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Background: The effectiveness of immunomodulatory therapies in sepsis is often
hampered by profound and patient-specific immune heterogeneity. Classical
monocytes play a central role in the progression toward sepsis-induced
immunoparalysis, with their apoptotic rate serving as a sensitive marker of
immune dysfunction. Traditional bulk transcriptomic approaches fail to resolve
this complexity. Here, we harness single-cell RNA sequencing to delineate the
apoptotic landscape of classical monocytes and identify robust molecular
biomarkers for immunological stratification and targeted intervention.
Methods: We integrated single-cell and bulk transcriptomic data from four
independent cohorts. A machine learning pipeline incorporating SVM, RF,
XGB, and GLM algorithms was used to identify hub genes associated with
monocyte apoptosis. A diagnostic nomogram was constructed based on the
selected gene signature and validated across external datasets. Clinical relevance
was confirmed through Western blot analysis of purified monocytes from sepsis
patients and healthy controls.
Results: A four-gene signature (G0S2, GZMA, ITM2A, PAG1) emerged as a specific
apoptotic fingerprint of classical monocytes. The diagnostic model based on
these signature genes demonstrated excellent discriminatory performance,
effectively stratifying patients into high-risk and low-risk groups
(AUC >0.8 across multiple validation cohorts), with each risk group exhibiting
distinctly different immune states. High-risk patients exhibited a pro-
inflammatory transcriptomic profile with elevated apoptotic pathway activity
(e.g., neutrophil degranulation), whereas the low-risk group showed
enrichment in adaptive immunity and T cell receptor signaling. Protein-level
validation in clinical samples corroborated the transcriptomic findings.
Conclusion: This study elucidates a critical facet of immune heterogeneity in
sepsis through the identification of a validated, four-gene apoptotic signature in
classical monocytes. Beyond its diagnostic utility, this signature serves as a
molecular indicator of immune state, enabling refined patient stratification.

OPEN ACCESS

EDITED BY

Dawei Chen,
University of Kiel, Germany

REVIEWED BY

Prabhakar Mujagond,
Southern Medical University, China
Xionghui Ding,
Children’s Hospital of Chongqing Medical
University, China

*CORRESPONDENCE

Yan Zhang,
13281203952@163.com

Xiaorong Deng,
18121870196@189.cn

Haiying Zhou,
zhouhaiying1008@163.com

†These authors have contributed equally to
this work

RECEIVED 29 July 2025
ACCEPTED 17 September 2025
PUBLISHED 03 October 2025

CITATION

Duan W, Chen Q, Li W, Zhou H, Deng X and
Zhang Y (2025) Decoding monocyte
heterogeneity in sepsis: a single-cell apoptotic
signature for immune stratification and guiding
precision therapy.
Front. Pharmacol. 16:1675887.
doi: 10.3389/fphar.2025.1675887

COPYRIGHT

© 2025 Duan, Chen, Li, Zhou, Deng and Zhang.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 03 October 2025
DOI 10.3389/fphar.2025.1675887

https://www.frontiersin.org/articles/10.3389/fphar.2025.1675887/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1675887/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1675887/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1675887/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1675887/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2025.1675887&domain=pdf&date_stamp=2025-10-03
mailto:13281203952@163.com
mailto:13281203952@163.com
mailto:18121870196@189.cn
mailto:18121870196@189.cn
mailto:zhouhaiying1008@163.com
mailto:zhouhaiying1008@163.com
https://doi.org/10.3389/fphar.2025.1675887
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2025.1675887


These findings lay the groundwork for precision immunopharmacology, where
apoptosis-targeted or anti-inflammatory therapies can be tailored to individual
immune profiles.
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1 Introduction

Sepsis represents a critical global public health challenge.
According to statistics, there were approximately 48.9 million
cases of sepsis worldwide in 2017, with a mortality rate of 22.5%,
accounting for nearly 20% of all global deaths (Rudd et al., 2020;
Gavelli et al., 2021). The elderly, individuals with compromised
immune function, and patients with underlying conditions such as
diabetes, malignancies, or chronic kidney disease are particularly at
high risk for developing sepsis (Meyer and Prescott, 2024). Although
advances in the treatment and diagnosis of sepsis have been achieved
in high income countries in recent years, the incidence of sepsis
continues to rise (Fleischmann et al., 2016). Its persistently high
incidence, elevated mortality, frequent complications, and poor
prognosis remain significant concerns. Therefore, identifying
novel and sensitive biomarkers for early diagnosis and timely
intervention is essential for improving patient outcomes.

While sepsis involves a systemic immune response engaging
multiple cell lineages, classical monocytes are uniquely positioned at
the nexus of hyperinflammation and subsequent immunoparalysis.
Their functional state serves as a critical indicator of overall immune
competence, and their apoptotic rate is a sensitive marker of the
immune dysregulation that drives sepsis progression (Giamarellos-
Bourboulis et al., 2020). Therefore, focusing on this specific cell type
offers a granular yet clinically relevant window into the
pathophysiological mechanisms of sepsis, providing a strategic
advantage for identifying potent biomarkers and therapeutic targets.

