, Liang G,
Chen T, Zhao F, Dong H, Yao X, Wu X, Lv Z,
Deng J, Huang F and Luo L (2025)
Neuroprotective mechanisms of Buyang
Huanwu decoction in ischemic stroke.

Front. Pharmacol. 16:1620533.

doi: 10.3389/fphar.2025.1620533

COPYRIGHT
© 2025 Qin, Hu, Mawen, Pan, Huai, Liang, Chen,
Zhao, Dong, Yao, Wu, Lv, Deng, Huang and Luo.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Pharmacology

TYPE Review
PUBLISHED 23 September 2025
pol 10.3389/fphar.2025.1620533

Neuroprotective mechanisms of
Buyang Huanwu decoction in
Ischemic stroke

Yuanyuan Qin", Shiliang Hu?', Shiman Mawen?, Shanyao Pan?
Yaping Huai*, Guogiang Liang?, Ting Chen?, Feiyan Zhao?,
Hongli Dong?, Xuyi Yao?, Xue Wu?, Zhigang Lv*, Jiao Deng?,
Fei Huang®* and Li Luo?*

'Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China, 2School of
Physical Education and Sports Science, Soochow University, Suzhou, China, *Department of
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Ischemic stroke (IS) continues to be a major contributor to global mortality and
long - term disability. Buyang Huanwu Decoction (BHD), a traditional Chinese
medicine formula, has shown effectiveness in reducing brain injury and
promoting post - stroke recovery through experimental researches and
clinical trials. The neuroprotective mechanisms of BHD against cerebral
ischemic injury involve multiple pathways, such as suppression of
inflammation, reduction of oxidative stress, inhibition of apoptosis, regulation
of autophagy, and enhancement of mitochondrial function. Moreover, BHD
presents therapeutic potential by boosting neuroplasticity, enhancing
angiogenesis, reducing excitotoxicity, optimizing brain energy metabolism,
and regulating gut microbiota. Considering the current scarce effective
treatments for IS, exploring BHD's therapeutic potential and its mechanism
holds substantial clinical significance. This review systematically organizes
recent research advancements on BHD's application in IS management and its
underlying mechanisms, providing useful insights for future research and clinical
practice.
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1 Introduction

Stroke is a leading cause of death and long-term disability worldwide, owing to its high
incidence and devastating sequelae (GBD 2016 Stroke Collaborators, 2019). IS, which is
most often due to thrombotic vessel occlusion, comprises the majority of stroke cases and
results in cerebral ischemia and hypoxia (Campbell et al, 2019). Current
treatments—thrombolysis, antiplatelet therapy, and neuroprotective agents—face well-
known limitations: a narrow therapeutic window, patient ineligibility or drug
insensitivity, and significant post-treatment complications (Cheng et al, 2024; Yang
et al,, 2025). More than two-thirds of stroke survivors sustain persistent neurological
deficits—manifesting as motor, cognitive (including language), sensory, and
cardiopulmonary impairments (Crichton et al, 2016; Benjamin et al, 2018).
Conventional therapeutic interventions, including pharmacotherapy, rehabilitation
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therapy, and secondary prevention, have shown very limited efficacy
(Tg et al.,, 2020). Consequently, there is an urgent need to identify
more effective therapeutic strategies.

Traditional Chinese Medicine (TCM) has been widely used as an
adjunctive therapy for post-stroke sequelae in China, featuring
multi-target effects and low side effects (Hu et al., 2018; Zhang
W.-W. et al, 2018). Studies have demonstrated that combining
TCM treatment with conventional therapies can improve
neurological symptoms and activities of daily living in stroke
patients (Cai et al.,, 2019; Gao et al.,, 2021). BHD, a classic TCM
formula, was first recorded in Yilin Gaicuo (Corrections of Errors in
Medical Works) by Wang Qingren in the Qing Dynasty, and is used
for treating post-stroke sequelae due to qi deficiency and blood stasis
syndrome. The formula consists of seven ingredients: Astragalus
membranaceus (Huangqi), Angelica sinensis (Danggui), Paeonia
lactiflora var. chinensis (Chishao), Lumbricus (Dilong), Persicae
Semen (Taoren), Carthami Flos (Honghua), and Ligusticum
chuanxiong (Chuanxiong) in a ratio of 120:6:4.5:3:3:3:3. BHD is
widely used in clinical practice to promote the recovery of
neurological and motor functions, benefiting patients with post-
stroke sequelae, with no reported adverse reactions (Gao et al., 2021;
Shao et al.,, 2022; Wang et al., 2022). In addition, in experimental
stroke models, BHD can reduce cerebral infarct volume, improve
neurological prognosis, and inhibit oxidative stress and neuronal
apoptosis (Cai et al, 2007; She et al., 2023; Chen et al., 2024).
However, the specific mechanisms underlying the role of BHD in
stroke recovery remain incompletely elucidated.

This formula contains several bioactive components, including
astragaloside IV~ and isoflavonoids  from  Astragalus
membranaceus, paeoniflorin from Paeonia lactiflora, Hydroxy-
safflor yellow A from Carthami Flos, and ligustrazine from
Studies that these

components exert multiple neuroprotective effects, such as

Ligusticum  chuanxiong. have shown

promoting neurogenesis, inhibiting oxidative stress and
inflammation, preventing thrombosis, protecting the blood-
brain barrier, and modulating apoptosis following cerebral
ischemia (Fu et al., 2014; Jiang et al, 2020; Wu et al., 2020;
Wang et al, 2021; 2025). BHD, as an organic combination
based on TCM theory, exhibits multi-component, multi-
pathway, and multi-target effects. The interactions between its
components may involve synergistic, antagonistic, or sensitizing
effects. Numerous studies have demonstrated that BHD has a
certain degree of neuroprotective effect in ischemic stroke, and its
mechanisms are complex and diverse. The therapeutic efficacy
results from the combined action of its ingredients. For example,
Ligusticum chuanxiong, a key “guide” herb, increases the
distribution of other ingredients in the brain; Astragalus
membranaceus slows down the metabolism of paeoniflorin,
maintaining its activity; and ligustrazine enhances the
transmembrane transport of paeoniflorin, highlighting the
scientific and rational compatibility of this formula (Zheng
et al, 2018; Liu et al, 2021). Although the research on the
individual active components provides important insights into
the pharmacological basis of BHD’s therapeutic effects, the
essence of TCM formulas lies in their “holistic view.” A TCM
formula is an organic whole formulated under the guidance of
TCM theory, and its efficacy arises from the combined effects of

multiple components, pathways, and targets. The components may
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exhibit complex interactions, such as synergy, antagonism, or
sensitization, rather than a simple additive effect of individual
components. Therefore, this study will focus on the overall effects
of the entire BHD formula, rather than isolating the targets of
single components. It aims to systematically summarize the
network pharmacology map of BHD’s multi-mechanistic,
synergistic treatment of stroke, providing valuable references for
its clinical application and offering direction for future research.

