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1. INTRODUCTION
The two-dimensional non-linear sigma model (NLSM) is a cen-
tral topic in string theory, in statistical mechanics, and in math-
physics interface topics such as mirror symmetry. It is a quantum
field theory of maps from a two-dimensional (2d) Riemann sur-
face into a D-dimensional Riemannian manifold M, a sort of
quantized version of the harmonic map problem. Although all
existing treatments of its perturbation and renormalization the-
ory involve choosing coordinates on M, the physical results are
covariant under diffeomorphisms [1], so the NLSM provides a
direct contact between quantum field theory and geometry. One
can supersymmetrize the NLSM and find even richer connections
with geometry.

In a sense which is still not well-understood, the NLSM defines
a generalization of Riemannian geometry which is often called
“stringy geometry.” While there are many interesting results in
this subject, surveyed in [2], this paper will actually be more about
the “large volume” or “large structure” limit in which the NLSM
can be understood using conventional geometry, and it will try
to make statements about conventional geometry based on the
properties of the NLSM.

Our main conjectures are stated in the abstract and will be
restated below. The first is

Conjecture 1. A compact Calabi-Yau manifold has non-trivial
closed geodesics which are local minima of the length functional.

More generally, this should apply to any compact manifold for
which the NLSM leads to a superconformal field theory (with
H = 0, see section 2). The physics argument is simply that the
NLSM must have stable states corresponding to strings winding
about geodesics, but if a geodesic is not locally length minimiz-
ing, the corresponding winding string will not be stable. For this
reason we will often refer to locally length minimizing geodesics
as “stable” geodesics.

From a physics point of view this claim may seem reasonable
and unsurprising, but it has never been shown mathematically
and there are geometric considerations that make it somewhat
more surprising. While it has been shown that all compact
Riemannian manifolds have closed geodesics [3], in general such
geodesics are not local minima of the length functional. For exam-
ple, the sphere has no such geodesics; all are unstable at second
order. More generally, as we review below, the second variation
of the length is the negative of a component of the Riemann ten-
sor, so positive curvature is an obstruction to stability. Now, since
the Ricci tensor is a partial average over the Riemann tensor, and
a Calabi-Yau manifold is Ricci flat, at every point there is some
two-plane with positive curvature along which (by analogy to
the sphere) one might be able to vary the geodesic and lower its
length.

In the simplest example, the Eguchi-Hanson space, one can
check that there are no stable closed geodesics, as we do in sec-
tion 4. The only candidate is the geodesic winding the exceptional
cycle (minimal volume non-trivial two-sphere), but it is not sta-
ble. Of course, the Eguchi-Hanson space is not compact, so it
is not a counterexample to our claim. The simplest Calabi-Yau
on which we expect to find stable closed geodesics is the res-
olution of the orbifold

(
R

3 × S1
)
/Z2, which in a sense is two

Eguchi-Hanson spaces glued together [4, 5]. This orbifold CFT
has winding states which are the Z2-invariant projection of the
winding states on R

3 × S1. By continuity under varying moduli,
similar winding states must be present after a small deforma-
tion; these are the stable closed geodesics of our conjecture.
While we do not show this explicitly, we will check that there
are stable non-compact geodesics (escaping to infinity) on the
Eguchi-Hanson space which might be glued together to pro-
duce these stable closed geodesics. Similarly, the K3 obtained
by small deformation of T4/Z2 will have stable closed geodesics
corresponding to the winding states on this orbifold, and so
forth.
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The main physical point we need to justify our conjectures
in general is to show that these NLSMs in fact have stable states
corresponding to strings winding about geodesics. Our primary
argument will be based on modular invariance of the partition
function on the torus. This is an invariance under exchanging the
A- and B-cycles of the torus, which in a sense relates the spec-
trum of the Laplacian on M, called the “momentum states,” to
the set of stable closed geodesics, the winding states. Showing
this for the torus Td is a standard calculation, which we review
in section 2. This argument can also be used for orbifolds of the
torus, justifying the claim for small deformations of orbifolds.

We will make some steps toward a general argument for the
same claim that modular invariance relates the spectrum of the
Laplacian on M to the set of stable closed geodesics, in the large
volume limit. Let us now recall some facts about this limit. In
quantum mechanics, the quantization parameter (Planck’s con-
stant h̄) has (dimensional) units involving both length and time. It
can be thought of as controlling an uncertainty relation between
position and momentum, or energy and time; two related but dis-
tinct conjugate quantities. Analogous but different relations apply
to most quantum field theories. However, as we will review in
section 2, because of conformal invariance in two dimensions,
the quantization parameter in the 2d NLSM has units of squared
length on M, and controls an uncertainty relation between posi-
tion and position. It is usually denoted as α′ or l2s in the string
theory literature, and it determines the length scale ls = √

α′ on
M at which quantum fluctuations of the two-dimensional surface
are important.