In the complex pathophysiological process of sepsis, monocytes
serve not only as key regulators of the innate immune response but
also play a central role throughout the progression of sepsis-induced
immunosuppression. Acting as primary components of innate
immune surveillance, the functional status of monocytes is a
critical indicator of overall immune competence. In the early stages
of sepsis, following a severe infectious insult, the host immune
response rapidly shifts from an initial hyperinflammatory phase to
a state of immunosuppression—a transition that is pivotal in driving
disease progression and secondary infections. A hallmark of this
transition is “monocyte reprogramming” (Yao et al., 2023): under
persistent stimulation by pathogen-derived products such as
endotoxins, production of pro-inflammatory cytokines (e.g., TNF-
α, IL-6) by monocytes is significantly suppressed, while the secretion
of anti-inflammatory factors such as IL-10 is markedly promoted.
Immunosuppression is largely facilitated by the phenotypic shift of
monocytes toward an anti-inflammatory state (Liu et al., 2019).
Concurrently, the downregulation of human leukocyte antigen-DR
(mHLA-DR) expression on the surface of monocytes represents
another key feature of this suppressed immune state (Washburn
et al., 2019). mHLA-DR expression directly reflects monocyte
activation, and its reduction is widely recognized as a biomarker of
immunosuppression, correlating strongly with increased mortality
and infection risk in patients with sepsis (Monneret et al., 2006; Venet

and Monneret, 2018; Ożańska et al., 2020). Recent studies further
suggest that the severity of this immunosuppressive state directly
influences the therapeutic efficacy of immune adjuvants (e.g.,
granulocyte-macrophage colony-stimulating factor, GM-CSF)
(Leijte et al., 2020; Bodinier et al., 2021).

In addition to functional impairment, the depletion of immune
cell populations—particularly monocyte apoptosis—is another
major driver of immunosuppression in sepsis (Nedeva et al.,
2019). Studies have demonstrated that apoptosis of peripheral
blood monocytes is significantly elevated in patients with sepsis
(Reséndiz-Martínez et al., 2017), leading to a marked reduction in
their numbers. This quantitative loss directly compromises key
immune functions, including antigen presentation, cytokine
secretion, and pathogen phagocytosis, thereby rendering the host
more susceptible to secondary infections and perpetuating a vicious
cycle of immunosuppression (Mohri et al., 2006). Importantly, both
monocyte dysfunction and apoptosis serve not only as critical
biomarkers for prognostic assessment but also as promising
therapeutic targets. Current research has focused on restoring
monocyte function and delaying apoptosis through the use of
immunostimulatory agents—such as granulocyte-macrophage
colony-stimulating factor (GM-CSF) and interferon-gamma
(IFN-γ)—or apoptosis inhibitors. These strategies have shown
potential in improving clinical outcomes in septic patients
(Meisel et al., 2009). Therefore, a deeper understanding of
monocyte apoptosis and the development of targeted
interventions may offer novel and effective immunomodulatory
approaches for the treatment of sepsis.

Early recognition and timely intervention are critical for
improving the survival of patients with sepsis. Compared to
conventional inflammatory biomarkers as exemplified by
C-reactive protein (CRP) and procalcitonin (PCT), the level of
monocyte apoptosis offers a more direct and sensitive reflection
of the immune dysregulation characteristic of sepsis. scRNA-seq
represents a cutting-edge approach that enables the clustering of
cells to investigate intergroup differences in gene expression and
cellular progression (Davis et al., 2021). This work combined single-
cell and bulk RNA sequencing data and employed multiple machine
learning algorithms to systematically identify key genes associated
with monocyte apoptosis in sepsis. Utilizing these genes, we
developed and validated a diagnostic model for predicting sepsis
risk. Further analyses revealed significant differences in immune
infiltration patterns andmicroenvironment features between patient
groups stratified by risk. Notably, this study is the first to incorporate
monocyte apoptosis into the early diagnostic framework for sepsis,
representing a paradigm shift from the traditional focus on
inflammatory responses to a deeper investigation of immune
dysfunction. This novel approach provides new insights for
achieving earlier and more precise diagnosis and risk
stratification, offering the potential to gain valuable time for
clinical intervention and improve patient outcomes.
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2 Materials and methods

2.1 Download and processing of
conventional transcriptome data

For the purpose of model training, the GSE65682 dataset was
sourced from the GEO repository and applied as the primary
training cohort in this study. This dataset includes 430 sepsis
samples and 42 healthy control samples. The GSE26440,
GSE95233, and GSE26378 datasets were used as independent
validation cohorts, comprising 98 sepsis samples and 32 healthy
controls, 102 sepsis samples and 22 healthy controls, and 82 sepsis
samples and 21 healthy controls, respectively. During data
preprocessing, samples with missing gene expression values in
more than 50% of genes were excluded. Additionally, genes with
low expression frequency—defined as presence in less than half of
the retained samples—were filtered out to enhance the robustness of
the analysis.

2.2 Acquisition and preprocessing of single-
cell RNA-Seq data

GSE167363, a single-cell transcriptomic dataset, was
downloaded from the GEO database to support downstream
analyses. This dataset comprises 12 sepsis samples and 2 healthy
control samples. The “Seurat” R package (version 5.1.0) was utilized
for single-cell data analysis, with normalization conducted via the
“NormalizeData” function. Mean expression and dispersion
parameters were used to screen for highly variable genes. Cell
clustering was carried out using the “FindClusters” algorithm,
which is optimized based on the shared nearest neighbor (SNN)
modularity approach, across 30 principal components (PCs), with
the resolution parameter set to 1.0, resulting in 21 distinct clusters.
Subsequently, t-distributed stochastic neighbor embedding (t-SNE)
was applied using the “RunTSNE” function to visualize cellular
distributions. Differentially expressed genes (DEGs) were identified
with the “FindAllMarkers” function in Seurat, enabling cluster
annotation and evaluation of cell-type proportions. After PCA
and clustering were conducted on the normalized expression
data, Uniform Manifold Approximation and Projection (UMAP)
was used for dimensionality reduction visualization. The number of
principal components used was determined according to the elbow
curve, and clustering was conducted at multiple resolutions.
Automatic annotation of cell clusters was performed using both
SingleR and ScType, allowing for robust identification and cross-
validation of cell types. The final cell-type annotations were
integrated and used for downstream analyses and visualizations.