2 The mechanisms of BHD in the
treatment of ischemic stroke

Extensive preclinical studies demonstrate that BHD effectively
attenuates cerebral ischemia-reperfusion (I/R) injury. In this review,
we synthesize these findings to elucidate BHD’s molecular
mechanisms—focusing on the principal pathways and targets that
underlie its neuroprotective actions (Figure 1).

2.1 Suppression of inflammation

Neuroinflammation is a critical target for mitigating post-stroke
damage and promoting recovery (Iadecola and Anrather, 2011; KI
et al,, 2019). Neuronal necrosis following ischemic stroke releases
(DAMPs) and pro-
inflammatory mediators, which activate microglia and astrocytes

damage-associated molecular patterns
and recruit peripheral immune cells into the cerebral ischemic
penumbra (Shi et al, 2019). Activated glia and infiltrating
leukocytes then amplify local inflammation via overproduction of
cytokines—a response tightly connected to systemic immune
alterations (Iadecola et al., 2020; Simats and Liesz, 2022).
Importantly, pyroptosis—a caspase-1-dependent form of
inflammatory cell death—has emerged as a major driver of
ischemic stroke pathology, primarily through activation of the
canonical Nucleotide-binding domain and leucine-rich repeat-
containing pyrin domain 3 (NLRP3) inflammasome (Adamczak
et al,, 2014; Tan et al,, 2014). A growing body of evidence indicates
that NLRP3
neuroinflammation and exacerbates I/R injury (Li J. et al.,, 2023).
Studies have shown that pre-treatment with 7 days of BHD
subsequent
ischemia/reperfusion damage, as evidenced by a reduction in

inflammasome activation markedly amplifies

significantly enhances the brain’s tolerance to
infarct volume and an improvement in neurological function
This
associated

scores 24 h  post-reperfusion. pharmacological
preconditioning likely with  the

downregulation of key NLRP3 inflammasome components (ASC,

effect s

pro-caspase-1) and pyroptosis effectors (active caspase-1, IL-1B)
(Figure 2) (She et al, 2019). Notably, astragaloside IV and
Hydroxysafflor Yellow A may be key active ingredients of BHD
(Hou et al, 2024).
NLRP3 inflammasome components are expressed across multiple

in suppressing pyroptosis Since
cell types in the ischemic brain and drive pyroptosis (Fann et al.,
2014; Jorgensen and Miao, 2015), targeting NLRP3-mediated
inflammation presents a promising avenue for therapeutic
intervention in ischemic stroke. Future research should explore
the potential application of BHD’s preconditioning advantage in
clinical high-risk populations.
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FIGURE 1

BHD mitigates IS-induced injury through multiple pathways. These pathways include suppression of inflammation, reduction of oxidative stress,
inhibition of apoptosis, regulation of autophagy, improvement of mitochondrial function, promotion of neuroplasticity, promotion of angiogenesis,
inhibition of excitotoxicity, regulation of material and energy metabolism, regulation of gut microbiota.

Notably, the role of neuroinflammation—and BHD’s
modulation of it—is stage-dependent. In the acute phase, BHD
primarily suppresses deleterious, excessive inflammation to mitigate
secondary injury. As the disease advances into the recovery phase,
the inflammatory response assumes a more complex, dual role.
Studies show that BHD promotes polarization of microglia toward
an M2 phenotype and astrocytes toward an A2 phenotype in middle
cerebral artery occlusion (MCAO)/R rats during recovery, thereby
facilitating synaptogenesis and neurite outgrowth (Li et al., 2024c).
Moreover, Liu W demonstrated that in the permanent MCAO
(pMCAO) mouse model, BHD treatment consistently promoted
long-term with  improvements in
neurological deficits and reduced infarct volume observed on
days 7 and 14 post-stroke. The
related to the activation of the Sphingosine-1-
Phosphate (S1P)/Sphingosine-1-Phosphate Receptor 1 (S1PR1)/
Phosphatidylinositol 3-Kinase (PI3K)/Protein Kinase B (PKB,
Akt) survival and repair signaling pathway (Liu W. et al,, 2023).
The PI3K/Akt/nuclear factor kappa B (NF-kB) signaling cascade is a
core regulator of post-ischemic neuroinflammation (Li L. et al,
2023; Li J. et al., 2024). Upstream, S1P activates SIPR1 to promote

neurological  recovery,

recovery benefits were

closely
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Akt phosphorylation, thereby exerting neuroprotective effects in
ischemic models (Hasegawa et al, 2010). As a bioactive
sphingolipid, SIP/SIPR1 signaling mitigates inflammatory injury
and supports neural repair (Nakamura et al., 2021; Zaibaq et al,,
2022). These results implicate SIP/S1PRI as a potential direct target
of BHD. Moreover, most evidence derives from whole-brain
homogenates in rodent models. Future work should validate
these mechanisms in isolated cell populations—such as microglia
and neurons—to delineate cell-type-specific effects of BHD.

In addition to local inflammation, ischemic stroke induces
systemic immunosuppression, which profoundly affects recovery.
Initially, DAMPs and cytokines leak into the circulation via a
disrupted blood-brain barrier, provoking transient systemic
immune activation. This phase swiftly gives way to sustained
immunosuppression, heightening the risk of complications such
as stroke-associated pneumonia (Iadecola et al., 2020; Wang et al.,
2023). Concomitant splenic atrophy and lymphocyte apoptosis
further exacerbate secondary neural damage (Yu H. et al,, 2021).
Fu R found that BHD reduces splenic T-cell apoptosis at 3 days post-
MCAO/R, ameliorating both cerebral injury and systemic
immunosuppression—possibly via the Absent in melanoma
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‘ Inflammatory Damage”

Molecular mechanisms of BHD in suppressing neuroinflammation. BHD alleviates neuroinflammation by inhibiting the NF-«B signaling pathway and
its downstream molecules via activation of the S1IP/S1IPR1/PI3K/Akt axis. Concurrently, this inhibition suppresses NLRP3 inflammasome assembly and the
activity of downstream pyroptosis effectors, thereby reducing the secretion of pro-inflammatory cytokines and attenuating inflammatory tissue damage.