The limit α′ → 0, or equivalently a limit in which we fix
α′ and scale up the metric on M by an overall constant, is
the large volume limit. While it has many features in common
with the semiclassical limit h̄ → 0, there are some differences of
interpretation which will become important below. A good start-
ing point for explaining this is to describe the state space and
Hamiltonian of the NLSM and compare it to the state space and
Hamiltonian of the quantum mechanics (QM) of a particle mov-
ing on M. Recall that in most quantum theories, the state space is
an infinite-dimensional Hilbert space H, and the Hamiltonian H
is an unbounded operator but with bounded below spectrum. Its
spectrum and the “partition function”

Z(β) ≡ Tr H exp −βH (1)

is a basic physical observable. In QM, the Hilbert space is the space
of L2 functions on M, corresponding to the quantization of a clas-
sical particle whose state is a choice of point on M and a conjugate
momentum. The Hamiltonian is the sum of the Laplacian � on
M multiplied by h̄2 and a multiplication operator by a function V
on M (the potential). The asymptotics of its spectral density and
thus the partition function are governed by the Laplacian and are
given by Weyl’s theorem. Let us set the potential V = 0, then we
have

ZQM(β) = Tr H exp −β� ∼β→0
1

βD/2
Vol (M) (1 + O(β)) . (2)

The Hilbert space of the NLSM corresponds to the quantization
of a string (loop) on M, and should be some space of functions

on a loop space on M. This type of definition has been worked
out mathematically for M flat (or parallelizable as in the WZW
models), but due to the difficulties of renormalization this has
never been done for other M. What can be done is the analysis
in the large volume limit and the development of a renormalized
perturbation theory in α′. We will review the NLSM spectrum
and partition function in the large volume limit using physics
techniques below. In the simplest case in which the geodesics are
isolated, we find

ZNLSM(τ) = 1

|η(τ)|2D

(
ZQM

(
β = τα′)

+ Zwinding
(
β = τ/α′)) (3)

Zwinding(β) ≡
∑
γ

exp −βL(γ)2. (4)

Here η(τ) is the Dedekind eta-function or “classical partition
function,” and the sum in Zwinding is taken over all closed locally
length minimizing geodesics γ on M, while L(γ) is the length of
a geodesic. Thus the NLSM Hilbert space has two components.
The first, often called the space of “momentum states,” is the ten-
sor product of two factors: the quantum mechanical Hilbert space
of a particle moving on M, corresponding to a wave function of
the center of mass of the string, and a Hilbert space of “oscillator
states” which physically correspond to small fluctuations of the
string.

The second component, the “winding states,” is the tensor
product of a Hilbert space with a basis vector eγ for each closed
stable geodesic γ, with a similar space of oscillator states. This
component is not present in the quantum mechanics of a par-
ticle; its origin is what one would expect intuitively; a loop can
wind about (embed into) a geodesic γ to give a physical state. To
correspond to a state, the geodesic must be a local minimum of
the length functional; otherwise the state would be “unstable” and
decay into a loop of lower energy (length).

Of course, on the torus, geodesics come in families, and a priori
there might be families of geodesics on a non-trivial Calabi-Yau
manifold. In the physics, a family of geodesics will contribute
a function to Zwinding, obtained by the “collective coordinate
prescription.” This amounts to finding the moduli space of the
family, call this M, and quantizing the moduli space, changing
Equation (4) to

Zwinding(β) ≡
∑
γ

exp
{
− τ

α′ L2
γ − τα′�M

}
(5)

where �M is a Laplacian on the moduli space.
A similar computation and picture apply to the supersymmet-

ric NLSM. The analog of ZQM is a supersymmetric QM partition
function, which counts eigenfunctions of the p-form Laplacians
for all p. The other terms Zwinding and 1/|η|2D have analogs which
will be discussed in section 4.1.

This picture is only known to apply in the large volume limit,
as the existing justifications involve perturbative expansions in
α′ which are believed to be asymptotic with zero radius of con-
vergence. As one moves away from this limit, i.e., considers
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manifolds M with geometry on scales ls or shorter, not much can
be proven, but there are many physics claims for which a great
deal of evidence has been assembled. The most basic of these is
that supersymmetric NLSM’s exist for certain non-flat manifolds
M: the Calabi-Yau manifolds with SU(n) holonomy, and hyper-
kähler manifolds. It is also believed that supersymmetric NLSM’s
exist for manifolds M with the special holonomy groups G2 and
Spin(7).

The argument that NLSM’s exist with Calabi-Yau target spaces,
while not mathematically rigorous, is extremely compelling, and
has three parts [2]. The first part is that these NLSMs have
unobstructed deformations, so that they come in moduli spaces
of computable dimension. The second part is that there are
supersymmetric conformal field theories, the Gepner models,
which can be exactly constructued using algebraic techniques,
and which can be compellingly argued to correspond to points
in the moduli spaces of Calabi-Yau sigma models. Finally, the
moduli spaces themselves can be explicitly determined using alge-
braic geometry and mirror symmetry. Thus, there exist families
of NLSMs with both a large volume limit, and other “stringy”
NLSMs which are not described by this limit.

The properties of these “stringy” NLSM’s are a primary ques-
tion of the still-nascent theory of “stringy geometry,” nascent
because it has no general definitions or techniques at this point.
A good deal of progress has been made on questions which can
be answered in the topologically twisted NLSM, leading to the
many results of mirror symmetry, and connections to mathemat-
ics such as quantum cohomology and derived algebraic geometry.
But much less progress has been made on other questions, such
as the general nature of the state space and partition function
Equation (3).

