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Deep learning has been developing rapidly, and many holographic applications have been
investigated using deep learning. They have shown that deep learning can outperform
previous physically-based calculations using lightwave simulation and signal processing.
This review focuses on computational holography, including computer-generated
holograms, holographic displays, and digital holography, using deep learning. We also
discuss our personal views on the promise, limitations and future potential of deep learning
in computational holography.
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1 INTRODUCTION

Holography (Gabor, 1948) can record three-dimensional (3D) information of light waves on a two-
dimensional (2D) hologram as well as reproduce the 3D information from the hologram. Computer-
generated holograms and holographic 3D measurements (digital holography) can be realized by
simulating this physical process on a computer. Computer-generated holograms can be generated by
calculating light wave propagation (diffraction) emitted from 3D objects. If this hologram is
displayed on a spatial light modulator (SLM), the 3D image can be reproduced in space.
Holographic displays can successfully reproduce the wavefront of 3D objects, making them ideal
3D displays (Hilaire et al., 1990; Takaki and Okada, 2009; Chang et al., 2020).

In contrast, digital holography (Goodman and Lawrence, 1967; Kim, 2010; Liu et al., 2018; Tahara
et al., 2018) is a technique that uses an image sensor to capture a hologram of real macroscale objects
or cells. Diffraction calculations are used to obtain numerically reproduced images from the
hologram. Digital holography has been the subject of much research in 3D sensing and
microscopy. In addition to coherent light, the technique of capturing holograms with incoherent
light has been actively studied in recent years (Liu et al., 2018; Rosen et al., 2019).

Computational holography is the general term for handling holography on a computer. It has
been widely used in 3D display, projection, measurement, optical cryptography, and memory. The
following are common problems of computational holography that need to be addressed:

(1) A high computational complexity for hologram and diffraction calculations.
(2) A limited image quality of the reproduced images from holograms, due to speckle noise, optical

abberations, etc.
(3) A large amount of data required to store holograms.

The computational complexity of hologram calculations increases with the complexity of 3D
objects and the resolution of a hologram. Digital holography requires diffraction calculations to
obtain the complex amplitude of object light, followed by aberration correction of the optical system,
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and phase unwrapping, if necessary. Additionally, autofocusing
using an object position prediction may be necessary. These are
time-consuming calculations.

The quality of the reproduced images from a hologram is also a
critical issue in holographic displays and digital holography. The
following factors degrade reproduced images: high-order
diffracted light due to the pixel structure of SLMs, quantized
and non-linear light modulation of SLMs, alignment accuracy,
and aberration of optical systems.

The amount of data in holograms is also a major problem.
Data compression is essential for real-time hologram
transmission and wide-viewing-angle holographic displays,
which require holograms with a large spatial bandwidth
product (Blinder et al., 2019). Hologram compression using
existing data compression methods, such as JPEG and
JPEG2000, and original compression methods for hologram
have been investigated (Blinder et al., 2014; Birnbaum et al.,
2019; Stepien et al., 2020) and recently the JPEG committee (ISO/
IEC JTC 1/SC 29/WG 1) initated the standardization of
compression technology for holographic data.

Many studies have developed algorithms based on the physical
phenomena of holography (diffraction and interference of light)
and signal processing. In this paper, we refer to these algorithms as
physically-based calculation. In 2012, AlexNet (Krizhevsky et al.,
2012), which uses deep neural networks (DNNs), achieved an
improvement of more than 10% over conventional methods in the
ImageNet large-scale visual recognition challenge, a competition
for object recognition rates. This led to a great deal of interest in
deep learning (LeCun et al., 2015). In 2017, research using deep
learning started increasing in computational holography. Initially,
simple problems using deep learning, such as the hologram
identification problem and restoration of holographic
reproduced images, were investigated (Shimobaba et al., 2017a;
Shimobaba et al., 2017b; Jo et al., 2017; Muramatsu et al., 2017;
Pitkäaho et al., 2017). Currently, more complex deep-learning-
based algorithms have been developed, andmany results have been
reported that outperform physically-based calculations.

This review presents an overview of deep-learning-based
computer-generated hologram and digital holography. In
addition, we outline diffractive neural networks, which are
closely related to holography. It is worth noting that deep
learning outperforms conventional physically-based
calculations in terms of computational speed and image
quality in several holographic applications. Additionally, deep
learning has led to the development of techniques for inter-
converting images captured by digital holographic and other
microscopes, blurring the boundaries between research areas.
Furthermore, we will discuss our personal views on the
relationship between physically-based calculations and deep
learning in the future.

2 HOLOGRAM COMPUTATION USING
DEEP LEARNING

Computer-generated holography has many applications, such as
3D display (Hilaire et al., 1990; Takaki and Okada, 2009; Chang

et al., 2020), projection (Buckley, 2011; Makowski et al., 2012),
beam generation (Yao and Padgett, 2011), and laser processing
(Hasegawa et al., 2006). This section focuses on hologram
calculations for holographic display applications.

Figure 1 shows the data processing pipeline of holographic
displays. From 3D data, acquired using computer graphics and 3D
cameras, the distribution of light waves on a hologram is calculated
using diffraction theory. The generated hologram is usually
complex-valued data (complex holograms); however, SLMs can
only modulate amplitude or phase. Therefore, we must encode the
complex hologram into amplitude or phase-only holograms. The
encoded hologram can be displayed on the SLM and the 3D image
can be observed through the optical system.

The 3D data format handled in physically-based hologram
calculations can be classified into four main categories: point
cloud (Lucente, 1993; Yamaguchi et al., 1993; Kang et al., 2008;
Shimobaba et al., 2009; Hiroshi Yoshikawa and Yoshikawa, 2011;
Blinder and Schelkens, 2020), polygon (Ahrenberg et al., 2008;
Matsushima and Nakahara, 2009; Zhang et al., 2018a), layered
(RGBD images) (Okada et al., 2013; Chen et al., 2014; Chen and
Chu, 2015; Zhao et al., 2015), and light field (multiviewpoint
images) (Yatagai, 1976; Zhang et al., 2015). Fast computation
methods for each 3D data format have been proposed
(Shimobaba et al., 2015; Nishitsuji et al., 2017; Tsang et al.,
2018; Blinder et al., 2019). For the hologram computation
using deep learning, some research has been conducted on the
point cloud method (Kang et al., 2021). However, the layer
method has been the focus of research using deep learning. To
the best of our knowledge, polygon and light-field methods using
deep learning have not been investigated yet.