2 (AIM2)/IL-1p/Fas ligand-Fas receptor (FasL-Fas) axis. Moreover,
quercetin from safflower may contribute to this process by inhibiting
peripheral immune cell recruitment (Zhang et al., 2022). Yet, direct
evidence for AIM2 dependence is lacking (Fu et al., 2024). However,
it remains necessary to verify whether BHD exerts this effect
AIM2. Notably, Roth S that
AIM2 inhibition did not alter neurological outcomes within 24 h

specifically  via reported
post-stroke, suggesting that timing critically influences AIM2’s role
(Roth et al,, 2021). Accordingly, future studies should dissect the
temporal and spatial dynamics of BHD’s effects on splenic immune
subsets and map the communication pathways of key immune
mediators between brain and spleen.

2.2 Reduction of oxidative stress

ATP depletion after ischemia leads to mitochondrial
dysfunction and overproduction of reactive oxygen species
(ROS). The resulting increase in malondialdehyde (MDA) and

decrease in superoxide dismutase (SOD) activity exacerbate

oxidative injury, damaging organelles and compromising
neuronal viability (Liu et al., 2018; Yang et al, 2018; Kamal
et al.,, 2023).

Li C showed that BHD scavenges ROS in isolated cerebral cells
from MCAO/R rats and preserves neuronal membrane fluidity (Li,
2012). In in vivo experiments, BHD enhances the antioxidant
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in MCAO/R rats
mitochondrial membrane potential, reduces neuronal death, and

defense capability on day 3, restores
decreases infarct size. Mechanistically, BHD upregulates protein
kinase C epsilon (protein kinase Ce, PKCe), promoting nuclear
factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and
the subsequent induction of antioxidant enzymes, including SOD,
heme oxygenase-1 (HO-1), and NAD(P)H quinone dehydrogenase
1 (NQO1) (Yin et al, 2023). Nrf2, the master regulator of
antioxidant defense, maintains redox balance by driving both
basal and inducible expression of enzymes that neutralize ROS
2021). Notably,

compared to edaravone—an ROS scavenger that acts via direct

and electrophiles (Figure 3) (Zhang et al,

chemical quenching—BHD  uniquely restores
antioxidant capacity through enzyme induction (Dickmeif3 et al.,
2025; Lee et al,, 2025). This highlights BHD’s antioxidative stress

effect during the acute phase of cerebral ischemia. This effect may be

endogenous

mediated by astragaloside IV and Quercetin through the activation
of the Nrf2 antioxidant signaling pathway (Li et al., 2018; Zhang
et al., 2022). Future work should identify the intermediate signaling
factors that link BHD to PKCe activation and investigate Nrf2-
independent mechanisms of mitochondrial protection.
Additionally, Wu F proposed that BHD might exert its
antioxidative effects in the acute phase of ischemic stroke
through the Formyl peptide receptor 2 (FPR2)/NADPH oxidase
2 (NOX2) signaling pathway (Wu et al, 2021). FPR2—a
neuroprotective GPCR abundant in the brain—when deficient,
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Molecular mechanisms of BHD in restoring mitochondrial

function. BHD regulates mitochondrial dynamics via the PKCe/Nampt/
Sirt5 axis and restores mitochondrial function, potentially involving
Cav-1-mediated effects on MQC processes.

worsens I/R injury (Sa et al., 2016; Bisicchia et al., 2018). Since
NOX2 is a primary source of ROS, its inhibition dampens oxidative
bursts (Figure 3) (Khayrullina et al., 2015). Therefore, BHD is an
effective remedy for combating oxidative stress in the acute phase.
Nonetheless, it remains unclear whether BHD directly modulates
NOX2 activity or acts upstream via FPR2.

2.3 Inhibition of apoptosis

Cerebral I/R activates complex apoptotic cascades, which are
central to neuronal loss and ensuing neurological deficits. These
of the
pathway—driven by

cascades consist intrinsic  (mitochondria-mediated)

mitochondrial outer-membrane

permeabilization and calpain activation—and the extrinsic
pathway, triggered by death receptors in response to cytokines
and chemokines (Tuo et al, 2022). In the intrinsic pathway,
injury-induced mitochondrial outer membrane permeabilization
(MOMP) releases cytochrome ¢ into the cytosol. Cytochrome ¢
then associates with apoptotic protease-activating factor 1 (Apaf-1)
to form the apoptosome, which initiates the caspase cascade and
orchestrates programmed cellular disassembly (Glover et al., 2024).
Members of the B-cell lymphoma 2 (Bcl-2) family tightly regulate
MOMP:

whereas pro-apoptotic Bcl-2-associated X protein (Bax) facilitates

anti-apoptotic Bcl-2 prevents cytochrome c release,

membrane permeabilization (Shore and Nguyen, 2008; Soriano and
Scorrano, 2011).
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Liu F reported that BHD suppresses Cyclin-dependent kinase 5
(CDKS5) and Tau overexpression in H,O,-stressed neuronal cells,
concomitantly downregulating caspase-3 activity and reducing the
Bax/Bcl-2 ratio (Liu et al., 2019). CDKS5 can trigger apoptosis by
phosphorylating Bcl-2 family members at the mitochondrial
membrane or directly modifying executioner caspases such as
caspase-3 and caspase-7 (Garcia-Séez, 2012; Maitra and Vincent,
2022). Nevertheless, Liu et al. did not confirm a causal link between
CDKS5 inhibition and downstream apoptotic markers, underscoring
the need for in vivo validation. In a separate study, Song C
demonstrated that serum from BHD-treated MCAO/R rats
(OGD/R)-
injured brain microvascular endothelial cells—enhancing viability,

protects Oxygen-Glucose Deprivation/Reperfusion
reducing TUNEL positivity, lowering Bax and caspase-3 levels, and
increasing Bcl-2. They further showed that BHD suppresses
glycolysis-driven histone H3 lactylation to downregulate Apaf-1
2024). However, the multifaceted

composition of medicated serum raises the possibility of

transcription (Song et al,

confounding by non-BHD factors. Notably, Paeoniflorin and
Amygdalin may be key active components of BHD in mediating
its anti-apoptotic effects (Zhang Y. et al., 2015; Kimura et al., 2025).

