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Holographic display is an ultimate three-dimensional (3D) display technique that can
produce the wavefront of 3D objects. The dynamic holographic display usually requires a
spatial light modulator (SLM) with a following 4f system to eliminate the unnecessary orders
produced by the grating structure of the SLM. We present a technique that displays the
images without the 4f system. We detect the unnecessary wavefield by phase-shifting
holography and suppress it using computational optimization. Experimental results are
presented to verify the proposed method.
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1 INTRODUCTION

Holography could create a light field identical to the one generated by a real three-dimensional (3D)
object. Thus, it is regarded as the ultimate display technique for 3D displays (Hong et al., 2011). One
of the most challenging issues in holographic displays is modulating the complex wavefield at
wavelength-scale, pixel by pixel, yielding ultra-high spatial resolution. The typical light modulation
devices are spatial light modulators (SLMs) or digital micromirror devices (DMDs). The commercial
SLMs or DMDs are mainly phase-only or amplitude-only, and the practical realization of a complex
one is challenging. Various approaches have been reported to conduct complex field modulation in
optical or computational manners (Hsueh and Sawchuk, 1978; Juday et al., 1991; Gregory et al., 1992;
Neto et al., 1996; de Bougrenet de la Tocnaye and Dupont, 1997; Arrizón et al., 1998; Birch et al.,
2000; Hsieh, 2007; Bingxia Wang et al., 2021). The optical approaches usually achieve complex
modulation by integrating and controlling phase-only or amplitude-only SLMs in different ways
(Juday et al., 1991; Gregory et al., 1992; Neto et al., 1996; de Bougrenet de la Tocnaye and Dupont,
1997; Hsieh, 2007), while the computational techniques convert the complex field into equivalent
phase-only (Hsueh and Sawchuk, 1978; Birch et al., 2000) or amplitude-only (Arrizón et al., 1998;
Bingxia Wang et al., 2021) ones that adapt to the physical constraints of commercial light
modulators. The latter is also referred to as hologram encoding. Analytical solutions and
computational optimization are two main approaches for hologram encoding. Detour phase
(Arrizón et al., 1998; Bingxia Wang et al., 2021) and double-phase methods (Hsueh and
Sawchuk, 1978; Song et al., 2012; Mendoza-Yero et al., 2014) are typical analytical techniques,
which are fast but with compromised qualities, and can be easily applied to arbitrary complex
holograms. Optimization techniques such as Gerchberg–Saxton (GS) (Gerchberg, 2002; Sun et al.,
2018; Chen et al., 2020; Wu et al., 2021) are time-consuming with improved image quality. However,
these are difficult to be applied to arbitrary complex fields (Chakravarthula et al., 2019). The
rasterization structure of SLM or DMD also introduces multiple orders. The fill factor of the pixels
results in the zero-order issue, which interferes with and distorts the modulated light wave. To
improve the displayed image quality, it requires suppression of the zero-order. The 4f optical filter
system (Arrizón et al., 2007; Liang et al., 2012; Ronzitti et al., 2012; Siemion et al., 2012; Improso et al.,
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2014) is a common approach that can block the zero-order in the
Fourier plane. The 4f system and other variants of zero-order
blocking techniques result in a non-accessible region in the final
reconstruction because any part of the desired pattern near the
zero-order area would also be affected. An ideal solution would be
to create a correction beamwith the same profile as the zero-order
together with the desired target (Palima and Daria, 2007), which
could create a destructive interference with the unwanted beam.
However, developing complex field optimization may be the
barrier to this approach (Improso et al., 2017).

Herein, we propose a computational holographic display
technique that integrates phase-shifting holography and
automatic differentiable (AD) optimization. The former helps
us detect the unwanted complex wavefield in a holographic
display system, and the latter achieves complex field
optimization to suppress the unwanted wavefields. It shows
that optimization through AD can obtain a phase-only
hologram that acts equally as a complex field in an efficient
way. In the simulation, the peak signal-to-noise (PSNR) and
structural similarity index measure (SSIM) can reach 50 dB and
0.9 in around one second. Thanks to the powerful AD
optimization, we can achieve comparable image quality in
hologram display while deputing the 4f system. We present
the methodology in Section 2 and experimental results in
Section 3.