2.3 Analysis of AUC score of apoptosis
related genes

A total of 21,896 apoptosis-related genes were retrieved from the
GeneCards database (https://www.genecards.org/). Gene set
enrichment analysis (GSEA) was performed using the AUCell
package to evaluate the expression activity of apoptosis-related
genes at the single-cell level. Specifically, enrichment of

apoptosis-associated genes was quantified per cell by calculating
the corresponding area under the curve (AUC). Cells with higher
AUC scores were considered to exhibit elevated expression of
apoptosis-associated genes.

2.4 Cell communication analysis

To explore cell-to-cell signaling networks, we utilized the
CellChat R package (version 1.6.1), with a particular focus on
interactions between classical monocytes and other immune cell
populations. CellChat infers cell–cell communication networks by
quantifying interactions between receptor–ligand binding events
and their downstream signaling pathways. The results were
visualized using heatmaps, which illustrated the enrichment and
intensity of ligand–receptor interactions across different cell types.
In addition, using CellChat, we quantified the relative impact of
endogenous and exogenous signaling routes within each cell type,
thereby revealing differential cellular responses to external cues
within the sepsis-associated microenvironment.

2.5 Time series analysis is proposed

We performed pseudotime analysis using the Monocle2 toolkit,
focusing on genes exhibiting elevated expression variability
(dispersion ≥1) and average expression levels ≥0.1. This analysis
enabled the construction of pseudotemporal trajectories, outlining
the developmental progression of peripheral blood cells in sepsis and
capturing dynamic changes in cellular states. Branch expression
analysis modeling was further applied to explore gene expression
alterations involved in cell fate decisions. A heatmap was generated
to visualize the expression patterns of the top 10 apoptosis-related
genes across different trajectory branches, highlighting lineage-
specific transcriptional changes. Notably, we conducted an
independent pseudotime trajectory analysis specifically for
classical monocytes, which revealed their developmental
progression and differentiation within the sepsis-associated
microenvironment.

2.6 Screening of DEGs

To identify cell type–specific marker genes, differential
expression analysis was performed using the FindAllMarkers
function in the Seurat package (version 5.1.0). The parameters
were set as follows: min.pct to 0.1 and logfc.threshold to 0.25.
This threshold corresponds to a natural log fold change, which is
the default for the function. For final screening and consistency with
bulk RNA-seq analysis, we retained genes with an adjusted
P-value <0.05 and an absolute log2 fold change ≥0.58.

Differential expression analysis for bulk transcriptomic data was
carried out via the limma R package (version 3.58.1). To address
multiple comparisons, adjusted P values were calculated using the
Benjamini–Hochberg procedure. Genes meeting the criteria of
FDR <0.05 and an absolute log2 fold change ≥0.58 were retained
for further analysis. DEGs common to the GSE65682, GSE26440,
GSE95233, and GSE26378 datasets were identified by intersecting
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DEG lists, resulting in a consistent set of differentially expressed genes
between septic and normal blood samples obtained from GEO.

2.7 Screening of genes related to classical
mononuclear cell apoptosis in sepsis

We applied Venn analysis to extract common genes shared
across three gene sets, one of which consisted of DEGs
distinguishing sepsis from healthy controls in GEO datasets,
classical monocyte-associated genes, and apoptosis-related genes.
The overlapping genes were defined as apoptosis-related genes
within classical monocytes collected from blood samples of
patients suffering from sepsis (referred to as inter genes).

2.8 Establishment and verification of
diagnostic risk model

To uncover diagnostic biomarkers relevant to sepsis, four
machine learning algorithms were employed using a combination
of R packages, including caret, DALEX, e1071, randomForest, and
glmnet. Four widely adopted machine learning algorithms—SVM,
RF, XGB, and GLM—were employed to construct the diagnostic
model. The top 15 genes ranked by importance in each algorithm
were extracted, and the intersecting genes among all four methods
were defined as hub genes for diagnostic model construction.

Machine learning models were developed employing the caret R
package (version 6.0.91), incorporating RF, SVM, GLM, and XGB
algorithms. RF operates by building numerous uncorrelated decision
trees and aggregating their outputs for classification or regression.
SVM constructs a hyperplane in the feature space to optimally separate
negative and positive samples based on the maximum margin
principle. GLM extends traditional linear regression to allow flexible
modeling of relationships between the outcome variable and both
categorical and continuous predictors. XGBoost, a powerful gradient
boosting framework, constructs decision trees sequentially tominimize
classification error and avoid overfitting. Each model was constructed
using default parameters and validated via five-fold cross-validation.
Interpretability analysis was conducted using DALEX (version 2.4.0),
providing graphical visualizations of prediction distributions and
feature importance across the four algorithms.

Univariate and multivariate logistic regression analyses were
conducted using the broom package (version 1.0.6). A diagnostic
RiskScore was calculated based on the regression coefficients using
the formula: RiskScore = β1X1 + β2X2 + . . . + βnXn, where β
represents the regression coefficient and X denotes gene
expression values. RiskScore calculations were applied to stratify
subjects from both training and validation cohorts into distinct risk
categories. The model’s diagnostic capability was evaluated through
receiver operating characteristic (ROC) curves, which reflect its
overall predictive performance.

2.9 Construction of the nomogram model

Based on the expression patterns of the identified hub genes, we
carried out both univariate and multivariate logistic regression

analyses to screen for independent predictors associated with
sepsis. These selected variables were then incorporated into the
construction of a diagnostic nomogram. Model building and
visualization were conducted using the rms package (v6.7-1). The
resulting nomogram was developed to estimate the probability of
sepsis occurrence. To evaluate the agreement between predicted and
actual outcomes, a calibration plot was generated. The decision
curve analysis (DCA) was applied to assess the clinical utility of the
model across various threshold levels. Additionally, a clinical impact
curve was plotted to further validate the model’s effectiveness in
identifying individuals at high risk. Finally, the nomogram’s
discriminative capacity was tested in three external validation
datasets—GSE26440, GSE95233, and GSE26378—using ROC
curve analysis.