Chen et al. used proteomic analysis to find that, after 14 days of
BHD intervention in the MCAO/R model, BHD significantly
alleviated neuronal apoptosis. Mechanistic studies suggest that
this effect might be mediated through the activation of the
epidermal growth factor receptor (EGFR)/PI3K/Akt signaling
axis, which then regulates downstream Bcl-2-associated death
promoter (Bad) and 14-3-3 protein signaling (Figure 4) (Chen
et al., 2020). In this paradigm, Akt-mediated phosphorylation of
Bad fosters its sequestration by 14-3-3 proteins, thereby blocking
Bax activation, cytochrome c release, and caspase-3 induction (Datta
et al, 2000; Nomura et al.,, 2015). Therefore, BHD may directly
enhance the intrinsic pro-survival signaling network in the recovery
phase after cerebral ischemia, providing a stable cellular
However, the cell type-
specificity of this signaling pathway (such as its effect on
neurons, astrocytes, or oligodendrocytes) and the indispensability
of each signaling node (e.g., EGFR, PI3K) in mediating BHD’s effects
still  require  experimental
knockout models.

environment for neuronal repair.

validation  using  cell-specific

2.4 Regulation of autophagy

Autophagy can protect neurons during cerebral ischemia by
removing damaged organelles and misfolded proteins
(Dugbartey, 2024; Newton et al., 2024), and it remains crucial
for restoring cellular homeostasis during reperfusion (Liu S. et al.,
2023). Nevertheless, the protective role of autophagy in I/R injury
2019; Yang et al.,
excessive or prolonged dysregulation can be
2012; Sun et al., 2018). Therefore,
precise temporal regulation of autophagy is required at each

remains context-dependent (Aghaei et al.,
2019), as
detrimental (Gao et al,

post-ischemic stage. Studies have shown that after 2 h of ischemia
and 3 days of reperfusion, the levels of Microtubule-associated
protein 1 light chain 3 (LC3) II/T and Beclin 1 autophagy related
gene (Beclin-1) in the ischemic penumbra of MCAO/R rats were
significantly elevated (Shu et al.,, 2016; Pan et al., 2020). However,
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Molecular mechanisms of BHD in suppressing oxidative stress.

BHD restores mitochondrial membrane potential and enhances
antioxidant enzymes via the PKCe/Nrf2 axis, while potentially reducing
ROS generation through FPR2/NOX2 signaling to alleviate

oxidative damage.

in a 1.5-h ischemia MCAO/R model, the levels of Beclin-1 and
LC3 1II in the ischemic penumbra were significantly reduced at
24 h and 7 days post-surgery (Wu et al., 2018). These differences
might be attributed to variations in ischemia and reperfusion
times in the models.

Zhao Y found that BHD reduced Beclin-1 and LC3-II levels in
the ischemic penumbra at day 3 post-MCAO/R, with no changes in
the ischemic core or contralateral hemisphere. However, assessing
only Beclin-1 and LC3-II risks conflating reduced autophagosome
formation with impaired autophagic flux (Zhao et al, 2021). In
contrast, Li H reported that by day 5 post-reperfusion, BHD not only
reduced infarct size but also elevated Beclin-1 and LC3-I1, decreased
Sequestosome 1 (p62), and upregulated Sirtuin 1 (SIRT1) in the
penumbra (Li et al., 2021). Given that SIRT1 directly deacetylates
autophagy regulators such as Beclin-1 and Unc-51 like autophagy
activating kinase 1 (ULK1) complex components (Thapa et al,
2024), suggest ~a  SIRTI-dependent
mechanism—though direct evidence for SIRTI’s necessity in

these  findings

BHD-induced autophagy remains lacking. Future work should

employ SIRT1 loss-of-function models (e.g., genetic deletion or
pharmacological inhibition) to verify its role in BHD-induced
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autophagy and neurogenesis, and use co-immunoprecipitation or
SIRT1-Beclin-1/
ULK1 interactions. Because autophagy dynamics evolve over

proximity  assays to  confirm  direct
time, comprehensive flux mapping at days 1, 3, 5, and 7 post-
ischemia—using metrics such as p62 degradation rates, LC3-II
puncta quantification, and mRFP-GFP-LC3 reporter assays—is
essential for delineating BHD’s temporal effects. Qin B also
demonstrated that BHD enhances autophagy in OGD/R-injured
neural stem cells—upregulating Beclin-1 and LC3-II while reducing
p62 (Qin et al., 2021). However, without full flux measurements or
identification of upstream receptors and signaling intermediates, the
mechanistic basis remains unclear. Integrating transcriptomic,
proteomic, and metabolomic analyses in both in vitro and in vivo
models will be crucial to pinpoint the precise molecular targets of
BHD in autophagy regulation.

Overall, a principal function of BHD may be to restore
autophagic homeostasis: it can attenuate excessive autophagic
flux in the acute phase to prevent autophagy-dependent cell
death, while in the subacute phase it can promote basal
autophagy to facilitate clearance of damaged organelles and
proteins, thereby supporting cellular repair and survival. This
dynamic adaptation to the evolving post-stroke pathological
milieu may be a key advantage of multi-herb formulas such as
BHD. Future studies using serial time-point analyses are essential to
validate this temporally specific regulation and to define the optimal
therapeutic window for BHD intervention.

2.5 Improvement of mitochondrial function

Mitochondrial quality control (MQC)—the suite of processes

that preserve mitochondrial morphology, dynamics, and
function—underlies organelle homeostasis and supports neuronal
survival (Tian et al., 2022). Mitochondrial disruption during cerebral
I/R has emerged as a key pathological driver that determines the
extent of neuronal damage following stroke (Rutkai et al., 2019).
Dysregulation of MQC mechanisms, including impaired mitophagy,
altered fusion/fission balance, and defective biogenesis, exacerbates
mitochondrial dysfunction and contributes to neuronal death
following IS (Song et al.,, 2022; Tian et al., 2022). Restoring MQC
has therefore emerged as a promising therapeutic strategy to
mitigate secondary brain damage and enhance neurological
recovery after IS (Yang et al., 2021).
Studies BHD

membrane potential and NAD*/NADH ratios, reduces infarct

demonstrate that restores mitochondrial
volume, and mitigates neuronal injury in MCAO/R model rats
(Yin et al,, 2024). Additionally, Liu Z found that, after 7 days of
BHD MCAO/R  rats, BHD  regulated
mitochondrial through the PKCe/nicotinamide

phosphoribosyltransferase (Nampt)/Sirtuin 5 (Sirt5) signaling

treatment  in
dynamics

axis. By modulating the expression of mitochondrial fission
proteins (Drpl, Fisl) and fusion proteins (Mfn2, Opal), BHD
restored mitochondrial function and alleviated ischemia-
reperfusion injury (Figure 5) (Liu et al., 2025). Notably, Drpl-
mediated mitochondrial fission might be activated by Ligustilide,
a component of BHD (Wu et al., 2022). PKCe is a neuroprotective
kinase that supports mitochondrial integrity. Downstream, Nampt

elevates NAD*/NADH ratios and enhances neuronal survival after
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FIGURE 5