2 METHODS

Figure 1A represents a typical holographic display system,
wherein a laser light beam illuminates an SLM that shows the
holograms. The diffracted light goes through a 4f system and
reproduces the desired objects. The 4f system, as denoted by the
dashed rectangle in Figures 1A, is used to block unwanted terms
induced by the rasterized SLM and its limited fill factor. It usually
keeps only the first order of the diffraction (Zaperty et al., 2018).
The 4f makes the system bulky and may introduce extra
aberrations if the focal lengths of the lenses are small.
Therefore, it is demanded to be eliminated. The ideal display
system is shown in Figure 1B.

However, without the 4f system, the detected images along the
optical axis is an interference pattern between the directly

reflected beam and the diffracted beam from the SLM, as
shown in Figure 2 and Eq. 1:

I(x, y) � |P udead(x, y), z( ) + P uactive(x, y), z( )|2, (1)
where udead(x, y) � A(x, y)ejϕdead(x,y) and uactive(x, y) �

A(x, y)ejϕactive(x,y) are the beams from the dead area and
activate area of the SLM, respectively, P(·, z) is the free-space
propagator of a complex amplitude of a wavefield with a distance
z (described in Section 2.3), and I(x, y) is the detected image in
the camera sensor. The proposed method detects the complex
amplitude of the wavefield udead(x, y) and eliminates it with a
computational optimization approach. It should be mentioned
that udead(x, y) is not only the directly reflected beam from the
SLM but also contains some system aberrations. We obtain it
through phase-shifting holography. With the known udead(x, y),
the computationally designed phase hologram displayed by the
active area of the SLM can cancel it in the camera plane. We
achieve this by automatic differentiable complex field
optimization. The following two sub-sections describe the
proposed method in more detail.

2.1 Unwanted Wavefront Detection
Figure 2 and Eq. 1 show the unwanted complex amplitude of the
wavefield we want to suppress is an interference pattern.
Obtaining it is a holographic imaging problem. Therefore, we

FIGURE 1 | Holographic display with (A) and without (B) 4f system.

FIGURE 2 | Zero-order issue in holographic display systems with
an SLM.
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introduce the four-step phase-shifting holography (Yamaguchi
and Zhang, 1997; Jeong et al., 2008) to measure it. We treat the
wavefield udead(x, y) at the camera sensor plane as the target and
the wavefield from the SLM active area as the reference beam and
perform phase-shifting hologram recording. The four holograms
are taken by shifting the reference beams’ phase with a step of
0.5π; that is, α is of 0π, 0.5π, π and 1.5π, respectively. Thus, the
captured holograms under phase-shifting α can be represented by

I(x, y; α) � |udead(x, y) + uactive(x, y; α)|2
� |Adead(x, y)|2 + |Aactive(x, y; α)|2 +
� 2Adead(x, y)Aactive(x, y; α) cos(ϕdead(x, y) − ϕactive(x, y) − α).

(2)
Thus, the phase and amplitude of the light beam of

udead(x, y) � Adeadejϕdead(x,y) can be obtained by (Jeong et al.,
2008)

ϕdead(x, y) � tan−1 I(x, y; 0.5π) − I(x, y; 1.5π)
I(x, y; 0) − I(x, y; π)( ), (3)

Adead(x, y) � 1
4

I(x, y; 0) − I(x, y; π)
cos ϕdead(x, y) − ϕactive(x, y)( ). (4)

It should be mentioned that we suppose the dead area of the
SLM acts as a “mirror.”However, the cover glass of the SLMsmay
be imperfect, which could result in an inaccurate estimation of the
zero-order.