Of course, finding the exact spectrum of the Laplacian
or equivalently computing Equation (2) exactly for general
Riemannian manifolds is already an intractable problem, and it
is not clear why computing Equation (3) should be any easier.
Although from this point of view it is interesting that explicit
expressions for Equation (3) are known for Gepner models, our
discussion here will not make use of this, but rather focus on
qualitative properties. The main idea we will use is an analogy
with the semiclassical trace formula [7–10]. In general terms,
a trace formula relates the spectrum of the Laplacian on a
Riemannian manifold M, to the lengths and other properties
of closed geodesics on that manifold. Intuitively, such a rela-
tion will arise by taking the semiclassical limit of the functional
integral over closed paths in M. This computes the trace of the
heat kernel, which determines the spectrum, while the semi-
classical limit is dominated by classical solutions, the geodesics.
Typically, this relation is only asymptotic in h̄, except for spe-
cial cases such as tori and homogeneous spaces. For the torus,
the relation can be verified analytically using Poisson resumma-
tion, while for quotients of hyperbolic space it is the Selberg trace
formula.

Looking at Equation (3), it involves the same two ingredients,
a sum over eigenvalues of the Laplacian, and a sum over closed
geodesics. And, at least on a heuristic level, it is easy to relate it
to the trace formula. Consider a semiclassical treatment of the
genus one partition function; now the classical solutions are (by

definition) the harmonic maps from the torus to M. This includes
“world-sheet instantons,” but it also includes simpler solutions in
which (say) the τ-cycle of the torus maps into a closed geodesic in
M, and with no dependence on σ. By the intuition which led to the
trace formula, the sum over these solutions should be related to a
sum over the spectrum of the Laplacian. In the usual discussion
these are “momentum states,” created by vertex operators which
are local in M. Conversely, configurations with dependence on σ

but not τ are winding states, and the genus one partition function
also contains a sum over these. Now, modular invariance (or the
“S-transformation” τ → −1/τ) relates these two sums. Thus, the
trace formula is part of the explanation of modular invariance in
the 2 d NLSM.

By analyzing the modular invariance relation between the two
terms in Equation (3), we can understand the asymptotics of the
number of geodesics as a function of their length. Let us first sup-
pose for simplicity that the geodesics are isolated, then we will
argue in section 4.5 that the symmetry between the two terms
of Equation (3) will require ZQM and Zwinding to have the same
asymptotics as τ → 0. This will imply that

Conjecture 2′. On a compact Calabi-Yau manifold of real dimen-
sion D, assuming geodesics are isolated, the number of non-trivial
closed geodesics which are local minima of the length functional of
length less than L, grows asymptotically as LD.

To understand the case in which the geodesics are not isolated,
one needs to know more about their moduli spaces. While we
do not have much to say about the general case, the fact that
Conjecture 2′ holds in the torus and deformed orbifold examples,
combined with the idea that the asymptotics of the individual
terms in Equations (3, 5) cannot change under deformation to
a nearby conformal field theory, strongly suggests that we do not
need the additional hypothesis, so we make

Conjecture 2. On a compact Calabi-Yau manifold of real dimen-
sion D, the number of non-trivial closed geodesics which are local
minima of the length functional of length less than L, grows asymp-
totically as LD.

We hope that further development of these ideas will allow
making this argument more compelling, and perhaps determine
whether geodesics on a general Calabi-Yau are isolated or not.

To conclude this introduction, let us mention some loosely
related work. In [11, 12] it was suggested that NLSM flows
between target spaces which are higher genus Riemann surfaces,
and Liouville-type theories, could be defined by using the Selberg
trace formula to compute sums over winding states. In [13],
a general relation was proposed between modifications of the
contour of functional integration in a d-dimensional QFT, and
boundary problems in a topologically twisted d + 1-dimensional
QFT. It is tempting to imagine that relations between d = 1-
dimensional trace formulas and d = 2 superconformal field the-
ory could be understood in these terms.

2. WINDING STATES IN SIGMA MODELS
We begin by discussing the bosonic non-linear sigma model with
fields Xμ : � → R

D which are local coordinates on M, and the
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action

S = 1

4πα′

∫
d2x

√
hhαβ∂αXμ∂βXνGμν(X) + i

∫
X∗(B). (6)

Here hαβ is the worldsheet metric and Gμν the metric on M. The
indices are α, β = σ, t; and μ, ν are space-time coordinate labels.

The B-field is a local two-form on M and X∗ is its pullback
to �. In general B need not be globally defined—its contribution
to the action is only defined up to shifts of 2π, and in the super-
symmetric case anomalies can enter. Nevertheless the three-form
H = dB will be globally defined. It will be zero in the NLSMs we
discuss, but in this section we work out a few results for H �= 0.

In a semiclassical treatment of the functional integral, we sum
over integrals defined by expanding around solutions of the clas-
sical equation of motion. This is the harmonic map equation,
generalized by H-flux,

0 = ∂α

(√
hhαβ∂βXμ

)
+ √

hhαβ�
μ
νλ(X)∂αXν∂βXλ

+ εαβGμν(X)Hνλσ(X)∂αXλ∂βXσ. (7)

where �
μ
νλ is the Christoffel symbol for the metric Gμν. It is

independent of the two-dimensional conformal factor.
We now take hαβ = δαβ, and consider the special case in which

the fields only depend on one worldsheet coordinate, say σ. In this
case the H-flux drops out, and these classical solutions are closed
geodesics on M.