Molecular mechanisms of BHD in restoring mitochondrial

function. BHD modulates the PKCe/Nampt signaling axis through Cav-
1, elevates NAD* levels, and activates Sirt5, which in turn upregulates
the expression of mitochondrial fusion proteins (Mfn2, Opal) and
suppresses the expression of fission proteins (Drpl, Fisl), thereby
regulating mitochondrial dynamics. In addition, BHD promotes
mitophagy via the PINK1/Parkin pathway. Collectively, these
mechanisms restore mitochondrial membrane potential, improve
respiratory chain function, and enhance ATP production.

ischemia (Gomes et al., 2011; Morris-Blanco et al., 2016). Nampt’s
elevation of NAD" levels activates Sirt5 (Beaudoin et al., 2012), and
Sirt5 overexpression in turn promotes mitochondrial fusion and
limits organelle degradation (Polletta et al., 2015; Zou et al., 2018).
However, the precise post-translational modifications through
which BHD-induced = Sirt5
machinery have not been defined. Studies in purified neuronal

activation alters fission/fusion
cultures are required to confirm these effects and rule out non-
neuronal contributions.

Furthermore, Xu Y’s study reported that BHD preserved
mitochondrial morphology, protected respiratory chain function
(including complex activities, ATP content, and ATPase activity),
regulated mitochondrial dynamics (Drpl, Fisl, Mfn2, Opal),
improved mitophagy (via the PINKI/Parkin pathway), and
promoted mitochondrial biogenesis in MCAO/R rats 7 days post-
intervention (Figure 5). They further demonstrated that Caveolin-1
(Cav-1) deficiency aggravates MQC disruption and diminishes
BHD’s neuroprotection after ischemia (Xu et al, 2023). Cav-1
depletion likely impairs mitophagy and biogenesis, culminating
in mitochondrial dysfunction (Bosch et al, 2011; Jiang et al,
2022). Cav-1 may facilitate the recruitment of fission/fusion
proteins and mediate lipid trafficking within mitochondria (Xiao
et al, 2022), but these mechanisms remain to be elucidated.
Therefore, Cav-1 is a critical MQC regulator and a potential
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therapeutic target in ischemic stroke. Intriguingly, Chen X
BHD
(Chen et al.,, 2020), a discrepancy that may arise from species
differences, sampling timepoints, or brain regions analyzed.

observed decreased Cav-1 levels after treatment

These findings collectively suggest that the multi-targeted
regulation of mitochondrial homeostasis is one of the key
mechanisms through which BHD exerts its therapeutic effects
during the recovery phase. Given the dynamic nature of
mitochondrial remodeling, static measurements at a single
timepoint are insufficient. Future investigations should leverage
single-cell sequencing or spatial transcriptomics at multiple post-
ischemic intervals to chart Cav-1’s spatiotemporal dynamics.

2.6 Promotion of neuroplasticity

Enhancing neuroplasticity is vital for functional recovery after
ischemic stroke (Marques et al, 2019; Du et al., 2024). Early
investigations showed that BHD stimulates proliferation and
differentiation of neural stem cells in the cortex and dentate
gyrus of MCAO/R rats (Sun et al, 2007; Gao et al, 2009).
Additionally, BHD significantly improved neurological scores and
preserved synaptic ultrastructural integrity in pMCAO rats,
although it did not reduce infarct volume (Pan et al, 2017).
However, electrophysiological studies are required to establish
whether these structural improvements translate into enhanced
neural circuit function.

Li M etal. suggested that after 30 days of intervention in MCAO/R
rats, BHD may promote neurite outgrowth and synaptogenesis via the
AMP-activated Protein Kinase (AMPK)/cAMP Response Element-
Binding Protein (CREB) pathway, a process associated with its ability
to polarize microglia toward the M2 phenotype and astrocytes toward
the A2 phenotype during stroke recovery (Li M. et al., 2024). This
mechanism is supported at the compositional level: astragaloside IV, a
key component of BHD, has been identified as an effective AMPK
activator that drives M2 microglial polarization and facilitates axonal
remodeling (Li et al., 2024c). Furthermore, after 7 days of intervention
in MCAO/R rats, BHD ameliorated local pathology, increased
dendritic spine density, and reduced neuronal apoptosis through
the Cyclic Adenosine Monophosphate (cAMP)/Protein Kinase A
(PKA)/CREB signaling axis (Figure 6) (Mo et al, 2024). Given
that cAMP/PKA modulates growth, differentiation, metabolism,
and cell survival (Khan et al., 2021). Activation of the PKA-CREB
pathway positively influences learning and memory (Bae et al., 2019).
(BDNF), a key CREB
transcriptional target, promotes new synapse formation (Jiang
et al, 2023). In summary, BHD synergistically activates CREB—a

Brain-derived neurotrophic factor

key transcription factor—through multiple signaling pathways during
stroke recovery, thereby efficiently promoting neuroplasticity. Future
studies should validate the crosstalk among these pathways at a cell-
specific level and clarify which specific components in BHD initiate
these upstream signals. Additionally, it is essential to identify the
specific effector genes regulated by CREB that are influenced by BHD
and to evaluate whether these structural changes enable new neurons
to functionally integrate into existing neural networks.

Kong X reported that on days 7 and 21 after intervention in
MCAO/R model rats, BHD may promote the proliferation,
migration, and differentiation of neural progenitor cells (NPCs)
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FIGURE 6

Molecular mechanisms of BHD in inhibiting apoptosis. BHD
potentially inhibits Bad via the EGFR/PI3K/Akt/Bad/14-3-3 axis and
modulates Bcl-2/Bax to control Cyt ¢ release and caspase-3
activation, thereby suppressing apoptosis.

by upregulating the expression of C-X-C Chemokine Receptor Type
4 (CXCR4) and Vascular Endothelial Growth Factor (VEGF) (Kong
et al., 2014). However, direct evidence linking these factors to NPCs
migration is lacking. Furthermore, VEGF’s dual role—in promoting
blood-brain
permeability—raises concerns about potential exacerbation of

angiogenesis and increasing barrier
edema (Zhang et al., 2002). Future investigations should clarify
how BHD modulates VEGF signaling to balance neurogenesis and
vascular integrity, and employ long-term lineage tracing to confirm
functional incorporation of migrating NPCs.

Notably, extracellular vesicles (EVs) derived from BHD-
Stem Cells (NSCs)

accelerated neurological recovery in MCAO/R rats and enhanced

preconditioned  Neural significantly
NSCs proliferation/differentiation more effectively than BHD alone
(Long et al, 2023). Beyond utilizing single-cell sequencing to
investigate EV secretion mechanisms in NSCs stimulated by
BHD’s
developing nano-delivery systems to efficiently deliver BHD’s

active constituents, future efforts should focus on

holistic therapeutic profile rather than isolated components.