2.10 Immune microenvironment analysis

We employed the CIBERSORT and single-sample GSEA
(ssGSEA) algorithms to evaluate differences in immune cell
infiltration between high and low-risk groups, and among
subgroups with high expression levels of the 4 hub genes.

2.11 GSEA analyse

GSEA was performed to explore the enrichment from the
curated gene set database c2.all.v2024.1.Hs.symbols between high-
and low-RiskScore groups. Enrichment results were considered
significant when the |NES| exceeded 1 and P value was <0.05,
ensuring the robustness and relevance of the enrichment results.

2.12 Clinical sample collection and
mononuclear cell separation

The Ethics Committee of the First Affiliated Hospital of
Chengdu Medical College approved the study protocol, and
written informed consent was obtained from all enrolled
individuals. Six patients diagnosed with sepsis and admitted to
our hospital between February and April 2025 were enrolled as
the experimental group. Six age- and sex-matched healthy
volunteers recruited during the same period served as the control
group. For each subject, a 10 mL sample of fasting peripheral venous
blood was obtained from each participant in the early morning.
Ficoll density gradient centrifugation was employed to isolate
peripheral blood mononuclear cells (PBMCs). Monocytes were
subsequently purified using CD14 magnetic bead–based selection.
Flow cytometry confirmed that the purity of the isolated monocytes
exceeded 95% in all samples.

2.13 Western blot assay

Total protein was extracted from isolated monocytes, and
protein concentration was determined using the bicinchoninic
acid (BCA) assay. Following separation by SDS-PAGE, proteins
were transferred onto polyvinylidene difluoride (PVDF)
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FIGURE 1
Single-cell transcriptomic analysis of sepsis (A)UMAP visualization depicting cell clusters identified via cell-specificmarkers, revealing 12 distinct cell
types including classical monocytes, non-classical monocytes, and natural killer cells. (B) Bar graph illustrating the distribution of cell subsets in sepsis,
highlighting Naive CD4+ T cells, Natural killer cells, and Classical monocytes as the most abundant populations. (C) Pseudotime trajectory analysis
showing cellular developmental trajectories and state transitions. (D) Pseudotime trajectory of classical monocytes, depicting their differentiation
process within the septic microenvironment. (E) Temporal expression profiles of apoptosis-related genes across pseudotime. (F) Cell-cell

(Continued )
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membranes. The PVDF membranes were incubated overnight at
4 °C with primary antibodies targeting G0S2 (Abcam, ab236113; 1:
1000), GZMA (Proteintech, 11288-1-AP; 1:1000), ITM2A
(Proteintech, 14407-1-AP; 1:1000), and PAG1 (Proteintech,
25029-1-AP; 1:1000). After washing, membranes were treated the
next day with horseradish peroxidase (HRP)-conjugated secondary
antibodies, followed by signal detection using an enhanced
chemiluminescence (ECL) system. Densitometric analysis of
protein bands was performed using ImageJ software. The
expression levels of target proteins were normalized to β-actin,
which served as the internal loading control.

2.14 Statistical analysis

All statistical analyses were carried out using R software. Group
comparisons between two datasets were evaluated using the
Wilcoxon rank-sum test, while differences among three or more
groups were assessed via the Kruskal–Wallis test. Logistic regression
and survival analyses were performed, with survival differences
evaluated using the log-rank test. Statistical significance in
graphical outputs was denoted as follows: ns (not significant,
p ≥ 0.05), * (p < 0.05), ** (p < 0.01), and *** (p < 0.001).

3 Results

3.1 Single-cell transcriptomic analysis

3.1.1 Dimensionality reduction, clustering, and
annotation of single cells

To characterize the transcriptomic profiles of distinct immune cell
subsets in sepsis, we analyzed the GSE167363 single-cell RNA-seq
profile. t-SNE analysis partitioned the cells into 21 distinct clusters.
According to the expression of known cell-specific markers, these
clusters were annotated, resulting in the identification of 12 distinct
immune cell types. Among them, classical monocytes accounted for
13.6% (n = 4,457) of the total cells, while non-classical monocytes
represented only 0.9% (n = 293). UMAP visualization demonstrated
well-defined clustering and clear separation between cell populations,
indicating high accuracy and reliability of the annotation (Figure 1A).
In addition, a bar plot of cell counts further illustrated the distribution
of each cell subset across the samples (Figure 1B). Notably, such as
CD4+ naïve T cells and natural killer (NK) cell populations, and
classical monocytes were markedly enriched in the sepsis condition.

3.1.2 Pseudotime analysis
To infer the developmental continuum of classical monocytes in

the septic microenvironment, we performed pseudotime analysis. The
resulting trajectory map illustrates a potential progression of cellular

states rather than a direct timeline of the clinical disease course
(Figure 1C). The analysis revealed that classical monocytes were
distributed along the principal developmental branch, which we
conceptually divided into early, middle, and late pseudotime stages.
This distribution suggests that these cells undergo significant
transcriptomic shifts that may correlate with different phases of the
host response during sepsis (Figure 1D). To further elucidate the
temporal dynamics of apoptosis-related genes, ten such genes were
mapped along the pseudotime trajectory. Clustering analysis revealed
three distinct expression patterns: Pattern 1 (CASP3, CFLAR, BAX):
high expression in the early stage followed by a gradual decline; Pattern
2 (CASP9): stable expression during the early and middle stages with a
marked increase in the late stage; Pattern 3 (XIAP, TNFSF10, BCL2,
FAS, TP53): low expression in the early stage, peaking in the middle
stage, and decreasing in the late stage (Figure 1E).