Let σ ∈ [0, L) ≡ I, and take

γ : I → M (8)

to be a closed geodesic on M, satisfying Equation (7) and
γ(σ + L) = γ(σ). The equation Equation (7) implies that

0 = ∂

∂σ

∣∣γ′(σ)
∣∣2 (9)

where ∣∣γ′(σ)
∣∣2 ≡ Gμν (γ(σ))

∂Xμ

∂σ

∂Xν

∂σ
, (10)

so up to a factor, the geodesic is parameterized by arclength. We
now choose

1 = ∣∣γ′(σ)
∣∣2 (11)

so that the geodesic is parameterized by arclength, and L is its
length.

Since conformal transformations necessarily mix σ and τ, a
non-trivial geodesic breaks conformal symmetry.

2.1. BRIEF REVIEW OF THE TORUS TARGET SPACE
Let us now review the well known case of M ∼= TD with constant
metric Gμν and Bμν. We take the coordinates Xμ to range over the
unit hypercube (0, 1)D. Thus the closed geodesics are

Xμ = xμ
0 + wμ σ

L
(12)

with xμ
0 ∈ [0, 1)D and wμ ∈ Z

D.
To get the states of the quantum theory, the zero modes xμ

0
must be quantized, leading to discrete momenta valued in the
dual lattice Z

D.
The energy of a winding state is simply E0 = ∫

dσ w · w
L2 . Taking

into account the kinetic energy the torus partition function is

Z(τ) =
∑

(wμ, μμ)

exp

{
πτ2

1

2

(w · w

L2
+ L2μ · μ

)
+ 2iπτ1w · μ

}

(13)
In this form, the partition function has a natural interpreta-
tion as a trace over Hilbert space. This can be seen by recalling
q = e2πiτ and

Z(τ) =
∑

(wμ, μμ)

q
1
4 (

w
L + Lμ)

2

q̄
1
4 (

w
L − Lμ)

2

(14)

Poisson resummation formula makes this explicitly modular
invariant

Z(τ) = (2π)D

η(τ)2D

∑
(wμ, μμ)

exp

{
−πL2|μ − τw|2

τ2

}
(15)

Adding the oscillators further contribute a power of the Dedekind
function |η(τ)|−2D. As in well known, the above sum is invariant
under both shift (T : τ → τ + 1) and inversion (S : τ → −1/τ)

which generate SL(2, Z).
The torus TD is special in that each winding state also carries

momentum. This type of degeneracy does not arise for an isolated
closed geodesic on general curved spaces, and in such a case the
winding or momentum quantum numbers do not occur simulta-
neously for a sector of the Hilbert space. Modular invariance does
not come as a trivial consequence of summing over orbits of the
SL(2, Z) group action.

2.2. EXPANSION TO SECOND ORDER AROUND A HARMONIC MAP
To generalize this to curved M, we want to expand the action
Equation (6) around a solution X0, schematically

X(σ, τ) = X0(σ, τ) + ξ(σ, τ). (16)

We are free to define the coordinates ξ(σ, τ) in any way we wish
so as to simplify the expansion.

In the usual covariant treatment of the sigma model, one
expands around X fixed to a point p, and takes ξ to be Riemann
normal coordinates (RNC) around p. These are defined by con-
sidering the geodesic flow (or exponential map) starting at p; the
coordinate of a point q is the initial velocity ξ of a geodesic which
reaches q at time t = 1. Thus, geometrically, ξ is a tangent vector
at p, in other words ξ ∈ TMp.

A natural generalization is to take ξ(σ, τ) to be a RNC around
the point X0(σ, τ). Thus, ξμ(σ, τ) is a tangent vector to the space
of maps X : � → M, which can be regarded as a lift of the map
ξ : � → TM satisfying πξ = X0.

To quantize to one loop order, it suffices to expand the action
to second order in the fluctuations ξ. There is a simple covariant
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result [14] for the expansion to this order around an arbitrary
solution X of Equation (7) with H = 0. It is

S =
∫

d2σ
√

hhαβ
[
Gμν (X(σ, τ)) ∂αξ

μ∂βξ
ν

− Rλμρν (X(σ, τ)) ∂αXλ∂βXρξμξν
]
. (17)

In the simple case of constant X(σ, τ), the curvature term drops
out, leaving the leading non-interacting term in the usual α′
expansion. The curvature term is new and arises at the same order
(i.e., it is independent of α′) in the process of covariantizing the
second variation. Note that both terms are independent of the
two-dimensional conformal factor.

A simple geometric way to compute this is to consider a family
of maps depending on two extra parameters (u, v),

F : R
2 × � → M, (18)

of the form
F = X + uξ1 + vξ2, (19)

and then take the first variation with respect to each of the new
parameters. Varying the metric will give connection and curva-
ture terms, in a very analogous manner to the fermion connection
and curvature couplings generated in the superfield formalism by
the θ-dependence of the metric. Taking conformal gauge, we have

δuδvS =
∫

d2σ 2Gμν (X) ∂ξμ∂ξν + 4Gμν, λ (X) ξλ∂ξμ∂Xν

+ Gμν, λσ (X) ξλξσ∂Xμ∂Xν. (20)

We then need to rewrite the second term in terms of (ξ)2 and
(∂ξ)2. Taking the symmetric and antisymmetric combinations,
we have

4ξλ∂ξμ = 2∂(ξλξμ) + 2
(
ξλ∂ξμ − ξμ∂ξλ

)
. (21)