2.7 Promotion of angiogenesis

Reconstituting collateral blood flow via cerebral angiogenesis is
vital for ischemic stroke recovery. In the infarcted region,
angiogenesis drives microvascular sprouting and vascular
remodeling—key steps in tissue repair (Ma et al, 2018). Over
time, these new vessels deliver oxygen and nutrients to the
neurovascular niche, fostering neuronal survival and regeneration

(Arai et al., 2009).
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BHD also targets Cav-1, potentially activating the Wnt signaling
pathway and mediating effects through the metastasis-associated
lung adenocarcinoma transcript 1 (MALAT1)/Yes-associated
protein 1 (YAPI)/hypoxia-inducible factor la (HIF-la) axis
(Figure 6). This mechanism alleviates acute neurological deficits
and pathological damage in MCAO/R mice, while promoting neural
regeneration during recovery, increasing cortical blood flow and
microvascular density in ischemic brain tissue (Chen et al., 2024;
OuYang et al., 2025). The IncRNA MALAT1 is highly expressed in
neural cells and participates in post-ischemic processes such as cell
death, inflammation, and angiogenesis (Lipovich et al,, 2012). Its
neuroprotective and regulatory roles in pathological damage
following cerebral ischemia have been confirmed in MCAO
mouse models (Zhang et al., 2017). MALAT]I relies on Cav-1 for
exosome internalization (Cooper et al., 2018; Wang et al,, 2019).
MALAT]1 increases YAP1 nuclear translocation; YAP1 binds to and
stabilizes HIF-la protein, enhancing HIF-1a's transcriptional
activity to co-activate genes like VEGF, thereby promoting
angiogenesis (Zhang X. et al., 2018; Sarkar et al., 2019; Liu et al,,
2020). Functionally, this axis alleviates neurological deficits,
enhances cortical perfusion, and increases microvascular density.
Future studies should dissect the mechanisms of Cav-1-mediated
exosome uptake and directly test MALAT1’s role in orchestrating
YAPI1/HIF-1a activity. It is worth noting that calycosin-7-O-p-D-
glucoside from Radix Astragali may be a mediator through which
BHD modulates Cav-1 (Fu et al., 2014).

Experimental evidence demonstrates that BHD upregulates
VEGF and angiopoietin-1 (Ang-1), improving microvascular
density (MVD). These pro-angiogenic effects are attenuated by
Gap26, a connexin 43 (Cx43) inhibitor (Zhou et al.,, 2022). This
indicates that Cx43 mediates BHD’s pro-angiogenic action via
VEGF and Ang-1 (Figure 6). Cx43 is widely distributed in
perivascular end-feet of astrocytes and vascular cells, providing
structural and functional support for metabolic homeostasis
within the neurovascular unit (McConnell et al, 2017; Bello
et al.,, 2020). Studies have confirmed the pro-angiogenic role of
Cx43 in endothelial cells, and phosphorylated Cx43 mediates the
protective effects of erythropoietin on ischemic neurovascular unit
injury (Koepple et al., 2021; Yu W. et al., 2021). Although the specific
molecular interplay between Cx43 and VEGF/Ang-1 warrants
further investigation.

Furthermore, BHD promotes post-stroke angiogenesis by
targeting the SIRT1/VEGF signaling pathway (Figure 6) (Zheng
et al., 2018; Tang et al., 2023). Tetramethylpyrazine, a component
from Ligusticum chuanxiong, has been reported as a key active
constituent potentially responsible for activating the SIRT1/VEGF
pathway (Shu et al., 2024). SIRT1 binds the VEGF promoter to
upregulate its transcription (Zhang H. et al., 2015). Upon secretion,
VEGF engages VEGFR2 on endothelial cells to initiate pro-
angiogenic signaling (Shibuya and Claesson-Welsh, 2006). Yet,
VEGF also increases vascular permeability and edema by
loosening endothelial junctions (Weis and Cheresh, 2005), posing
a therapeutic paradox. Future studies should delineate how BHD
balances VEGF’s angiogenic and permeability effects over acute and
recovery phases, and identify the downstream mediators responsible
for beneficial outcomes.

(MSC)
treating

holds
injury

Mesenchymal stem  cell transplantation

considerable promise for ischemic brain
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(Shen et al, 2012; Miyamoto et al.,, 2013). Studies show BHD-
preconditioned MSCs secrete exosomes with elevated VEGF and
miR-126—and reduced miR-221/miR-222—thereby upregulating
VEGF and Ki-67 in
cerebrovascular density (Yang et al., 2015). Optimizing BHD’s

recipient tissue and augmenting
modulation of MSC exosome cargo may enhance the clinical

efficacy of MSC-based therapies.

2.8 Inhibition of excitotoxicity

Mitigating excitotoxicity is an essential strategy for treating
ischemic stroke (Chamorro et al., 2016). After ischemia, ATP
depletion causes membrane depolarization and calcium overload.
Simultaneously, excessive release of glutamate (GLU) and aspartate
(ASP) from presynaptic terminals overstimulates NMDA and
AMPA receptors, allowing massive Ca>* and Na' influx. This
ionic imbalance drives ROS production, lipid peroxidation, and
cytoskeletal breakdown, culminating in neuronal death (Belov
Kirdajova et al., 2020; Choi, 2020; Baranovicova et al., 2023).

A study by Wang L et al. demonstrated that a 7-day intervention
with BHD reduced elevated levels of glutamate (GLU) and aspartate
(ASP) in the cerebrospinal fluid (CSF) of MCAO/R model rats, while
increasing the levels of inhibitory amino acids—glycine (Gly),
taurine (Tau), and y-aminobutyric acid (GABA) (Wang et al,
2013). Nonetheless, how BHD modulates brain amino acid pools
is unknown. Since the glutamate-glutamine cycle in astrocytes
critically maintains excitatory-inhibitory balance and supports
neuronal viability during ischemia (Stelmashook et al, 2011),
future work should test whether BHD acts by enhancing
astrocytic glutamine synthetase or glutamate uptake.