2.2 Unwanted Wavefront Suppression
Through Automatic Differentiable
Optimization
With the detected complex amplitude of the wavefield udead(x,
y), we need to calculate a desired phase only hologram that can
be loaded into the active area of the SLM to produce the desired
image after interfering with udead(x, y). Suppose b is the known
target, the problem is to find a phase ϕ(x, y), such that for a
known distance z, the interference between the propagated
wavefield and udead(x, y) approaches the target b, which can
be presented as

minϕ L(ϕ) � ‖|P(ejϕ, z) + udead(x, y)|2 − b‖2, (5)
We can optimize the above equation using a gradient descent. At
iteration n, update ϕn+1 given a step size τ:

ϕn+1 ← ϕn − τ∇L(ϕn), (6)
with the derivatives of

∇L(ϕn) � zL
zϕ

∣∣∣∣∣∣∣∣
ϕ�ϕn

. (7)

Computing zL
zϕ is critical because the partial derivatives

indicate how the phase affects the error metric locally.
The analytic expression of Eq. 7 is typically derived by
writing an explicit expression for the error metric L(ϕ)
and symbolically differentiating with respect to each of
the input parameters. Herein, we can expand Eq. 7 using
the chain rule as follows:

zL
zϕ

� zL
zx7

zx7

zx6

zx6

zx5

zx5

zx4

zx4

zx3

zx3

zx2

zx2

zx1

zx1

zϕ
, (8)

where

x1 � exp(jϕ)
x2 � F x1{ }
x3 � x2◦H
x4 � F −1 x3{ }
x5 � x4 + udead

x6 � |x5|2
x7 � x6 − y
L � |x7|2,

(9)

whereH is the transfer function of free-space wave propagation, ◦
is the element-wise product, and F and F −1 are the Fourier and
inverse Fourier operator, respectively. Calculating Eq. 8 is
mathematically straightforward, but somewhat laborious.
Herein, we apply the reverse-mode AD (Griewank and
Walther, 2008), which is a cheap technique for a computing
derivative of a scalar function with many variables by the chain
rule (Blennow, 2018; Congli Wang et al., 2021). From Eqs 8, 9, it
is clear that we need to optimize real-valued loss functions with
complex variables, that is, f(z): C → R. However, a non-
constant real-valued function of a complex variable is not
(complex) analytic and therefore is not differentiable.
Generally, the same real-valued function viewed as a function
of the real-valued real and imaginary components of the complex
variable can have a (real) gradient when partial derivatives are
taken with respect to those two (real) components, that is,
f(z) � f(x, y): R2 → R. However, taking the real or
imaginary part of a complex number (Peng et al., 2020; Chen
et al., 2021), do not satisfy the Cauchy–Riemann equations and
cannot be addressed via a complex differentiation. In this work,
we use the Wirtinger derivative (Remmert, 1991; Kreutz-
Delgado, 2009), which can rewrite a real differentiable
function f(z) as two-variable holomorphic function f(z, z*),
where z = x + jy and z* = x − jy. We can use the chain rule
to establish a relationship between partial derivatives of z

zz,
z
zz* and

the partial derivatives with respect to the real and imaginary
components of z:

z

zx
� zz

zx

z

zz
+ zz*

zx

z

zz*
� z

zz
+ z

zz*
z

zy
� zz

zy

z

zz
+ zz*

zy

z

zz*
� 1j ×

z

zz
+ z

zz*
( ) (10)

From the aforementioned equations, we get the classic
definition of Wirtinger calculus:

z

zz
� 1
2

z

zx
− 1j ×

z

zy
( )

z

zz*
� 1
2

z

zx
+ 1j ×

z

zy
( ) (11)