2.1 Supervised Learning
In 1998, hologram generation using a neural network with three
fully-connected layers was investigated (Yamauchi et al., 1998).
However, this is not deep learning, but it is similar to current
deep-learning-based hologram calculations. To the best of our
knowledge, this is the pioneering work using neural networks for
hologram computation. It performed end-to-end learning to train
the neural network using a dataset consisting of 16 × 16-pixel input
images and holograms. The end-to-end learning method is a
supervised learning technique and allows a DNN to learn
physical processes used in physically-based calculations from a
dataset alone. This study showed that the neural network could
optimize holograms faster than direct binary search (Seldowitz et al.,
1987). It was impossible to adopt the current deep network structure
due to poor computing resources. Additionally, even if DNN could
be created, there was no algorithm (optimizer) to optimize its large
number of parameters. For a while, neural networks were not the
mainstream in hologram calculation, and physically-based
calculations were actively studied. However, since 2018, hologram
calculations have developed rapidly using deep learning.

Figure 2 shows the DNN-based hologram computation using
supervised learning. Horisaki et al. (2018) designed a DNN that
directly infers holograms from input 2D images using end-to-end
learning. For end-to-end learning, it is necessary to prepare a
large dataset of input imagesX and their hologramsY. DNNs can
be represented as an arbitrary function by combining
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convolutional and other layers with nonlinear activation
functions. In this paper, a DNN function is represented as
N (X ;Θ), where Θ are the network parameters. The
parameters Θ of the DNN in Horisaki et al. (2018) are
updated by solving the minimization problem:

minimize
Θ

L N X ;Θ( ),Y( ), (1)

where L is the loss function for calculating the error between the
predicted hologram output from the DNN (N (X ;Θ)) and the
ground-truth hologram (Y). This DNN can infer a hologram
from a 64 × 64-pixel 2D image several times faster, and the image
quality is the same as obtained with the Gerchberg–Saxton (GS)
algorithm (Gerchberg, 1972; FienupFienup, 1982).

Goi et al. (2020) proposed a method for generating binary
holograms from 2D images directly using DNN. This study
prepared a dataset of binary random patterns (binary
holograms) and its reproduced images (original objects). The
DNN was trained using end-to-end learning with the reproduced
images as input of the DNN and the binary holograms as output.
The output layer of the DNN should be a step function since it
should be able to output binary values; however, this is not
differentiable. The study Goi et al. (2020) used a differentiable
activation function that approximates the step function.

2.2 Unsupervised Training
Unsupervised learning does not require the preparation of a
dataset consisting of original images and its holograms, as
discussed in Section 2.1. Figure 3 shows the DNN-based
hologram calculation using unsupervised learning (Hossein
Eybposh et al., 2020; Horisaki et al., 2021; Wu et al., 2021).
We input the original 3D scene (or 2D image) X into the DNN
and compute an inverse diffraction calculation (P−1) from the
predicted hologram to the location of the original object to
obtain the reproduced image. We calculate a loss function
between the reproduced image and the original data. Then,
we update the DNN parameters by solving the following
minimization problem:

minimize
Θ

L |P−1 N X ;Θ( )( )|,X( ). (2)

We can use any diffraction calculation for the propagation
calculation, provided that it is differentiable. We usually use the
angular spectrum method (Goodman and Goodman, 2005). The
lightwave distribution on a plane ud, which is z away from a plane
us, can be calculated using the angular spectrum method
expressed as follows:

ud � P us( ) � F −1 F us( )exp 2πiz

������������
1

λ2
− f2

x + f2
y( )√( )( ), (3)

FIGURE 1 | Data processing pipeline for holographic displays.

FIGURE 2 | Deep neural network-based hologram computation using
supervised learning.

FIGURE 3 | Deep neural network-based hologram calculation using
unsupervised learning.
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where i � ���−1√
, F and F−1 are the forward and inverse Fourier

transforms, respectively; λ is the wavelength, and (fx, fy) represent
the spatial frequencies.

Wu et al. (2021) showed that a hologram of a 4K 2D image
could be generated in 0.15 s using unsupervised learning. The
network structure of the issued DNN is U-Net (Ronneberger
et al., 2015). Instead of the angular spectrum method, an inverse
diffraction calculation to obtain the reproduced images was a
single fast Fourier transform (FFT) Fresnel diffraction, which is
computationally light. The DNN was trained using Eq. 2 a
weighted combination of a negative Pearson correlation
coefficient and a perceptual loss function (Johnson et al.,
2016). The DNN method is superior to the GS method and
Wirtinger holography (Chakravarthula et al., 2019) in
computational speed; i.e., ×100 faster for the same
reconstruction quality (Wu et al., 2021).

Hossein Eybposh et al. (2020) developed an unsupervised
method called DeepCGH to generate holograms of 3D scenes
using DNN. They have developed this method for two-photon
holographic photostimulation, which can also be used for
holographic displays. The network structure is U-Net. When
3D volume data X(x, y, z) representing a 3D scene are input to
the DNN, the DNN outputs its hologram. From the output
hologram, multiple inverse propagations (P−1) are performed
to compute the 3D reproduced image
X(x,y,z)′ � |P(N (X(x, y, z)))|. The DNN was trained by Eq. 2
with a loss function using the following cosine similarity

L X ,X ′( ) � 1 − ∑x,y,z X x, y, z( )X ′ x, y, z( )��������������∑x,y,z X 2 x, y, z( )√ ���������������∑x,y,z X ′2 x, y, z( )√ . (4)

Since 3D volume data requires much memory, DNNs tend to
be large. Therefore, the study Hossein Eybposh et al. (2020) used a
method called interleaving (Shi et al., 2016) to reduce the
DNN size.

By employing the method of Figure 3, Horisaki et al. (2021)
trained an U-Net-based DNN using the following 3D mean
squared root error (MSE) for the loss function,

L X ,X ′( ) � �������������������������∑
x,y,z

X x, y, z( ) − X ′ x, y, z( )( )2√
. (5)

The hologram computation using DNN (Wu et al., 2021)
introduced in this subsection showed that it can produce higher
quality reproductions than conventional methods. However, the
reproduced images were limited to two dimensions. TheMethods
(Hossein Eybposh et al., 2020; Horisaki et al., 2021) for
calculating holograms of 3D objects using DNNs were also
proposed, but the number of layers was limited to a few due
to the resources of the computer hardware. A method introduced
in the next subsection solves these limitations.

2.3 Layer Hologram Calculation Using the
Deep Neural Network
Generally, layer-based hologram calculations (Okada et al., 2013;
Chen et al., 2014; Chen and Chu, 2015; Zhao et al., 2015) generate

sectional images at each depth from RGB and depth images. We
compute diffraction calculations to the sectional images.
Consequently, we employ these results to obtain the final
hologram. Although the diffraction calculation can be
accelerated using FFTs, the computational complexity of the
layer method is still large, making it difficult to calculate 2K
size holograms at video rate.