Glutamate transporter-1 (GLT-1) mediates over 90% of
synaptic glutamate uptake into astrocytes for conversion to
glutamine by glutamine synthetase (GS) (Zou et al., 2010;
Krzyzanowska et al., 2014). During ischemia, GLT-1 and GS
are downregulated, worsening excitotoxicity (Krzyzanowska
et al., 2014). BHD was shown to increase the level of pituitary
adenylate cyclase-activating polypeptide 38 (PACAP38) in the
subacute phase of MCAO/R model rats. PACAP38 promotes the
upregulation of GLT-1 and GS expression in the hippocampal
region—an effect that can be blocked by a PACAP38 inhibitor
(Ding et al., 2015). However, the study did not assess resulting
changes in infarct size or neurological outcomes. Moreover, as
GLT-1 is astrocyte-specific, it remains to be determined whether
BHD’s action is directly astrocytic or mediated via other
cell types.

Glutamate not only mediates fast synaptic transmission via
ionotropic receptors (iGluRs) but also activates metabotropic
receptors (mGluRs) that modulate intracellular signaling (Bodzeta
etal,, 2021). In ischemia, mGluR1 signaling worsens neuronal injury
(Yawata et al., 2008), highlighting glutamate receptor modulation as
an anti-excitotoxic strategy (Shen et al., 2022). Research by Zhao L
et al. confirmed that BHD downregulated both the mRNA
expression of mGluRl and glutamate levels in the striatum
during the acute phase of cerebral I/R model rats. This was
accompanied by improved behavioral scores and reduced cerebral
infarct volume 3 days after I/R (Zhao et al., 2012). However, the
pathways by which BHD decreases glutamate release and
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mGlIuR1 expression—and whether it selectively targets specific
receptor subtypes—remain unknown.

2.9 Regulation of material and energy
metabolism

Proper energy metabolism is essential for neuronal survival.
After ischemic stroke, reduced perfusion and tissue damage disrupt
homeostasis, calcium  overload,

metabolic instigating

neuroinflammation, mitochondrial failure, and excitotoxic
cascades (Zhou et al,, 2021; Awasthi et al., 2024). Thus, restoring
metabolic balance is a key therapeutic goal (Villa et al., 2013).

Studies indicate that BHD modulates post-ischemic energy
metabolism disturbances through multiple mechanisms. On one
hand, BHD has been shown to upregulate the expression of glucose
transporters (GLUTs) and monocarboxylate transporters (MCTs) in
the ischemic cortex of MCAO/R rats during the recovery phase (Li
M. et al, 2024), suggesting its potential to enhance glucose and
lactate transport. However, further quantification of actual
metabolic flux changes using techniques such as isotopic tracing
is still required. Moderate glycolysis during hypoxia maintains glial
and neuronal viability, and the resulting lactate can drive
angiogenesis (Bouzat and Oddo, 2014; Zeng et al., 2021; Dong
et al., 2022). Moreover, Tian F report that BHD activates AMPK
in ischemic brain, suggesting a role in sustaining glycolytic
metabolism and perfusion (Tian et al., 2024). Moreover, based on
preliminary evidence from metabolomics and functional validation,
BHD may correct post-ischemic cerebral energy metabolism
dysfunction by modulating the SIRT1/AMPK axis to promote
glucose uptake, activate glycolysis and the tricarboxylic acid
(TCA) cycle, and restore mitochondrial respiratory function (Hu
et al,, 2025). Confirming AMPK’s direct involvement will require
targeted AMPK inhibition studies.

Regarding neurometabolic balance, Wang R further link BHD’s
neuroprotection to sphingolipid and inositol phosphate metabolism
(Wang et al., 2024). Together, untargeted metabolomics (Tang et al.,
2022) and multi-omics analyses (Zhou et al., 2023) converge on
altered purine, glycerophospholipid, glycosphingolipid, and
glutamate pathways in the ischemic hippocampus. Notably, post-
IS glutamate accumulation triggers delayed neuronal degeneration
and death cascades (Krzyzanowska et al, 2014; Lai et al,, 2014).
However, key enzymes and transporters mediating these shifts
remain unvalidated. To translate these findings, future work
should pair proteomic target confirmation with analysis of
establish metabolic

human stroke specimens to robust

biomarkers of BHD efficacy.

2.10 Regulation of gut microbiota

Alterations in gut microbiota composition strongly influence
ischemic stroke pathophysiology and recovery (Zhang et al., 2023).
Evidence suggests gut dysbiosis plays a critical role in IS (Peh et al.,
2022), primarily mediated via the gut-brain axis through pro-
inflammatory immune responses and the accumulation of
microbial metabolites (Singh et al., 2016). Notable metabolites
include short-chain fatty acids (SCFAs), trimethylamine N-oxide
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(TMAO), tryptophan catabolites, and bile acids (BAs) (Peng et al.,
2018; Peng et al., 2018).

In humans, IS patients exhibit reduced gut microbiota diversity
with
Bacteroidaceae,

increased abundance of Actinobacteria, Proteobacteria,

and Bifidobacteriaceae, alongside decreased
Bacteroidetes, Firmicutes, Eubacterium, Faecalibacterium, and
Roseburia (Peh et al, 2022). Reduced SCFA levels, particularly
acetate, correlate with poor 3-month outcomes in a case-control
study of 140 acute IS (AIS) patients (Tan et al.,, 2021). In rodent
models, stroke disrupts gut physiology—slowing motility and
2019).

Transplanting dysbiotic microbiota from stroke donors into

promoting bacterial overgrowth (Durgan et al,
germ-free mice increases infarct size and neurological deficits
upon MCAO (Singh et al., 2016; Xia et al., 2019).

Targeting Enterobacteriaceae in MCAO mice reduces systemic
inflammation and hippocampal injury, whereas higher Lactobacillus
levels associate with reduced apoptosis and smaller infarcts in stroke
rats (Wanchao et al., 2018; Xu et al., 2021). BHD similarly enriches
beneficial taxa (e.g., Lactobacillus) and suppresses pathogenic genera
(e.g., Escherichia-Shigella, Klebsiella) the MCAO gut

microbiome. These alterations may modulate hippocampal

in

metabolism (Tang et al, 2022), yet the causal chain linking
microbial shifts and neuroprotection remains to be firmly
established.

Recent investigations on individual active constituents of BHD
have provided more direct experimental evidence for the proposed
causal links. Calycosin has been reported to modulate gut
microbiota and bile acid metabolism, thereby activating intestinal
FXR signaling, which in turn upregulates tight junction proteins
(ZO-1, Occludin) in both the colon and brain, ultimately attenuating
neuroinflammatory injury in cerebral ischemia-reperfusion models
(Zhou et al., 2025). Similarly, astragaloside IV, despite its low oral
bioavailability, has been shown in several animal studies to exert
protective effects by reshaping gut microbiota composition,
restoring intestinal barrier integrity (reducing plasma LPS
leakage), and regulating serum metabolic profiles, particularly
amino acid metabolism and the PPAR signaling pathway. In
addition, astragaloside IV can activate the Nrf2 antioxidant
pathway, thereby maintaining tight junction proteins in brain
microvascular endothelial cells and mitigating blood-brain
barrier disruption (Li et al., 2018; Li Z. et al., 2023; Xu et al., 2018).