For step s and loss L, we have zn+1 � zn − s × zL
zz*. This tells us

that we can simplify the complex variable update formula above
to only refer to the conjugate Wirtinger derivative zL

zz*, giving us
exactly the step we take in optimization.
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The complex numbers are represented by the cascading of
real and imaginary parts in the last dimension. The derivative
implementation of the complex elementary functions follows
the gradient rules in Table 1 of Jurling and Fienup (2014). We
implement the proposed method with PyTorch 1.8
(Chilamkurthy and Tanamala, 2019), while the derivatives
are calculated automatically. All presented results in the
following sections were performed on a workstation with an
Intel Core i7-6820 CPU and an NVIDIA GTX1080 GPU.
Figure 3 shows the image quality of the proposed AD and
the traditional Gerchberg–Saxton (GS) concerning the
computation time. It takes around one second to optimize
one 1,024 × 1,024 hologram with a PSNR ratio more

significant than 70 dB and SSIM larger than 0.8. In
comparison, the GS method can hardly reach a PSNR larger
than 20 dB and SSIM larger than 0.6.

2.3 Free-Space Wavefield Diffraction
The wave propagation mentioned in the previous sections is free-
space diffraction and is implemented with the angular spectrum
method (ASM) of the Rayleigh–Sommerfeld diffraction
(Goodman, 2005):

u(x, y) � ∫z2

z1

F −1 F u(x, y, z){ }H(fx, fy, z − z1){ } dz, (12)

FIGURE 3 | Image quality of the proposed AD and the traditional Gerchberg–Saxton (GS) versus computation time.

FIGURE 4 | Four phases and the holograms (A), and the calculated wavefield at the image sensor (B) and SLM (C) planes.
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where u(x, y, z) is the complex amplitude at a plane located at z,F
is the Fourier transform, and H is the ASM transfer function
given by

H(fx, fy, z) �
exp j2πz

������������
1

λ2
− (f2

x + f2
y)

√( ), �������
f2
x + f2

y

√
< 1
λ
,

0, otherwise.

⎧⎪⎪⎨⎪⎪⎩
(13)

3 EXPERIMENTS

The SLM in the experiment is HOLOEYE PLUTO with a full
resolution of 1,920 × 1,080 pixels and 8 µm pixel pitch. Moreover,
the image sensor is Point Grey Research GS3-U3-50S5C, with a
resolution of 2,248 × 2,048 pixels and 3.45 µm pixel pitch. The
light source was a laser diode with a center wavelength of 532 nm,
and the image sensor distance was 250 mm away from the SLM.
The four phases used for detection udead(x, y) are shown in the
above row of Figure 4A, and the corresponding captured
holograms are shown in the below row. The phase-shifting
hologram reconstruction is shown in Figure 4B, and the
propagated wavefield at the SLM plane is shown in Figure 4C.
We conducted a calibration to match the size difference between
the image sensor and the SLM.

For a target image shown in Figure 5A, we calculated the
phase-only holograms without and with the unwanted term

suppression, which are shown in the left column of Figures
5B,C. Whether the difference between the conventional and
the proposed method is optimizing the zero-order term or not,
the computational calculation time is the same. However, we
conducted the phase-shifting holography in the proposed
method to obtain the zero-order field. The calculation time
can be overlooked, but the capture takes time. This can be
improved by automatically synchronizing and controlling the
SLM and the camera. The corresponding experimentally
reconstructed images are shown in the right columns.
Comparing the proposed method with the conventional
one, we can observe less background noise in Figure 5C,
indicating that the proposed technique suppresses some of
the unwanted terms. However, some noise still exists, which
may be due to the inaccurate modeling of the optical system.
This could be improved if we further consider the laser speckle
and the SLM’s fill factor that reflects only part of the incident
light wave.

4 DISCUSSION AND CONCLUSION

We presented a computational holographic display technology
that can achieve a lightweight holographic display with high
quality. The results show that the automatic differentiable
complex wavefield optimization can suppress the unwanted
wavefield with the assistance of phase-shifting holography. The
automatic differentiable complex wavefield optimization can also

FIGURE 5 | Experimental results of conventional (B) and proposed (C) methods for displaying a target image (A).
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be applied to other optical systems requiring aberration or system
error corrections.
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