Layer-based hologram calculations using DNN have been
investigated in Hossein Eybposh et al. (2020) and Horisaki
et al. (2021). The study by Shi et al. (2021) published in
Nature in 2021 had a great impact on holographic displays
using the layer method. Figure 4 shows the outline of layer-
based hologram calculations using DNN. This result significantly
outperforms the computational speed and image quality of
existing physically-based layer methods. The network structure
was similar to that of ResNet (He et al., 2016). Additionally,
DNNs were trained using two types of label data: RGBD images
and their holograms. Since DNNs are suitable for 2D images, they
work well with RGBD images used in layer hologram calculations.

This DNN was trained using two loss functions. The first loss
function, L1, calculates the error between the hologram output
from the DNN and the ground-truth hologram. The second loss
function, L2, calculates the error between a reproduced image,
obtained by an inverse diffraction calculation (P−1) with the
propagation distance z from the predicted hologram, and its
corresponding sectional image at z. Here, the hologram output
from the DNN is in complex amplitude at an intermediate
position between the 3D scene and final hologram. The study
Shi et al. (2021) explained the reason for using intermediate
holograms as follows:

The convolutional layers of DNN use a 3 × 3 filter. If a 3D
scene and hologram are far apart, it is impossible to represent the
spread light waves without connecting many convolution layers,
making the DNN very large. The DNN outputs a complex
hologram at an intermediate position to alleviate the above
problem. In the middle position, the light wave does not
spread; thus, reducing the number of convolution layers.

Additionally, if the 3D scene and intermediate hologram are
sufficiently close, these images will be similar, facilitating the
DNN training. The intermediate hologram is propagated to the
final hologram plane using the angular spectrum method and
converted to an anti-aliased double phase hologram (Hsueh and
Sawchuk, 1978; Shi et al., 2021). By displaying the anti-aliased
double phase hologram on a phase-only SLM, speckle-free,

FIGURE 4 | Layer-based hologram calculation using deep neural
network (Shi et al., 2021).
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natural, and high-resolution 3D images can be observed at
video rates.

The study trained the DNN using their RGBD image dataset
called MIT-CGH-4K. This dataset consists of 4,000 sets of RGBD
images and intermediate holograms. It allows DNNs to work well
with RGBD images rendered by computer graphics and real
RGBD images captured by RGBD cameras. In many DNN-
based color 3D reproductions, including this study, the time-
division method (Shimobaba and Ito, 2003; Oikawa et al., 2011) is
employed. The time-division method enables color reproduction
by displaying the holograms of the three primary colors
synchronously with the RGB illumination light. However, it
requires an SLM capable of high-speed switching.

The trained DNN can generate 1,920, ×, 1,080 pixel holograms
at a rate of 60 Hz using a graphics processing unit. It can also
generate holograms interactively at 1.1 Hz on a mobile device
(iPhone 11 Pro) and at 2.0 Hz on an edge device with Google
tensor processing unit (TPU). For the TPU a float 32 precision
DNN was compressed into an Int8 precision DNN using
quantization, which is one of the model compression methods
for DNNs.

2.4 Camera-in-the-Loop Holography
The quality of reproduced images of holographic displays will be
degraded because of the following factors: misalignment of
optical components (beam splitters and lenses), SLM cover
glass, aberrations of optical components, uneven light
distribution of a light source on the SLM, and quantized and
non-linear light modulation of SLM, as shown in the graph of
Figure 5.

The GS algorithm, Wirtinger holography, and stochastic
gradient methods (Chakravarthula et al., 2019) determine a
hologram that yields the desired reproduced image using
minimize

ϕ
L(Pideal(ϕ), ao). Here ϕ, ao, and L represent a

hologram, target image, and loss function (defined as the error
between the target and reproduced images). Successful
optimization with this method will be achieved when the

actual optical system and ideal light wave propagation model
Pideal are consistent.

Although some studies have been conducted to manually
correct aberrations to get closer to the ideal propagation
model Pideal, the camera-in-the-loop holography (Peng et al.,
2020) has been proposed to automatically correct these image
quality degrading factors. Figure 5 shows the outline of the
camera-in-the-loop holography. The camera-in-the-loop
holography differs from the GS algorithms, Wirtinger
holography, and gradient descent methods because it uses
actual reproduced images in the optimization loop.

In the camera-in-the-loop holography, a gradient descent
method was used to find an ideal hologram as
ϕ ← ϕ − αzL/zϕ, where α is the learning rate, L is the loss
function used to calculate the error between an actual
reproduced image captured by a camera and target image, and
zL
zϕ � zL

zP
zP
zϕ, where P represents the actual optical system,

including unknown aberrations. However, the gradient zP
zϕ

cannot be calculated due to the unknown parameter. The
camera-in-the-loop holography approximates the unknown
gradient as follows

zL
zϕ

� zL
zP

zP
zϕ

≈
zL
zP

zP′
zϕ

, (6)

where P′ is a known propagation model. For example, if P′ is a
free-space propagation between the SLM and reproduced image,
it can simply use a diffraction calculation as P′ � Pideal. The
gradient zL

zP can be calculated using reproduced images captured
by a camera.

The following research is an extension of the camera-in-the-
loop holography: high-quality holographic display using partially
coherent light (LED light source) (Peng et al., 2021), holographic
display using Michelson setup to eliminate undiffracted light of
SLM (Choi et al., 2021), optimizing binary phase holograms
(Kadis et al., 2021), holographic display that suppresses high-
order diffracted light using only computational processing
without any physical filters (Gopakumar et al., 2021), and

FIGURE 5 | Camera-in-the-loop holography.
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further improvement of image quality by using a Gaussian filter
to remove noise that is difficult to optimize (Chen et al., 2022).

The above camera-in-the-loop holography needs to be re-
optimized for each target image, which can take several minutes.
To solve this problem, HoloNet, a combination of camera-in-the-
loop holography and DNN, was proposed (Peng et al., 2020).
Figure 6 shows a schematic of HoloNet. HoloNet consists of two
DNNs and a physically-based calculation (diffraction
calculation). The camera is required for the training stage of
the DNN; however, it is not required for the inference stage.
DNN1 outputs the optimal phase distribution of the target image.
The phase distribution and target image are combined to form a
complex amplitude. Then, a Zernike-compensated diffraction
calculation is performed by considering the aberrations of the
optical system. DNN2 transforms the complex amplitude
obtained by the diffraction calculation into a phase-only
hologram suitable for SLM. HoloNet can generate full-color
holograms with 2K resolution at 40 frames per second.

Chakravarthula et al. (2020) proposed an aberration
approximator. The aberration approximator uses a U-Net-
based DNN. The DNN infers the aberrations of an optical
system to obtain holograms that are corrected for the
aberrations. The conditional GAN (Isola et al., 2017) was used
to train the DNN, and the training datasets were numerical
reproduced images of holograms generated assuming an ideal
optical system and reproduced images from the actual optical
system captured by a camera.