3.1.3 Cell–cell communication analysis
The results of cell–cell communication analysis revealed a

complex network of ligand–receptor interactions among various
immune cell populations within the sepsis-associated immune
microenvironment (Figure 1F). Overall, non-classical monocytes
and neutrophils exhibited prominent signaling activity as major
signal senders, engaging in high-frequency interactions with nearly
all other immune cell types. This suggests their central regulatory
role in the inflammatory network during sepsis. Notably, the
number of outgoing signals from non-classical monocytes to
neutrophils peaked, indicating a potential signal amplification
role in the acute inflammatory response.

In contrast, classical monocytes displayed a “low-sender, high-
receiver” communication profile. Although they participated in
relatively fewer outgoing interactions, the strength of incoming
signals was markedly elevated, particularly from non-classical
monocytes and ISG high cell populations (Figures 1G,H).
Ligand–receptor pathway analysis further indicated that classical
monocytes primarily received signals through pathways such as
GALECTIN and THBS, which are associated with apoptosis,
adhesion, and chemotaxis. These exogenous signals may contribute
to the induction of programmed cell death or functional exhaustion of
classical monocytes during the course of sepsis (Figures 1I,J).

3.2 Identification of apoptosis-related genes
in classical monocytes associated
with sepsis

By identifying DEGs between healthy individuals and patients with
sepsis, we intersected DEGs from four GEO datasets—GSE65682,
GSE26440, GSE95233, and GSE26378—and obtained a total of
446 shared DEGs (Figures 2A–E). Further single-cell differential
expression analysis of sepsis samples yielded 572 classical

FIGURE 1 (Continued)

communication network demonstrating interactions among various cell types. (G) Interaction diagram highlighting communication patterns
between classical monocytes and other immune cells. (H)Heatmap illustrating the intensity and patterns of intercellular communication among different
cell subsets. (I,J) Circle plots illustrating the incoming (I) and outgoing (J) signaling patterns for classical monocytes. The plots show the relative
contribution of other cell types in sending signals to (incoming) and receiving signals from (outgoing) classical monocytes across different
signaling pathways.
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FIGURE 2
Screening of apoptosis-related genes in classical monocytes during sepsis (A–D) Volcano plots displaying differentially expressed genes (DEGs)
fromdatasets GSE65682, GSE26440, GSE95233, andGSE26378, highlighting up- and downregulated genes. (E) Venn diagram illustrating the intersection
of DEGs identified across the four datasets. (F) Venn diagram showing overlaps among classical monocyte-specific genes, apoptosis-related genes, and
identified DEGs. (G) Forest plot of univariate logistic regression analysis for the top 20 significant apoptosis-related genes expressed in classical
monocytes (ranked by P-value). The complete forest plot for all 40 genes is available in Supplementary Figure S1.
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monocyte–associated genes. We extracted 21,896 genes related to
apoptosis from the GeneCards resource. Intersecting these three
gene sets resulted in the identification of 40 apoptosis-related genes
specifically expressed in classical monocytes in sepsis (Figure 2F).
Univariate logistic regression analysis of these 40 intersecting genes
revealed indicating that 3 acted as risk contributors, whereas 37 served
protective roles (Figure 2G).

3.3 Selection of hub genes involved in
apoptosis of classical monocytes in sepsis

To further screen for subtype-specific genes with strong
diagnostic potential, we developed and validated four machine

learning algorithms—random forest (RF), support vector
machine (SVM), generalized linear model (GLM), and extreme
gradient boosting (XGB)—using the expression profiles of
40 overlapping genes from the training dataset. Model
interpretability was assessed using the DALEX package, and
residual distribution plots were generated on the testing cohort
for each algorithm. The top 15 predictive features for each model
were ranked based on their root mean square error (RMSE) values
(Figure 3A). Among the four models, SVM, GLM, and XGB
demonstrated relatively lower residuals (Figures 3B,C). Five-fold
cross-validation was subsequently performed to validate the model
results, and ROC curve analysis was used to evaluate the
discriminatory performance of the four algorithms on the test
dataset. The AUC values for all models were comparably high

FIGURE 3
Machine learning modeling and hub gene identification (A) Bar plots indicating the top 15 genes ranked by feature importance across four machine
learning models (RF, XGB, GLM, SVM). (B) Comparison of cumulative residual curves across different predictive models. (C) Boxplots of residuals with red
dots indicating root mean squared error (RMSE) for each model. (D) Receiver operating characteristic (ROC) curves illustrating the predictive accuracy of
the four machine learning algorithms on the test dataset. (E) Venn diagram illustrating the intersection of important feature genes across the four
models. (F) ROC curve analysis of candidate genes in the testing dataset.
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FIGURE 4
Expression profiling of hub genes (A–D) Univariate logistic regression forest plots depicting hub genes across different datasets. (E–H) Box plots
illustrating the differential expression of hub genes between sepsis and control samples across various datasets. The plots display themedian, interquartile
range, and data distribution for each group.
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(GLM, AUC = 0.997; SVM, AUC = 1; RF, AUC = 1; XGB, AUC = 1;
Figure 3D). We then identified the intersection of the top 15 ranked
features across all four models and selected four hub genes—G0S2,
GZMA, ITM2A, and PAG1—for further analysis (Figure 3E). Model
performance was further validated by applying five-fold cross-
validation on the identified key genes. Among the four candidate
genes, PAG1 exhibited the highest AUC value (AUC = 0.963), as
shown in Figure 3F.

3.4 Expression profiles of hub genes

Logistic regression analysis revealed that G0S2 and
PAG1 functioned as risk factors, while GZMA and ITM2A
served as protective factors across the GSE65682, GSE26440,
GSE95233, and GSE26378 datasets (Figures 4A–D).

Transcriptomic profiling further demonstrated that G0S2 and
PAG1 were highly expressed in sepsis samples, whereas GZMA and
ITM2Awere significantly downregulated in the same samples across
all four datasets (Figures 4E–H).