Collectively, these findings suggest that BHD and its
constituents may act through a multilayered network: initially by
modulating gut microbiota, subsequently altering microbial
metabolites and systemic endotoxin burden, and ultimately
strengthening and  blood-brain
suppressing systemic and central inflammation to facilitate brain

intestinal barriers  while
tissue repair. It should be emphasized, however, that most of the
current evidence is derived from animal studies or single-compound
interventions, and is insufficient to establish a complete causal chain
in the context of the whole formula. To substantiate the pathway of
“BHD — gut microbiota/metabolite modulation — barrier
restoration — neuroprotection,” future studies should employ
(e.g.
transplantation, germ-free animal models, supplementation or

formula-level ~causal experiments fecal microbiota
inhibition of key strains/metabolites, barrier function assays), and
further compare the interactions and potential synergy between

isolated compounds and the full decoction.
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3 Conclusion and perspectives

BHD is a classical TCM formula for ischemic stroke that embodies
the principles of “multi-component, multi-target, and holistic
regulation.” Clinical reports and preclinical studies suggest that
BHD can improve neurological outcomes and functional recovery
with a generally acceptable safety profile (Shao et al., 2022; Wang et al.,,
2022). However, high-quality, large-scale randomized trials remain
limited. Mechanistic work to date indicates that BHD exerts synergistic
neuroprotective effects across multiple biological processes, including
attenuation of neuroinflammation and oxidative stress, modulation of
apoptosis and autophagy, promotion of neurovascular repair,
reprogramming of cerebral energy metabolism, and regulation of
gut microbiota composition.

A key finding that emerges from this systematic review is the
multifunctional role of several core signaling pathways—such as
PI3K/Akt, SIRT1, and AMPK—in mediating the pleiotropic effects
of BHD. Rather than acting in isolation, these pathways form a
complex, interconnected network that is dynamically engaged
across different pathological contexts. For instance, the PI3K/Akt
axis is recruited to suppress neuroinflammation, inhibit neuronal
apoptosis, and promote angiogenesis. Similarly, SIRT1 activation
contributes to the regulation of autophagy, energy metabolism, and
vascular repair. This context-dependent multiplexing of core
pathways fundamental ~ advantage  of
polypharmacological agents like BHD: the ability to synchronously

underscores  a
modulate multiple disease-relevant processes through a limited set of
highly leveraged signaling hubs. Future research should prioritize
mapping the cross-talk between these hubs and delineating how their
engagement varies by cell type and temporal phase after stroke.
Importantly, available evidence supports a stage-dependent view
of BHD’s actions that aligns with the evolving pathology after
cerebral ischemia. In the acute phase, BHD primarily exerts
neuroprotective effects by swiftly countering the initial damage
This through
neuroinflammation (e.g., via suppressing NLRP3 inflammasome),

cascade. is  achieved robustly  inhibiting
alleviating oxidative stress (e.g., via activating the Nrf2 antioxidant
pathway), and reducing excitotoxicity and apoptosis, thereby
the

expansion.During the subacute and recovery phases, BHD’s role

stabilizing ischemic penumbra and limiting infarct
strategically shifts from protection to reconstruction and repair. Its
mechanisms pivot towards promoting neurovascular remodeling
(e.g., via enhancing angiogenesis through VEGF signaling and
via CREB

reprogramming (e.g., via SIRT1/AMPK axis), and restoring

synaptogenesis activation), regulating metabolic
systemic homeostasis (e.g., via modulating peripheral immunity
and gut microbiota). This multi-faceted approach underpins its
efficacy in facilitating long-term neurological and functional
recovery. These stage-specific patterns are supported mainly by
animal and in vitro data; translation to defined clinical time
windows requires further validation. Current evidence suggests
that BHD’s therapeutic effects likely arise from the synergy
among: (1) direct actions of brain-penetrant compounds on
neuronal and glial targets; (2) peripheral immunomodulation that
mitigates systemic inflammation and secondary brain injury; and (3)
remodeling of the gut microbiome and production of neuroactive
metabolites that influence brain function via the gut-brain axis. This
multi-pathway model aligns well with the holistic philosophy of
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TCM and helps explain how BHD can coordinate restorative
responses across multiple organ systems.

Several critical gaps must be addressed to advance BHD toward
evidence-based, precision use. First, mechanistic studies have largely
traced isolated signaling nodes; the crosstalk among pathways, the cell-
type specificity of effects (neurons versus microglia, astrocytes,
endothelial cells, etc.), and the temporal dynamics across defined
post-ischemic windows remain incompletely characterized. Second,
although multiple bioactive constituents (for example, astragaloside
IV and paeoniflorin) have been identified (Liu et al, 2022), the net
therapeutic effect likely arises from complex interactions (synergy,
additivity, or antagonism) among many compounds; rigorous
dissection of these interactions is lacking. Third, practical translational
challenges—bioavailability, brain delivery, formulation standardization,
and optimized dosing/time-window—require targeted solutions.

To address these gaps we recommend a coordinated, hypothesis-
driven research agenda combining mechanistic precision and
translational relevance. Key experimental approaches should include:
(1) targeted pharmacokinetics and BBB penetration studies using
labeled compounds to quantify brain exposure and metabolite
formation; (2) cell-type-specific interventions, such as conditional
(cell-specific) knockouts or genetic fate-tracing, to determine which
cell populations mediate particular effects; (3) single-cell and spatial
omics across multiple post-ischemic time points to resolve
spatiotemporal pathway activation; (4) metabolic flux analyses
(stable isotope tracing) to quantify changes in glucose/lactate/TCA
flux and link transporter expression to functional metabolism; (5)
gut-brain causal experiments, including germ-free models and fecal
microbiota transplantation, to test whether microbiota shifts mediate
neuroprotection; and (6) combinatorial pharmacology (fractionation,
reconstitution, and systems pharmacology) to map synergy/antagonism
among constituent groups. Paralle] development of brain-targeted
delivery platforms (e.g., nanoparticle or exosome carriers) should be
pursued to improve CNS bioavailability where appropriate.

In summary, BHD represents a promising multi-target therapeutic
strategy for ischemic stroke whose biological rationale is increasingly
supported by preclinical data. Realizing its translational potential will
depend on combining modern mechanistic tools with rigorous
pharmacology and carefully timed clinical studies to define which
components act where and when—and thereby to optimize
formulations, delivery, and patient selection.
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