Kavaklı et al. (2022) pointed out that the algorithms of Wu
et al. (2021) and Peng et al. (2020) are complex processing. The
study Kavaklı et al. (2022) obtained an optimized point spread
function for diffraction calculation from the error between
numerically reproduced images from holograms calculated
from the ideal diffraction calculation and the actual
reproduced images captured by a camera. It is worth noting
that the optimized point spread function has an asymmetric
distribution different from the point spread function in the ideal
case. Additionally, the optimized point spread function reflects
the aberrations of the optical system. We can obtain holograms
that give an ideal reproduction image by calculating holograms
with the optimized point spread function.

2.5 Other Applications Using Deep Neural
Network
2.5.1 Image Quality Enhancement
A reproduced image of a hologram calculated using random
phase will have speckle noise. Park and Park (2020) proposed a
method for removing speckle noise from random phase
holograms. In this method, the reproduced image (light-field
data) is first numerically computed from a random phase
hologram. Since the reproduced light-field data also contains
speckle noise, this method employs a denoising convolutional
neural network (Zhang et al., 2017a) to remove this noise.
Furthermore, a speckle-free reproduction image can be
observed by recalculating the hologram from the speckle-free
light-field data.

Ishii et al. (2022) proposed the image quality enhancement of
zoomable holographic projections using DNNs. To obtain a
reproduced image larger than the hologram size, it is
necessary to use a random phase; however, this gives rise to
speckle noise. The random phase-free method (Shimobaba and
Ito, 2015), which applies virtual spherical waves to the original
image and calculates the hologram using a scaled diffraction
calculation (Shimobaba et al., 2013), can avoid this problem.
However, it does not apply well to phase-only holograms. A DNN
of (Ishii et al., 2022) converts a phase-only hologram computed
using the random phase-free method in an optimized phase-only
hologram. Two layers for computing the forward and inverse
scaled diffraction (Shimobaba et al., 2013) are introduced before
and after DNN. Then, the DNN is trained using unsupervised
learning, as discussed in Section 2.2. In the inference, the two
layers are removed, and a phase-only hologram is computed
using the random phase-free method and a scaled diffraction
calculation is input to the DNN to optimize a zoomable phase-
only hologram.

2.5.2 Hologram Compression
The amount of data in holograms is a major problem. Data
compression is essential for real-time hologram transmission and
wide-viewing-angle holographic displays, which require
holograms with large spatial bandwidth products. Existing

FIGURE 6 | HoloNet: a combination of camera-in-the-loop holography and deep neural network (Peng et al., 2020).
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compression techniques [e.g., JPEG, JPEG 2000, and high-
efficiency video coding (HEVC)] and distinctive compression
techniques have been proposed (Blinder et al., 2014; Birnbaum
et al., 2019; Stepien et al., 2020), which aim to take the distinctive
signal properties of digital holograms into account. Compression
of hologram data is not easy because holograms have different
statistical properties from general natural images, so standard
image and video codecs will achieve sub-optimal performance.
Several DNN-based hologram data compression algorithms have
been proposed to address this matter.

When JPEG or other compression algorithms targeted to
natural image date are used for hologram compression,
essential high-frequency components are lost, and block
artefacts will perturb the hologram viewing. In Jiao et al.
(2018), a simple DNN with three convolution layers was used
to restore the JPEG-compressed hologram close to the original
one. The DNN learns the relationship between the JPEG-
degraded hologram and the original hologram using end-to-
end learning. Although it was tested on JPEG, it can easily be
applied to other compression methods, making it highly versatile.

In Shimobaba et al. (2019a) and Shimobaba et al. (2021a),
holograms were compressed through binarization using the error
diffusion method (Floyd, 1976). The U-Net-based DNN restored
binary holograms to the original grayscale. If the input hologram
is 8 bits, the data compression ratio is 1/8. DNN can obtain better
reproduction images than JPEG, JPEG2000, and HEVC at the
same bit rate.

2.5.3 Hiding of Information in Holograms
Steganography is a technique used to hide secret images in a host
image (also called cover image). The hidden images must not be
known to others. A closely related technique is watermarking: it
embeds copyright information (e.g., a copyright image) in the
host image. The copyright information can be known by others,
but it must be impossible to remove. These techniques are
collectively referred to as information hiding. Many
holographic information hiding techniques have been
proposed (Jiao et al., 2019). For example, the hologram of a
host image can be superimposed on that of a hidden image to
embed hidden information (Kishk and Javidi, 2003). The hidden
information should be encrypted with double random phase
encryption (Refregier and Javidi, 1995) to prevent it from
being read. An important difference with digital information
hiding is that holographic information hiding allows for optical
encryption and decryption of the hidden image, and handling 3D
host and hidden information.

The combination of holographic information hiding and
DNN can improve the resistance to attacks and the quality of
decoded images. In Wang et al. (2021), the holograms of host and
hidden images were superimposed on a single hologram using a
complementary mask image. Each hologramwas converted into a
phase-only hologram by patterned-phase-only holograms (Tsang
et al., 2017). The hologram of the hidden image is encrypted with
double random phase encryption (Refregier and Javidi, 1995).
When the final hologram is reconstructed, we can observe only
the host image. Since the mask image is the key, we can observe
the hidden image when the mask image is multiplied with the

hologram, but the image quality is considerably degraded. This
degradation is recovered using a DNN; DenseNet (Huang et al.,
2017) was used as the DNN. It is trained by end-to-end learning
using the dataset of degraded and ground-truth hidden images.

In Shimobaba et al. (2021b), a final hologram u recorded a
hologram uh of a host image and a hologram ue of a hidden image
was calculated as u � Pz1{uh} + αPz2{ue}. Here, Pz is the
diffraction calculation of the propagation distance z; z1 and z2
are the distance between the hologram and each image; α is the
embedding strength of the hidden hologram. We can make the
reproduced hidden image less noticeable by making α sufficiently
small. Here, it was set to 4% of the amplitude of the host
hologram. It is not easy to identify the reproduced hidden
image at this value. Therefore, if we want to identify it, DNN
recovers the hidden image. The DNN was trained using
reproduced hidden and ground-truth hidden images. U-Net
and ResNet were used as the network structure. Both networks
could recover the hidden images.