Pseudotime trajectory analysis of hub genes showed that
G0S2 and PAG1 were predominantly expressed at early

pseudotime points, followed by a rapid decline, suggesting their
potential roles in early inflammatory sensing and negative feedback
regulation. GZMA exhibited a transient expression peak during the
intermediate stage, which quickly diminished, indicating a potential
short-lived intracellular or extracellular antimicrobial/apoptotic
activation function. In contrast, ITM2A maintained elevated
expression levels throughout the middle-to-late stages, possibly
contributing to monocyte development and survival, and may
play a role in counteracting prolonged inflammation (Figure 5A).

In clinical peripheral blood samples, protein levels of G0S2 and
PAG1 were significantly upregulated, while GZMA and ITM2A
were downregulated in monocytes isolated from sepsis patients,
compared with healthy controls (P < 0.05 for all; Figure 5B).

3.5 Construction and validation of a
predictive model for sepsis risk

To predict sepsis susceptibility, we established a nomogram
integrating G0S2, GZMA, ITM2A, and PAG1 expression levels
(Figure 6A). Risk scores were computed according to the formula
below: RiskScore = (G0S2 × 1.73) + (GZMA × −0.11) +

FIGURE 5
Validation of hub gene expression in clinical samples (A) Heatmap showing temporal dynamics of hub gene expression along pseudotime. (B)
Western blot validation of hub gene protein expression in clinical samples.

Frontiers in Pharmacology frontiersin.org10

Duan et al. 10.3389/fphar.2025.1675887

mailto:Image of FPHAR_fphar-2025-1675887_wc_f5|tif
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1675887


(ITM2A × −0.86) + (PAG1 × 2.04). The calibration plot showed a
strong concordance between predicted and actual sepsis probabilities,
indicating excellent calibration performance of the model (Figure 6B).
DCA indicated that, within the threshold probability range of 0.4–0.8,
the model yielded a higher net clinical benefit than the strategies of

treating all or none of the patients (Figure 6C). In addition, the clinical
impact curve demonstrated that, over a high-risk threshold interval of
0.2–1.0, the number of individuals predicted as high-risk closely
paralleled the number of actual positive cases, suggesting strong
clinical applicability of the model (Figure 6D). Finally, ROC curves

FIGURE 6
Development and validation of the nomogram-based predictivemodel (A)Nomogramdiagnostic predictionmodel constructed usingG0S2, ITM2A,
PAG1, and GZMA. (B) Calibration curves assessing consistency between predicted and actual observed values. (C) Decision Curve Analysis (DCA)
evaluating the clinical net benefit of the nomogram. The x-axis represents the threshold probability for diagnosing sepsis, while the y-axis represents the
net benefit. The curve for our model (red line) shows a greater net benefit across a wide range of clinically relevant thresholds compared to the
strategies of treating all patients (dashed gray line) or no patients (solid blue line), indicating its potential for clinical utility. (D) Clinical impact curve
illustrating the practical application of the nomogram. At any given risk threshold on the x-axis, the red curve shows the number of individuals predicted to
be high-risk, while the blue curve shows the number of true positive cases within that group. The close approximation of the two curves demonstrates the
model’s strong performance in accurately identifying patients at high risk of sepsis in a clinical setting. (E–H) ROC curve analyses evaluating predictive
accuracy of the model in the training and multiple validation datasets.
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were plotted for the training cohort (GSE65682) and the validation
cohorts (GSE26440, GSE95233, and GSE26378) to evaluate the
predictive accuracy of the model. The results showed that all

datasets achieved an AUC greater than 0.7, indicating good
discriminative ability and predictive performance of the model
(Figures 6E–H).

FIGURE 7
Immune microenvironment analysis (A,B) Correlation plots illustrating immune cell infiltration differences analyzed by CIBERSORT relative to the
RiskScore. (C,D) Correlation plots illustrating immune cell infiltration differences analyzed by ssGSEA relative to the RiskScore.
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3.6 Immune infiltration analysis

The CIBERSORT algorithm revealed notable differences in
immune cell infiltration between the risk groups. In the low-risk
cohort, higher proportions of memory B cells, CD8+ T lymphocytes,
naïve CD4+ T cells, activated natural killer (NK) cells, and
monocytes were observed relative to the high-risk
group. Conversely, the high-risk group displayed enhanced
infiltration of naïve B cells, plasma cells, activated memory CD4+

T cells, γδ T cells, resting NK cells, as well as both M0 and
M1macrophage populations, along with eosinophils (Figures 7A,B).

Complementary results from ssGSEA indicated that individuals in
the high-risk group exhibited significantly elevated enrichment scores
for activated dendritic cells, effector memory CD4+ T cells, γδ T cells,
macrophages, and plasmacytoid dendritic cells. In contrast, the low-risk
group demonstrated greater abundance of diverse immune cell subsets,
including activated B cells, activated CD8+ T cells, CD56̂ bright̂ and
CD56̂ dim^NK cells, central memory CD4+ T cells, effector memory
CD8+ T cells, immature B cells and dendritic cells, myeloid-derived
suppressor cells (MDSCs), memory B cells, monocytes, NK cells,
natural killer T (NKT) cells, neutrophils, regulatory T (Treg) cells, T
follicular helper (Tfh) cells, and Th1 cells (Figures 7C,D).

3.7 GSEA analyse

GSEA analysis revealed that the high-risk group was
significantly enriched in pathways associated with inflammation
and immune dysregulation, including:

REACTOME_NEUTROPHIL_DEGRANULATION, ZHOU_
INFLAMMATORY_RESPONSE_LPS_UP, REACTOME_INTERLE
UKIN_1_FAMILY_SIGNALING, In addition, the apoptosis-related
pathway HAMAI_APOPTOSIS_VIA_TRAIL_UP was also markedly
enriched in the high-risk group (Figure 8A).