The symmetric term can be integrated by parts, to produce
another Gμν,λσ term and a term with ∂2 Xν. This can be written
using Equation (7) as a �(∂X)2 term1. The final result is

−2Gσν,λμ(X)ξλξσ∂Xμ∂Xν + O(�) + O(�H). (22)

As for the antisymmetric term, if the final result is covariant,
there is no antisymmetric tensor we can make out of R(∂X)2.
Furthermore, if we grant that the final result is covariant, we can
easily get it by using Riemann normal coordinates at X(σ, τ), in
which Gμν,λ = �

μ
νλ = 0. We then have

Gμν,λσ = −2

3
Rμλνσ (23)

which combines with the 1 − (−2) above to give −R as expected.
A similar computation can be done for the X∗(B) term. The

first term combines with the antisymmetric part of Equation (21)

1X satisfies the classical equation of motion by assumption.

(after integrating by parts) to produce the expected B∂ξ∂ξ term.
The last term combines with the symmetric part to produce
∂λHμνσ∂Xμ∂Xνξλξσ. This term is covariantized by the �H term
coming from the equation of motion. In addition one finds a
Hξ∂ξ∂X term.

Thus the second order variation with H is the sum of
Equation (17) and

S =
∫

d2σ εαβ
[
Bμν(X(σ, τ))∂αξ

μ∂βξ
ν + Hλμν∂αXλξμ∂βξ

ν

+∇μHνλρ(X(σ, τ))∂αXλ∂βXρξμξν
]
. (24)

We see from this that if ∇H �= 0, it can contribute to the mass
term, and thus the definition of stability of a geodesic will change.
This is relevant for Wess-Zumino-Witten models, for example,
where it allows for stable geodesics on group manifolds with
positive curvature. We will assume H = 0 from now on.

This expansion becomes complicated at higher order. For X a
geodesic solution, this can be simplified by using Fermi normal
coordinates, as we discuss in Appendix (A1).

2.3. NSR SUPERSTRING
The generalization to the NSR superstring is very similar as we
are expanding around ψ = 0, so we just use the standard fermion
action,

Sf =
∫

d2σ ψ̄ν

(
δν
μ∂z + ∂zXλ�

,ν
λμ

)
ψμ + 1

4
Rμλνσψ̄

μψλψ̄νψσ.

(25)
The curvature term is not relevant at one loop, and since � = 0
along the geodesic in Fermi normal coordinates, the action
becomes free. There is a non-trivial boundary condition deter-
mined by the holonomy of the geodesic.

In the Appendix (A2) we show that the non-trivial geodesic
also breaks worldsheet supersymmetry. There is, however, no
fermionic zero mode in the Neveu-Schwarz sectors and so these
susy breaking geodesics will contribute as saddle points of the
path integral.

A remnant of the broken susy is that the longitudinal bosonic
degree of freedom and the corresponding (real) fermionic fluc-
tuation, preserves one supercharge that acts trivially on the
transverse modes (see Appendix A2). This remaining supercharge
clearly does not accommodate for example spectral flow of the
original theory 2, so in such winding sectors, the Ramond and
Neveu-Schwarz states are no longer connected.

In other words, the partition function including contributions
of these saddle points need not transform nicely under the spec-
tral flow. This is no accident, the continuous change of moding
by the holonomy of the winding string is a physical input and not
a choice. Phrased in another way, the partition function is not
topological.

It is worth emphasizing that holonomy caused by Poincaré
map does not effect the supercurrents moding numbers, as will
become more evident in section (3.3). As a result, as expected

2There is no U(1) symmetry, at most O(1) which is a sign change.
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these (non-BPS) states does not contribute to for example the
Witten index.

2.4. MASS TERMS, POSITIVE AND NEGATIVE
For a general metric and expanding around a general solu-
tion, even computing the propagator for the quadratic action
Equation (17) is a difficult problem. It can be simplified some-
what in the case of a geodesic by the use of Fermi normal
coordinates. These are defined by expanding the tangent vectors
ξ in terms of an orthonormal frame, defined by parallel transport
along the geodesic.

Their main properties which we will use in the following is that

Gμν|γ = δμν; �λ
μν|γ = 0. (26)

One may ask is there a global obstruction to doing this for a closed
geodesic? What about the overall rotation of the basis? For exam-
ple, one may expect the overall holonomy to be trivial, as the
closed geodesics we are interested in are topologically trivial. This
however, need not be the case, as the holonomy characterizes the
behavior of the cotangent bundle, as will be clear momentarily
[see section (3.3)].

Thus, in these coordinates, Equation (17) has a canonical
kinetic term, and describes massive scalar fields with a position-
dependent mass. Since the action is independent of t, we can go
to normal modes ξ ∝ exp(int). The resulting equation of motion
is a time-independent matrix Schrödinger equation,

− ∂2

∂σ2
ξμ

n + Mμ
ν (σ)ξν

n = n2ξμ
n (27)

with
Mμ

ν (σ) ≡ −Rμ
λρν (γ(σ))

(
γ′)λ (

γ′)ρ . (28)

Here indices are raised and lowered with Gμν = δμν, so Mμν is a
symmetric matrix. Note that

Mμν

(
γ′)μ = 0 ∀ν (29)

so the longitudinal fluctuation is massless and decoupled from the
other fields.