3 DIGITAL HOLOGRAPHY USING DEEP
LEARNING

In digital holography (Goodman and Lawrence, 1967; Kim, 2010;
Liu et al., 2018; Tahara et al., 2018) image sensors are used to
capture holograms of real macroscale objects and cells. It is
possible to obtain a reproduced image from the hologram
using diffraction calculation. Digital holography has been the
subject of much research in 3D sensing and microscopy. Figure 7
shows the process of digital holography. We calculate a
diffraction calculation from a hologram captured by an image
sensor to obtain a reproduction image in a computer. If the
reconstructed position of the target object needs to be known
accurately, autofocusing is required to find the focus position by
repeating diffraction calculations. Autofocusing looks for a
position where the reconstructed image is sharp. Aberrations
are superimposed due to optical components and alignment
errors. Meanwhile, it is necessary to correct this aberration.
Since digital holography can obtain complex amplitudes,
simultaneous measurement of amplitude and phase is possible.
The phase can be obtained by calculating the argument of a
complex value using the arctangent function, but its value range is
wrapped into [−π,+π). Therefore, phase unwrapping is required
to reproduce the thickness of an object from its phase.

However, the above processes are time-consuming
computations. In this section, we introduce digital holography
using DNNs. We can speed up some (or all) of the time-
consuming processing using DNNs. Furthermore, DNNs have
successfully obtained reproduced images with better image
quality than conventional methods. For a more comprehensive
and detailed description of digital holography using DNNs, see
review papers Rivenson et al. (2019), Javidi et al. (2021), and Zeng
et al. (2021).

3.1 Depth Estimation
A general method for estimating the focus position is to obtain
the most focused position by calculating reproduced images at
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different depths from the hologram. The focus position is
determined using metrics, such as entropy, variance, and
Tamura coefficient (Zhang et al., 2017b). This process requires
an iterative diffraction calculation, which is computationally
time-consuming. An early investigation of autofocusing using
DNNs was to estimate the depth position of a target object from a
hologram. The depth prediction can be divided into two
categories: classification and regression problems.

Pitkäaho et al. (2019) proposed the depth position prediction
as a classification problem. They showed that DNNs for
classification commonly used in the MNIST classification
problem could classify the range of 260–272 mm, where the
target object is located, into five depths at 3 mm intervals.

DNNs for estimating the depth location as a regression
problem (Ren et al., 2018; Shimobaba et al., 2018) infer a
depth value z directly from a hologram image (or its
spectrum) H. This network is similar to that of the
classification problem but with only one neuron in the output
layer. The training is performed using end-to-end learning as
minimize

Θ
L(N (H;Θ), z), where z is the ground-truth depth

value. The MSE and other metrics are usually used as loss
functions. We can obtain a focused reproduced image through
a diffraction calculation using the estimated depth distance from
a hologram.

3.2 Phase Unwrapping
Phase unwrapping in physically-based calculation (Ghiglia and
Pritt, 1998) connects wrapped phases to recover the thickness (or
optical path length) of a target object. Phase unwrapping
algorithms have global, region, path-following, and quality-
guided algorithms. Additionally, a method that applies the
transport intensity equation has been proposed (Martinez-
Carranza et al., 2017). These methods are computationally
time-consuming.

Many methods have been proposed to perform phase
unwrapping by training DNNs with end-to-end learning using
a dataset of wrapped phase and their unwrapping images (Wang
et al., 2019a; Qin et al., 2020). Once trained, DNNs can rapidly

generate unwrapped phase images. Phase unwrapping using
Pix2Pix (Isola et al., 2017), a type of generative adversarial
network (GAN) (Goodfellow et al., 2014), has been proposed
(Park et al., 2021). Pix2Pix can be thought of as a supervised
GAN. This study prepared a dataset of wrapped phase and their
unwrapped phase images generated using the quality-guided
algorithm (Herráez et al., 2002). The U-Net-based generator
employs this dataset to generate a realistic unwrapped phase
image from the unwrapped phase image to fool the discriminator.
The discriminator is trained to detect whether it concerns a
generated or real unwrapped phase image. Such adversarial
learning can produce high-quality unwrapped images.

3.3 Direct Reconstruction Using the Deep
Neural Network
As a further development, research has been conducted to obtain
aberration-eliminated, autofocusing, and phase unwrapping
images directly by inputting holograms into DNNs.

3.3.1 Supervised Learning
A reproduced image can be obtained by propagating holograms
captured by inline holography back to the object plane. However,
since the reproduced image contains a twin image and direct
light, it is necessary to remove unwanted lights using physically-
based algorithms, e.g., phase recovery algorithms. This requires
multiple hologram recordings and computational costs for
diffraction calculations.

Rivenson et al. (2018) inputs a reproduced image obtained
using an inverse diffraction calculation (P−1) to the object plane
into a DNN (N ) to obtain a twin image-free reproduced image.
The prepared dataset consists of a hologram H and a ground-
truth complex amplitude field Y. Then, they trained the DNN
using end-to-end learning as minimize

Θ
L(N (P−1(H);Θ),Y).

They usedMSE as the loss functionL. The ground-truth complex
amplitudes were obtained from eight holograms with different
recording positions using the multiheight phase retrieval
algorithm (Greenbaum and Ozcan, 2012). This study showed

FIGURE 7 | Process flow of digital holography.
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that this DNN could reproduce images comparable to those
obtained using the multiheight phase retrieval algorithm
without time-consuming phase recovery.

Although the study of Rivenson et al. (2018) required the
results of propagation calculations from a hologram to be input to
the DNN, eHoloNet (Wang et al., 2018) developed DNN that
does not require propagation calculations and directly infers
object light from a hologram. They created a dataset
consisting of a hologram H and its ground-truth object light
Y. The DNN was trained with the following end-to-end learning:
minimize

Θ
L(N (H;Θ),Y). MSE was used as the loss function L.

They employed phase distributions displayed on SLM for
collecting ground-truth object lights instead of real objects.

Y-Net (Wang et al., 2019b) separates the upsampling path of
U-Net (Ronneberger et al., 2015) into two parts and outputs the
intensity and phase of a reproduced image. The dataset includes
captured holograms and their ground-truth intensity and phase
images. Y-Net is trained using end-to-end learning. Compared
with the case where the output layer of U-Net has two channels,
and each channel outputs an intensity image and a phase image,
Y-Net has successfully obtained better reproduction images.

Y4-Net (Wang et al., 2020a) extends the Y-Net upsampling
paths by four for use in dual-wavelength digital holography
(Wagner et al., 2000). Dual-wavelength holography uses two
wavelengths, λ1 and λ2, to make synthetic wavelength for long
wavelength measurements λ1λ2/(λ1 − λ1) and short wavelength
measurements λ1λ2/(λ1 + λ1). Y4-Net outputs the real and
imaginary parts of the reproduced image at each wavelength
by inputting holograms captured at λ1 and λ2.