Conversely, the low-riskscore group showed significant
enrichment of pathways related to cellular homeostasis and
immune regulation, such as: WP_TCELL_RECEPTOR_
SIGNALING, BIOCARTA_TCR_PATHWAY, PID_CD8_TCR_
PATHWAY (Figure 8B).

4 Discussion

Sepsis is a critical clinical syndrome characterized by organ
dysfunction due to an imbalanced immune response to infection,
often leading to high mortality (Singer et al., 2016). It poses a
significant burden on global health systems and imposes a
substantial burden on healthcare systems. Studies have shown
that the incidence and mortality of sepsis are particularly high in
developing and under-resourced regions (Adhikari et al., 2010).
Although clinical interventions such as antimicrobial therapy, fluid
resuscitation, and organ support have been widely implemented, the
mortality associated with severe sepsis and septic shock remains
unacceptably high. Therefore, early identification of sepsis is critical
for reducing mortality and improving patient outcomes.

This study first identified 12 core immune cell populations based
on scRNA-seq data, among which naïve CD4+T cells, natural killer
cells, and classical monocytes were notably enriched in the context
of sepsis. Pseudotime trajectory analysis revealed that classical
monocytes were positioned at the main developmental branch,
spanning the early, middle, and late stages of sepsis progression,
suggesting their pivotal role in the disease course. As key effectors of
innate immunity (Tahir and Steffens, 2021), classical monocytes are
central to the early inflammatory response, mediating pathogen
recognition, chemotaxis, phagocytosis, and antigen presentation,
and serve as important nodes within the inflammatory signaling
network (Jakubzick et al., 2017). Single-cell communication network
analysis indicated that classical monocytes exhibited a “low-sender,

FIGURE 8
Pathway and functional analysis (A,B) GSEA revealing distinct pathway enrichment between high- and low-risk groups.
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high-receiver” signaling profile. This suggests that classical
monocytes are not conventional initiators of inflammation but
rather function as “responders” influenced by the surrounding
inflammatory microenvironment. Their apoptotic process appears
to be not solely driven by intrinsic factors but is regulated by external
signaling pathways, such as GALECTIN and THBS, which are
involved in apoptosis, adhesion, and chemotaxis. This may help
explain the impaired functional capacity of classical monocytes in
sepsis and provides critical cellular and molecular evidence for
understanding the state of “immunoparalysis” (Martin et al.,
2020) observed in septic patients.

Subsequently, a four-gene diagnostic model comprising G0S2,
GZMA, ITM2A, and PAG1 was established through ROC regression
analysis and four machine learning algorithms. The model
demonstrated excellent calibration performance, with high
concordance between predicted and observed sepsis risk. Unlike
previous models (Liu et al., 2023), a key feature of our approach was
the integration of results from multiple datasets and algorithms,
followed by validation using both internal and external cohorts that
were independent of the training set. The model achieved AUC
values ranging from 0.997 to 1.000, indicating high reliability and
robustness. Experimental validation further confirmed that
G0S2 and PAG1 were significantly upregulated in sepsis and
functioned as risk factors, whereas GZMA and ITM2A were
downregulated and served as protective factors. G0S2 was
initially identified in blood monocytes involved in cell cycle
progression and is now recognized for its dual roles in
inflammation and apoptosis, as well as its critical regulatory
function in lipid metabolism (Heckmann et al., 2013). According
to Kobayashi et al., G0S2 expression was significantly elevated in
PBMCs obtained from individuals with systemic autoimmune
vasculitis (Kobayashi et al., 2008). PAG1 is a transmembrane
adaptor protein primarily known for its role in negatively
regulating Src family kinases (SFKs) (Foltz et al., 2020; Koutros
et al., 2023; Sun et al., 2023). The activation of TCR and BCR
signaling pathways in T and B lymphocytes relies heavily on the
precise regulation of Src family kinases (SFKs) (Lu et al., 2021).
Therefore, alterations in PAG1 expression or function are likely to
influence monocyte responses under inflammatory conditions such
as sepsis.

Conversely, GZMA and ITM2A were downregulated in sepsis
and identified as protective factors. GZMA is a serine protease
secreted by T cells and NK cells and is considered a key effector
molecule involved in the cytolytic activity of cytotoxic T
lymphocytes and NK cells. Studies have shown that GZMA plays
an important role in regulating the inflammatory response during
peritoneal sepsis (Garzón-Tituaña et al., 2021). Inhibition of GZMA
expression has been reported to significantly attenuate Escherichia
coli–induced inflammatory responses and improve survival in
animal models (Uranga-Murillo et al., 2021). Our finding that
GZMA acts as a protective factor, as indicated by its
downregulation in sepsis patients and negative correlation with
risk score, may seem counterintuitive given its pro-inflammatory
roles in other contexts. This discrepancy could be explained by the
dual nature of granzymes and the specific cellular context of our
study (Garzón-Tituaña et al., 2020). While high extracellular GZMA
can drive inflammation and cell death, its primary function within
cytotoxic lymphocytes is crucial for controlled pathogen clearance.

In the context of sepsis-induced immunoparalysis, the observed
downregulation of GZMA in monocytes may reflect a broader
suppression of cytotoxic cell functions, leading to impaired
infection control and thus a poorer prognosis. Therefore, in this
setting, lower GZMA expression may not be directly protective but
rather a marker of a dysfunctional immune state, making its relative
abundance a “protective” indicator in our risk model. This
highlights the context-dependent role of GZMA in sepsis. ITM2A
is a type II transmembrane protein composed of 263 amino acids
and shares high homology with ITM2B and ITM2C (Rengaraj et al.,
2007). It is involved in various biological processes, including
autophagy flux regulation, cartilage differentiation, and lipid
metabolism (Van den Plas and Merregaert, 2004; Namkoong
et al., 2015; Davies et al., 2017). In the immune system, ITM2A
expression is closely associated with the function of multiple
immune cell types. Downregulation of ITM2A has been observed
in macrophages from patients with ankylosing spondylitis,
suggesting a potential role in disease pathogenesis and
inflammatory regulation (Lari et al., 2021).