With n = 0, this is essentially the geodesic deviation equation.
If we start at ξ = 0 and slightly vary the initial velocity ξ′, the
qualitative behavior depends on the sign of M (and thus R). For
M < 0, the solutions will be oscillatory, and nearby geodesics will
stay nearby. This is the case of positive curvature, such as a round
sphere. On the other hand, for M > 0, ξ will grow exponentially
and nearby geodesics will diverge from each other. This is the case
of negative curvature.

When considered as a winding mode in string theory, the
dynamics is a bit different. Here M is playing the role of a world-
sheet mass term. For M > 0, i.e., negative curvature, the bosonic
fields ξμ are massive, and conformal invariance is broken. For
M < 0, i.e., positive curvature, the system appears to be unsta-
ble. This is the reverse of the previous discussion, which at first
may seem a bit paradoxical.

In fact there is no contradiction. In general terms, positive cur-
vature allows a small variation of a closed geodesic to decrease

its length, as is intuitively apparent for geodesics on the sphere.
Conversely, negative curvature stabilizes the geodesics. Of course,
on a Calabi-Yau manifold, the Riemann tensor will always have
components of both signs (since the Ricci tensor is zero), and is
furthermore not constant, so the discussion is more complicated.

This observation is directly relevant for the Hamiltonian quan-
tization of a winding state. If the matrix Schrödinger operator in
Equation (27) has a negative eigenvalue, then the corresponding
state should be unstable and is not in the spectrum. Later we will
check this in solvable examples such as Eguchi-Hanson. It is pos-
sible that the time-dependent eigenvalue will cross zero multiple
times, this means the instability is turned on for a fraction of the
time3. Then it would seem the corresponding winding state could
still exist, however, see below.

What is the order of the two terms? Because we are working
in an orthonormal frame, the circumference of the σ direc-
tion is L, and the normal modes in σ will have rough energies
m2/L2. Components of the curvature in an orthonormal frame
are roughly 1/r2

curv where rcurv is the curvature length. These are
comparable in the simplest cases, but not in general.

It is easy to find examples with L >> rcurv. The simplest is to
consider the n’th iterate of the geodesic, in other words the map
defined by composing σ → nσ with γ. Although we are in a loose
sense expanding around the same solution, the stability analysis
changes because we allow ξ satisfying different (weaker) bound-
ary conditions. The relative scaling suggests that if there is a region
of the geodesic with negative M, then past some n the n’th iterate
of the geodesic will be unstable. This is because the M energy will
be proportional to n, while the level spacing will decrease as 1/n2.

There is an additional aspect of the stability issue, which will
be clearer after discussion of the next section. This involves the
rotation of the normal coordinate around γ. Concrete example
in section (4.4) shows that such contributions can overcome the
negative mass term (from positive sectional curvature). All in
all, the dynamics of the sigma model distinguishes our stabil-
ity criterion from that of a geodesic in target space, and stability
of a winding string is more intricate than the mass terms signs
immediately indicate.

3. BRIEF REVIEW OF THE TRACE FORMULA
The physical approach to the trace formulas is as a state-
ment about the semiclassical limit of quantum mechanics [8].
Intuitively, they are based on the computation of a quantum
mechanical partition function using a functional integral over
closed classical orbits of a particle. This leads to a relation of the
general form

Tr e−itH/h̄ =
∑

closed paths

e−iS/h̄ − iπν/2
(

1

det
+ O(h̄)

)
, (30)

where S is the action of a closed orbit of time t, 1/det is the one-
loop approximation to the functional integral, and ν is the Morse
index of the orbit (the number of unstable directions). See for

3For the specific example, Eguchi-Hanson space which we check in section
(4.4), this possibility is not realized.
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example chapter 17 of [8], or the reviews [10, 15] for precise
formulas.

A great deal of work by both physicists and mathematicians
can be summarized in the general statement that formulas like
Equation (30) are fairly well-understood when treated as asymp-
totic expansions in h̄, but exact results (at finite h̄) are much
harder to come by. The prototype is of course the Poisson resum-
mation we used above in Equation (15), while the most famous
example (which initiated this field in mathematics) is the Selberg
trace formula [7]. This applies to homogeneous spaces, such as a
higher genus Riemann surface with a metric of constant negative
curvature. Its standard proofs have little to do with the physics
intuition and rely more on representation theory of groups.

At the level of an asymptotic series in h̄, then the physics argu-
ment according to which the functional integral can be treated
by stationary phase, has (more or less) been made rigorous, as
explained in [10, 15], for the case of a point particle. We now
give some more detail on the relevance (and distinction) of the
trace formula in the context of NLSM, already alluded to in the
introduction.

3.1. BASIC RELATION TO MODULAR INVARIANCE
Suppose we have an asymptotic expression for the wave trace,

f (t) =
∑

n

e−it
√

λn , (31)

then we can get the heat trace from the integral

∑
n

e−βλn = 1√
4πβ

∫ ∞

−∞
dtet2/4βf (t). (32)

Now, if we know that f (t) is analytic and falls off in the upper half
plane, with poles at t = Ti with residue αi, we can evaluate this by
contour integral to get

∑
n

e−βλn = 1√
πβ

∑
i

αi e−T2
i /4β. (33)

Thus, the sum over momentum states ZQM appearing in
Equation (3), is related to the sum over winding states as

ZQM
(
β = τα′) = 1√

πβ′ Zwinding

(
β′ = 1

4τα′

)
(34)

= 1√
τ′ Zwinding

(
β′ = τ′

4α′

)
; τ′ = 1/τ. (35)

Thus, taking τ → 1/τ roughly exchanges the two terms. This
relation τ′ = 1/τ has then has the role of a modular transfor-
mation in the conformal field theory. The corresponding discus-
sion regarding the non-linear sigma model can be found in in
section (4.5).