The above researches are about digital holographic
measurement of microorganisms and cells. However, 3D
particle measurement is essential to understand the spatial
behavior of tiny particles, such as bubbles, aerosols, and
droplets. It is applied to flow path design of flow cytometers,
environmental measurement, and 3D behavior measurement of
microorganisms. Digital holographic particle measurement can
measure one-shot 3D particles; however, it requires time-
consuming post-processing using diffraction calculations and
particle position detection. 3D particle measurement using
holography and DNN has been proposed. The study
Shimobaba et al. (2019b) prepared a dataset consisting of
holograms and their particle position images, a 2D image
showing the 3D position of the particle. The position of a
pixel indicates the position of the particle in the plane, and its
color indicates the depth position of the particle. U-Net was
trained using end-to-end learning with the dataset. The DNN can
transform holograms to particle position images. The
effectiveness of the method was confirmed by simulation.

The study of Shimobaba et al. (2019b) was conducted using simple
end-to-end learning. However, Shao et al. (2020) inputs two more
pieces of information (depth map and maximum phase projection,
both obtained by preprocessing the hologram) to their U-Net in
addition to holograms.Additionally, by developing a loss function, this
study successfully obtained 3D particle images with a particle density
300 times higher than that of Shimobaba et al. (2019b).

Chen et al. (2021) incorporated compressive sensing into
DNN and trained it using end-to-end learning. The input of

the DNNwere 3D particle holograms, whereas the output was 3D
volume data of the particles. Unlike (Shimobaba et al., 2019b;
Shao et al., 2020), Zhang et al. (2022) used the Yolo network
(Joseph et al., 2016). When a hologram is an input to the DNN, it
outputs a 6D vector containing a boundary box that indicates the
location of the particle, its objectiveness confidence, and the
depth position of the particle.

3.3.2 Unsupervised Learning
End-to-end learning requires a dataset consisting of a large
amount of paired data (captured hologram and object light
recovered using physically-based algorithms). Since the
interference fringes of holograms vary significantly depending
on the holographic recording conditions and target objects, there
is no general-purpose hologram dataset. Therefore, it is necessary
to create an application-specific datasets, which requires much
effort. Unsupervised learning is also used for DNNs for digital
holography.

Li et al. (2020) showed that using a deep image prior (Ulyanov
et al., 2018), a twin image-free reproduced image can be obtained
using only a captured inline hologram without large datasets.
Furthermore, an auto-encoder was used for the DNN network
structure. The deep image prior (Ulyanov et al., 2018) initializes
the DNN with random values and inputs a fixed image to the
DNN for training. For example, the deep image prior can be used
to denoise an image from noisy input. This technique works due
to the fact that DNNs are not good at representing noise. The
deep image prior is also useful for super-resolution and in-
painting. In Li et al. (2020), DNN was trained using the
following unsupervised learning:
minimize

Θ
L(P(N (P−1(Hfix);Θ)), Hfix), where Hfix is a

captured inline hologram, and N is the DNN with the
network parameter Θ. The reproduced image of an inline
hologram (P−1(Hfix)) includes a twin image, which can be
considered noise. By inputting the noisy reproduced image
into the DNN, the DNN outputs the complex amplitude field
of the target object with reduced twin image using the principle of
the deep image prior. This study conducted a diffraction
calculation (P) of the DNN output to generate a hologram. It
learns Θ to minimize the error between computed and captured
holograms. Consequently, the study obtained that the quality of a
reproduced image is better than using a state-of-the-art
compressed sensing (Zhang et al., 2018b).

PhysenNet (Wang et al., 2020b) was also inspired by the deep
image prior. PhysenNet can infer the phase image of a phase
object by inputting its hologram into a DNN. The network is a
U-Net, trained using the following unsupervised learning:
minimize

Θ
L(P(N (Hfix));Θ), Hfix. The phase distribution

output from the DNN is computed by diffraction to generate
holograms. The DNN is trained to minimize the error between
the measured and generated holograms. The minimization
formula is slightly different from Li et al. (2020).

3.3.3 Generative Adversarial Network
GANs (Goodfellow et al., 2014), one of the training methods for
DNNs, have been widely used in computational holography
because of their excellent image transformation capabilities.
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Liu et al. (2019a) used the conditional GAN for super-
resolution in digital holographic microscopy. Conditional
GAN is a method that adds ground-truth information to
GAN; it is a supervised learning method. Figure 8 shows a
schematic of Liu et al. (2019a). As shown in the figure, X is
the low-resolution hologram; G is the generating network (using
U-Net); G(X) is the high-resolution hologram output from the
generating network; Z is a ground-truth high-resolution
hologram; D is a discriminating network that can distinguish
whether a high-resolution hologram is a generated or a ground-
truth hologram. The datasets of low- and high-resolution
holograms are taken with on-chip digital holographic
microscopy. The high-resolution holograms are captured by
changing objective lenses with different numerical apertures.
Alternatively, the image sensor can be laterally shifted to
capture multiple low-resolution holograms, which are super-
resolved using the physically-based algorithm (Greenbaum
et al., 2014) to generate high-resolution holograms.

Similar to Liu et al. (2019a), Liu et al. (2019b) employed the
conditional GAN to generate accurate color images from
holograms captured at three wavelengths suitable for point-of-
care pathology. Conditional GAN can produce holographic
images with high accuracy. However, a dataset must be
prepared since it is supervised learning, which requires much
effort. To overcome this problem, holographic microscopy using
cycle GANs with unsupervised learning has been investigated
(Yin et al., 2019; Zhang et al., 2021).

3.4 Interconversion Between Holographic
and Other Microscopes
Many microscopes, such as bright-field, polarized light, and
digital holographic microscopes, have been developed, each
with its strengths and weaknesses. Interconversion between the
reproduced image of a holographic microscope and that of
another microscope has been investigated using deep learning.
It has become possible to overcome each other’s shortcomings. In
many cases, GANs, which are excellent at transforming images,
are used to train DNNs.

Bright-field microscopy allows simple observation of
specimens using a white light source; however, transparent
objects must be stained. Additionally, only 2D amplitude
information of a target object can be obtained due to the
shallow depth of focus. Wu et al. (2019) showed that digital
holographic reproduced images could be converted to bright-field
images using GAN. In contrast, Go et al. (2020) converted an

image taken by bright-field microscopy into a hologram. They
showed that it is possible to recover the 3D positional information
of particles from this hologram. Additionally, they developed a
system that can capture bright-field and holographic images
simultaneously to create a dataset. The GAN generator
produces holograms from bright-field images, and the
discriminator is trained to determine whether it is a generated
or captured hologram.

Liu et al. (2020) converted the reproduced image of digital
holographic microscopy into a polarized image of polarized light
microscopy. Polarized light microscopy has problems, such as a
narrow field of view and the need to capture several images with
different polarization directions. The study Liu et al. (2020)
showed that a DNN trained by a GAN could infer a
polarization image from a single hologram. The dataset
consists of data pairs of holograms taken using a holographic
microscope and polarized light images taken with single-shot
computational polarized light microscopy (Bai et al., 2020) of the
same object.