Based on the sepsis diagnostic prediction model, this study
successfully identified distinct immune characteristics associated
with different risk groups, further emphasizing the close
relationship between apoptosis and immune function. The results
of CIBERSORT and ssGSEA analyses revealed that the low-riskscore
group was characterized by significant enrichment of immune
effector cells, such as CD8+T cells, monocytes, and activated NK
cells, suggesting that enhanced pathogen clearance and efficient
removal of apoptotic cells may contribute to improved clinical
outcomes in sepsis. Previous studies have demonstrated that
T cells—particularly CD8+ cytotoxic T lymphocytes—play a
critical role in pathogen clearance by secreting effector molecules
including perforin, interferon-gamma (IFN-γ), and granzymes,
thereby effectively eliminating infectious agents from the host
(Diao et al., 2020). Conversely, individuals in the high-risk group
showed a significant elevation in the proportion of M0 and
M1 macrophages, indicating that excessive inflammatory
activation combined with dysregulated apoptotic control may
contribute to exacerbated tissue damage and disease progression
in sepsis. It is well established that M1 macrophages are central
mediators of pro-inflammatory responses and immune activation
(Kadomoto et al., 2021). During the acute inflammatory phase of
early sepsis, targeting the overactivation of M1 macrophages has
been shown to effectively reduce the release of inflammatory
cytokines, thereby mitigating tissue injury and lowering the risk
of mortality (Wang and Wang, 2023).

GSEA analysis further elucidated the key biological pathways
underlying risk stratification. In the high-risk group, pronounced
inflammatory activity was suggested by the enrichment of the
Reactome neutrophil degranulation pathway and the Zhou LPS-
induced inflammatory response gene set, which may contribute to
widespread cellular injury and tissue destruction, thereby
accelerating disease progression. Previous studies have
demonstrated that excessive neutrophil degranulation leads to the
release of large quantities of pro-inflammatory mediators, markedly
exacerbating immune dysregulation and contributing to multi-
organ dysfunction in sepsis (Zhang et al., 2023). Moreover, the
enrichment of the Hamai apoptosis via TRAIL upregulated pathway
suggested an elevated level of apoptotic activity within the high-risk
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group. Conversely, the low-risk group showed significant
enrichment in several T cell receptor–related signaling pathways,
including the WP T cell receptor signaling, BioCarta TCR pathway,
and PID CD8 TCR pathway, reflecting more active and functional
T cell responses. This may enhance immune surveillance and
antimicrobial defense, thereby restraining the spread of
inflammation and preventing tissue damage. These findings are
consistent with previous reports showing that the preservation of
T cell functionality is closely associated with improved clinical
outcomes in patients with sepsis (Heidarian et al., 2023; Sossou
et al., 2024).

Crucially, this stratification holds direct therapeutic
implications. For instance, high-risk patients, characterized by
hyperinflammation and excessive apoptosis (e.g., elevated
neutrophil degranulation and TRAIL-pathway activity), may
benefit from targeted anti-inflammatory agents or apoptosis
inhibitors (Zeng et al., 2022). Conversely, low-risk patients with
robust T-cell responses might be candidates for therapies that
preserve or enhance adaptive immunity, avoiding broad
immunosuppression. Our four-gene signature thus provides a
molecular rationale for tailoring immunomodulatory
interventions, moving beyond a one-size-fits-all approach toward
true precision medicine in sepsis.

This study achieved preliminary progress in constructing a
diagnostic model for sepsis and identifying key genes; however,
several limitations remain. First, the data were derived from
retrospective datasets obtained from public databases, which may
introduce selection bias and heterogeneity. In addition, the clinical
samples used for Western blot validation were limited in number
(n = 6 per group), which serves as a preliminary verification andmay
restrict the generalizability of the findings. To robustly establish the
clinical utility and prognostic value of our four-gene signature,
further validation in large-scale, prospective multicenter cohorts
is necessary. Such studies should also incorporate key clinical
outcomes, including 28-day mortality and organ dysfunction
scores, to fully evaluate the model’s potential to guide patient
management. Second, although we validated the differential
expression of the four hub genes at the protein level, the study
did not include functional experiments to directly probe their
mechanistic roles. The specific molecular pathways by which
these genes regulate apoptosis in classical monocytes during
sepsis—including their upstream regulators and downstream
effectors—remain to be elucidated. Future in vitro studies, such
as siRNA-mediated knockdown or CRISPR-based modulation of
these genes in monocyte cell lines, coupled with functional assays for
apoptosis and inflammatory cytokine production, are warranted.
These experiments would be crucial for confirming a causal
relationship and dissecting the underlying regulatory networks.
Moreover, this study primarily focused on diagnostic value,
without evaluating the predictive capacity of the model with
respect to clinical outcomes such as mortality or organ
dysfunction. The analysis was restricted to classical monocytes,
and the roles of these genes in other immune or non-immune
cell types were not explored, indicating a limitation in cellular scope.
Finally, the functional validation remains at the level of literature
review and GSEA-based inference, lacking direct experimental
evidence to support the biological roles of these genes in sepsis.

In conclusion, this study combined single-cell and bulk RNA
sequencing data with multiple machine learning approaches to
uncover four key hub genes—G0S2, GZMA, ITM2A, and
PAG1—that are closely associated with apoptosis in classical
monocytes during sepsis. The diagnostic model constructed based
on these four genes demonstrated robust discriminative
performance and high diagnostic accuracy in both the training
set and multiple independent validation cohorts. This work not
only provides a promising panel of biomarkers for the early
diagnosis of sepsis but also offers new research directions and
theoretical insights into the pivotal role of classical monocytes in
the pathogenesis of sepsis.
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