3.2. THE WAVE TRACE AND LAPLACIAN SPECTRUM
For our purpose, the following formula establishes a whole
tower of (quasi-)eigenvalues of the Laplacian, for each periodic

geodesic. This follows from studying the wave equations, the
formula first appeared in the work of [17].

Take the wave trace as defined in Equation (31), expanding
around a point of its singular support, the residue is expressed
as a sum over iterations of a “primitive” geodesic

lim
t → T

(t − T)
∑

n

e−i
√

λnt =
∑
γ

T

2π

e
π
2 (νγ + 1)∣∣det
(
I − Pγ

)∣∣1/2
(36)

where λn is an eigenvalue of the Laplacian operator on M, νγ the
Morse index of the geodesic γ, T its period (i.e., length Lγ) and
Pγ is the Poincaré map represented on the cotangent bundle in a
canonical normal basis.

There are three different possibilities for the linearized sym-
plectic transformation Pγ on the cotangent space, invariantly
characterized by the Birkhoff quadratic form [16], the so called
elliptic, real and complex hyperbolic. The eigenvalues of Pγ fol-
low the usual pattern of Sp(2n) matrices. For elliptic case one has
complex conjugate pairs of phases, (eiθi , e−iθi) corresponding to
rotations, we do not need the details of the other cases here. The
crucial difference between the elliptic and hyperbolic cases is that
the former leads to discrete Laplacian spectrum (or wave group
spectrum as used in [16]), but not the latter. As we are interested
in a stable geodesic on a compact space (hence discrete Laplacian
spectrum), we focus on the elliptic case from now on.

For such geodesics the Pγ eigenvalues all have unit norm which
can be represented by rotations on the position-momentum
planes. Label the corresponding angles by θi, then from the

expression of
∑

n e−i
√

λnt may be extracted (� is second order)
as in [17].

√
λn = 1

Lγ

(
D − 1∑
i = 1

niθi + 2πn + νγ

)
+ o

(
n−1/2) (37)

where (D − 1) is the number of transverse (real) dimensions to
γ and n, ni are independent integers. The role of this formula in
relating momentum sector and winding sector of string states will
be discussed in section (4.5). We mention that the approximate
(quasi-)eigenmodes associated to these values can be constructed
as a local solution, a “Gaussian beam” which travels along the
geodesic (for details see [18]).

In the case of momentum modes, there is a well known univer-
sal behavior for the asymptotics. Weyl’s formula of the Laplacian
spectrum. Ignoring numerical factors, it states that the integrated
density of states

N(λ ≤ β) ∼ Vol(M)

(2π)d
β

d
2 + O

(
β

d − 1
2

)
(38)

Treating this as a phase space integral then determines the asymp-
totic of the Laplacian eigenvalues

λk ∼
(

(2π)d

Vol(M)

)2
d

k
2
d (39)
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where k is integer. In terms of diameter then this is the expected
( 1

L )2 behavior inside a “box” of size L. As already explained this
size may differ from the length of a general closed geodesic. We
can compare this with Equation (37), while the scaling agrees
assuming the geodesic length Lγ being close to the manifold M
diameter, there are certainly more parameters in Equation (37)
than in the universal Weyl formula.

This contrast is even more evident when one realizes the Weyl
formula is really universal, including the dropped numerical coef-
ficient (which is the same as on R

D). The leading term in the Weyl
formula Equation (38) does not depend on the point chosen on
M, the metric on M or even M itself. The wave trace singularity
on the other hand, depends on a lot of local information in the
neighborhood of Lγ.

There is in fact neither a contradiction nor a puzzle here, but a
short mention of the relation between the two behavior which are
both “asymptotic” is perhaps clarifying, it is simply that the Weyl
formula thought of in the right way is the wave-trace formula for
“zero-length” geodesics. We refer readers interested in the tech-
nical details to (chapter 8 of) [19]. For our subsequent physics
discussions, we are mostly concerned with closed geodesics of
non-zero length, and the Laplacian spectrum will be tacitly taken
to be those arising from the union of the eigenvalues given by
Equation (37) for the non-zero length closed geodesics. This is
one of the “improvements” of the stringy geometry vs. the particly
geometry.

3.3. Poincaré MAP AND OSCILLATOR FREQUENCY
The Poincaré symplectic map as discussed in the wave
trace formula is responsible also for inducing non-trivial
boundary conditions for the (transverse) worldsheet fields ξi,
i = 1, 2, . . . , (D − 1), leading to shifted frequencies of the oscil-
lator modes.