3.5 Holographic Classification
Holographic digital microscopy can observe the phase of
transparent objects, such as cells, allowing for label-free
observation of cells. By using this feature, a rapid and label-
free screening of anthrax using DNN and holographic
microscopy has been proposed (Jo et al., 2017). The DNN
consists of convolutional layers, MaxPoolings, and classifiers
using fully-connected layers.

O’Connor et al. (2020) classified holographic time-series data.
They employed a low-cost and compact shearing digital
holographic microscopy (Javidi et al., 2018) made with a 3D
printer to capture and classify holographic time-series data of
blood cells in animals, and healthy individuals, and those with
sickle cell disease in humans.

Figure 9 shows a schematic of O’Connor et al. (2020). In the
second step of the off-axis phase reconstruction, only the object
light component is Fourier filtered, as in a conventional off-axis
hologram, to obtain the phase image in the object plane using a
diffraction calculation (Takeda et al., 1982; Cuche et al., 2000).
The feature extractor extracts features from the phase image. The
manually extracted and automatically extracted features from
DNNs, which are transfer-learned from DenseNet (Huang et al.,

FIGURE 8 | Architecture of a conditional generative adversarial network.

FIGURE 9 | Classification of time-series hologram of cells.
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2017), are input to a long short-termmemory network (LSTM) to
classify the cells. LSTM is a recurrent neural network (RNN).
RNNs have a gradient vanishing problem as the time-series data
become longer; however, LSTMs can solve this problem. The
study O’Connor et al. (2020) showed that LSTM significantly
improved the classification rate of the cells compared to
traditional machine learning methods, such as the random
forest and support vector machine. The classification of
spatiotemporal COVID-19 infected and healthy erythrocytes
was reported (O’Connor et al., 2021) using this technique.

4 FASTER DEEP NEURAL NETWORKS

Deep learning, as introduced above, entails a neural network
running on semiconductors. The switching speed of transistors
governs its speed, and its power consumption is high. To solve
this problem, an optical neural network has been proposed
(Goodman and Goodman, 2005; Genty et al., 2021).

Research on optical computers has a long history. For
example, pattern recognition by optical computing was
reported in 1964 (Vander LUGH, 1964). This research used
optical correlation to perform simple recognition. Optical
computers use a passive hologram used as a modulator of
light. Therefore, it requires little power and can perform the
recognition process at exactly the speed of light. Research has
been recently conducted on optical deep learning (Genty et al.,
2021). In this study, we introduce one of them, the diffractive
DNN (D2NN), which is closely related to holography (Lin et al.,
2018).

Figure 10 shows the D2NN and semiconductor-based DNN.
A D2NN modulates the input light modulated by some
information with multiple diffractive layers (holograms). It
learns the amplitude and phase of the diffractive layers to
strengthen the light intensity of the desired detector. For
example, in the case of classification, the input light of the
classification target is modulated in each diffractive layer, and
the diffractive layer is learned to strengthen the light intensity of

the detector corresponding to the target. Existing deep-learning
frameworks, such as Keras, Tensorflow, or PyTorch, can be used
to train the diffractive layers.

In Figure 10A, a light wave Ui is diffracted by ith diffractive
layer. The propagated light wave Ui+1 before the next diffractive
layer is expressed as follows:

Ui+1 � Pi+1 Li◦Ui( ), (7)
where Pi+1 is the diffraction between the layers of i and i + 1, and
◦ is the Hadamard product. For Pi, general diffraction
calculations, such as the angular spectrum method, can be
used. The forward calculation of D2NN is completed by
iterating Eq. 7 as many times as the number of diffractive layers.

Since the calculation of Eq. 7 consists of the entirely
differentiable operations, each diffractive layer can be
optimized by automatic differentiation from the forward
calculation. The D2NN is trained on a computer, and the
trained diffractive layers are recorded on an optical modulator
(photopolymer or SLM). These optical modulators correspond to
the layers of the semiconductor-based DNN. A D2NN can be
constructed by arranging these layers in equal intervals. The
classification rate can be further improved (Watanabe et al., 2021)
by arranging the diffractive layers in a non-equally spaced
manner. The spacing of diffractive layers is a hyperparameter,
which is not easy to tune manually. Watanabe et al. (2021)
employed a Bayesian optimization technique, the tree-
structured Parzen estimator (James et al., 2011), for
hyperparameter tuning.

Figure 10B shows a semiconductor-based DNN. The output
Xi+1 of the input Xi at the ith layer of this DNN can be
expressed by

Xi+1 � Fi Wi ·Xi + Bi( ), (8)
whereWi is the weight parameters, Bi is the bias (not shown in the
figure), · is the matrix product, and Fi is the activation function.
Semiconductor-based DNNs can represent arbitrary functions
because Eq. 8 contains nonlinear activation functions. However,

FIGURE 10 | Diffractive deep neural network: (A) D2NN, (B) semiconductor-based DNN (B), and (C) D2NN incorporating the ideas of ResNet.
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Eq. 7 of D2NN has no activation function; therefore, it can only
handle linear problems. Still, there are many applications where
D2NNs work effectively for linear problems.

The study Lin et al. (2018) investigated the MNIST
classification accuracy using D2NN. When a five-layer D2NN
was validated through simulation, it achieved a 91.75%
classification rate. Meanwhile, the classification rate improved
to 93.39% for a seven-layer. The state-of-the-art classification rate
for electrical DNNs was 99.77%.When the layers were 3D printed
and optically tested, a classification rate of 88% was achieved
despite the manufacturing and alignment errors of the layers.

D2NNs are usually constructed with relatively shallow layers.
Dou et al. (2020) applied the idea of ResNet (He et al., 2016) to
D2NN and reduced the gradient vanishing problem in deep
diffractive layers. ResNet reduced gradient vanishing by
introducing shortcuts, whereas Res-D2NN (Dou et al., 2020)
introduces optical shortcut connections, as shown in
Figure 10C. When a 20-layer D2NN and Res-D2NN were run
through the MNIST classification problem, the identification
rates were 96.0% and 98.4%, respectively, with the Res-D2NN
showing superior performance.

Sakib Rahman and Ozcan (2021) showed through simulations
that a twin image-free holographic reproduced image could be
obtained using a D2NN. When holograms captured by inline
digital holography are reproduced, blurry conjugate light is
superimposed on the object light. Phase recovery algorithms,
compressive sensing, and deep learning are used to remove this
conjugate light, all of which operate on semiconductors. The
study Sakib Rahman and Ozcan (2021) trained a D2NN to input
light from a hologram into the D2NN and pass it through several
diffractive layers to obtain a twin image-free reproduced image.
The loss function L is defined as follows:

L � ‖I − Y‖2 + α1‖F I( ) − F Y( )‖2 + α2 1 − PI/Pillum( ), (9)
where ‖·‖2 denotes the ℓ2 norm, and the first term is the error
between the inferred image I of D2NN and the ground-truth
image Y; the second term is the spectral error; the third term is
the diffraction efficiency defined as the ratio of the power PI of the
reproduced image to the total power Pillum of the illumination
light. The third term subtracts the diffraction efficiency from 1 so
that the loss function becomes smaller as the diffraction efficiency
increases. α1 and α2 are hyperparameters. The amount of
modulation of the diffractive layers is determined by
minimizing this loss function.

5 OUR PERSONAL VIEW AND DISCUSSION

In previous sections, we introduced computational holography,
including computer-generated holograms, holographic displays,
digital holography, and D2NN, using deep learning. Several
studies have shown that deep learning outperforms existing
physically-based calculations. In this section, we briefly discuss
our personal view on deep learning.

Algorithms for computer-generated hologram in holographic
display include point-cloud, polygon, layer, and light-field

methods. Several physically-based algorithms have been
proposed for layer methods (Okada et al., 2013; Chen et al.,
2014; Chen and Chu, 2015; Zhao et al., 2015). The DNN-based
method (Shi et al., 2021) proposed by Shi et al. (2021) has been a
near-perfect layer method in computational speed and image
quality. Physically-based layer methods are inherently
computationally expensive due to the iterative use of
diffraction calculations. The DNN in Shi et al. (2021) skips
this computational process and can map input RGBD images
directly to holograms. This study showed that DNN could
generate holograms two orders of magnitude faster than
sophisticated physically-based layer methods.

Holograms generated using the layer method are suitable for
holographic near-eye display because a good 3D image can be
observed from the front of holograms (Maimone et al., 2017).
These holograms have a small number of hologram pixels.
Additionally, since the holograms do not need to have a wide
viewing angle, they have only low-frequency interference fringes,
indicating low spatial bandwidth product (Blinder et al., 2019).
These features are suitable for DNNs, which is why current
hologram generation using DNNs is mainly for layer
holograms. Holograms with a large spatial bandwidth product
have a wide viewing angle, allowing a large 3D image to be
observed by many people. However, this would require large-
scale holograms. Such holograms require a pixel pitch of about a
wavelength and billions to tens of billions of pixels (Matsushima
and Sonobe, 2018; Matsushima, 2020). Holograms are formed
from high-frequency interference fringes, and hologram patterns
appear noisy at first glance. Current DNNs have difficulty
handling such large-scale holograms due to memory issues
and computational complexity. Additionally, deep image prior
(Ulyanov et al., 2018) points out that current DNNs based on
convolutions are not good at generating noisy patterns.
Therefore, hologram generation with large spatial bandwidth
products using DNNs is a big challenge.

Since DNNs were developed from image identification, RGBD
images used in the layer method are suitable for DNNs. However,
it is not easy for DNN to handle coordinate data formats used in
the point cloud and polygon methods. So far, few studies exist on
how to handle the point cloud method (Kang et al., 2021) using
DNN. The authors look forward to further progress in these
studies.

Deep learning is a general-purpose optimization framework
that can be used in any application involving signals. However, it
is difficult to answer whether it can outperform existing methods
in all applications and use cases. Using optical cryptography and
single-pixel imaging as examples, Jiao et al. (2020) compared a
well-known linear regression method (GeorgeSeber and AlanLee,
2012) with deep learning. They concluded that the linear
regression method is superior in both applications. DNNs
require a lot of tuning: tuning the network structure and
hyperparameters, selecting appropriate loss functions and
optimizers, and preparing a large dataset. If we tune them
properly, which is not necessary in existing physically-based
methods, we may obtain excellent results. However, it requires
much effort. Ultimately, deep learning is a sophisticated fitting
technique, so analytical models matching the ground truth
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physics may be favorable whenever knowable and efficiently
computable. Thus, it is essential to choose appropriate
physically-based methods and deep learning in the future.

Deep learning requires the preparation of a large number of
datasets, which generally require much effort. Computer-
generated holograms using DNNs also require the
preparation of datasets; however, they can be generated on a
computer. Therefore, there is no need to take holograms with an
actual optical system, except for systems such as the camera-in-
the-loop holography. Digital holography is more problematic,
as it requires a great deal of effort to acquire information about
target objects and their holograms. Unsupervised learning, as
discussed in Section 3.3, is ideal. However, unlike DNNs trained
in supervised and unsupervised manners, phase recovery
algorithms and compressed sensing can recover target object
lights using only few known information about the target
objects. Thus, they do not require a dataset. For supervised
learning, DNNs should be trained by generating data pairs of
holograms and their object lights using phase recovery
algorithms and compressed sensing, as stated in Rivenson
et al. (2018).

The generalization performance of DNNs is also essential. For
example, in the case of digital holography, there is no guarantee
that a DNN trained on a dataset with a particular object and
optical system will be able to accurately recover object lights from
holograms captured in other situations. Therefore, to improve the
generalization performance of DNNs, we can use datasets that
include various types of data, and techniques such as domain
adaptation (Tzeng et al., 2017), which has been the subject of
much research in recent years.

Furthermore, DNNs have outperformed physically-based
calculations in many applications of computational
holography. So, will there still be a need for physically-based
calculations in the future? The answer is yes, because DNNs
require large datasets which need to be generated using
sophisticated physically-based calculations. Additionally, the
validity of the results generated using DNNs should be
benchmarked with the results obtained using physically-based
calculation. Meanwhile, several attempts have been made on

introducing layers of physically-based calculations in DNNs
(Rivenson et al., 2018; Wang et al., 2020b; Hossein Eybposh
et al., 2020; Li et al., 2020; Chen et al., 2021; Horisaki et al., 2021;
Shi et al., 2021; Wu et al., 2021; Ishii et al., 2022; Kavaklı et al.,
2022). Therefore, it will be necessary to continue research on
physically-based calculations in terms of speed and image quality
to speed up these layers.

6 CONCLUSION

In this review, we comprehensively introduced computational
holography, including computer-generated holography,
holographic display, digital holography using deep learning,
and D2NNs using holographic technology. Computational
holography using deep learning has outperformed
conventional physically-based calculations in several
applications. Additionally, we briefly discussed our personal
view on the relationship between DNNs and physically-based
calculations. Based on these discussions, we believe that we need
to continue research on deep learning and physically-based
calculations. The combination of deep learning and physically-
based calculations will further lead to a groundbreaking
computational holography research.
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