To see this, we recall the geodesic may be considered an inte-
grable Hamiltonian flow, when we take the particle Hamiltonian
to be

H = 1

2
Gμν(X)pμpν (40)

which turns the 2nd order geodesic equations into the corre-
sponding Hamiltonian equations. In Fermi normal coordinate
along γ this is simply the Laplacian � = 1

2
∂

∂xμ
∂

∂xμ .
Due to this realization, the linearized Poincaré map action on

T∗M preserves the symplectic form, being a canonical transfor-
mation. Making the assumption of an elliptic closed geodesic with
no resonances4, we can find a (complex) basis in T∗M which
diagonalizes Pγ as phase rotations

PγYi = eiθi Yi, PγȲi = e−iθi Ȳi (41)

where i = 1, 2, . . . , (D − 1). These are usually chosen to be Jacobi
vectors along γ which are evolved along the flow (see [20]). In
formal terms, these vectors span an isotropic subspace of the

4Resonance happens when the frequencies of the harmonic oscillators in
different transverse directions have integer linear relations, which leads to
divergence due to small denominator.

cotangent bundle (an A-type brane), and it is interesting to con-
sider the open string version of our discussion with the annulus
amplitude replacing the torus partition function.

This basis will be different from the local parallel basis, and the
conversion involves a unitary conjugation, it can be shown (using
Wronskian of the Yi basis) [18] that this leads to the so-called
“Birkhoff normal form.” Using our Fermi normal coordinate, this
arises from the sectional curvatures [involving planes (0i) and (0j)
say], which are in FNC the second derivatives of the longitudinal

metric component in transverse coordinates ∂2G00
∂xi∂xj .

For our winding string, there is a similar effect from the
Poincaré map on the periodicity condition which must be
imposed on the winding states. Consider the local eigenbasis of
the mass matrix Mμν which are the sectional curvatures for the
tangent 0i-planes, i = 1, 2, . . . , (D − 1). To leading order, the
holonomy around γ contributes a uniform kinetic term due to
the worldsheet action. Let the rotation angles be θi, for the length
Lγ geodesic, we find

∫
d2z

D−1∑
i = 1

(
θi

Lγ

)2

=
D−1∑
i = 1

(
θi

Lγ

)2

· τ2 (42)

Equivalently we can see this from the canonical quantization of
the worldsheet fields, taking the conjugate momenta to ξi(σ, t) as

πi(σ, t) = G(X)ij∂σξ
j + . . . (43)

where . . . stand for fermionic terms vanishing identically in Fermi
normal coordinate.

The zero modes of (πi, ξ
i) are simply the particle position-

momenta pair5 and under the geodesic flow rotates by

Pγ ·
(

ξi + iπi√
2

)
= eiθi

(
ξi + iπi√

2

)
,

Pγ ·
(

ξi − iπi√
2

)
= e−iθi

(
ξi − iπi√

2

)
(44)

which are but the annihilation and creation operators ai and a†
i .

We can introduce a formal infinite dimensional symplectic
form for the fields, or we simply make all the oscillators get the
same phase under Pγ

6. As a result, the oscillator frequencies are

shifted for the bosons to 2πZ + θi
Lγ

and the mode numbers shifted

to Z + θi
2π

. The zero point energy for these winding sectors are
then shifted as well, to

− 1

24
+ 1

4

θi

π

(
θi

π
− 1

)
(45)

5Notice for discussion in the winding sector, we defined the conjugate
momenta using σ as time, instead of t.
6Again, under Hamiltonian flow, the Hamiltonian equations dictate that
(ξ′ + iπ′) → −i(ξ + iπ) where ′’s are the “geodesic time” derivative and after
integration around γ(σ) this is how the phase rotation is picked up. For the
string case, we replace ξ by ξ̇ which accounts also for the normalization change
for string-oscillators.
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which agrees with the estimate Equation (42). The effects on
fermionic fields are identical, and we emphasize that this is not
just the curvature induced mass term, which is not present for
fermions at the quadratic order of the action expanded in FNC.
Also, as alluded to at the end of section (2.3), as the bosonic
and fermionic fields shift in the same way in terms of oscillator
modes, whether the supercurrents have zero modes or not are
only determined by the sector the fermions belong to “originally,”
i.e., Neveu-Schwarz or Ramond7. These shifts account for the
various θ-function contributions when we calculate the world-
sheet one-loop determinant contribution to the torus partition
function of the NLSM in the next section.

4. ONE LOOP NLSM PARTITION FUNCTION
In this section, we study the fluctuations around a stable closed
geodesic on the target space M. Such fluctuations are the curved
space counterpart of oscillator modes which build up the spec-
trum in each winding sector. We only consider the expansion of
the NLSM action as in section (2.2) to quadratic order, sufficient
for the one loop approximation on the worldsheet.

The contribution to the action by the classical geodesic
solution

1

2πα′

∫
d2z

1

2
δμν∂αXμ∂αXν = L2

2πα′
|n1τ − n2|2

τ2
(46)

where (n1, n2) are the two winding numbers around γ(σ), i.e.,
the homotopy class of the harmonic map. In expanding around
the winding sector, the sum then has a natural interpretation as a
iteration of the coprime homotopy classes with gcd(n1, n2) = 1.
Especially, for winding states the sum goes over (n, 0) only.

The one-loop determinant comes from the action
Equation (17), which for hαβ = δαβ and for X(σ, τ) = γ(σ)

becomes

S =
∫

d2σ
[

Gμν (γ(σ)) ∂ξμ∂ξν − Rλμρν (γ(σ))
(
γ′)λ (

γ′)ρ ξμξν
]
.

(47)
The fermionic action is free. We have eliminated the linear terms
∂X∂ξ as usual, employing equations of motion for X, however, we
have non-trivial periodicity for the bosons and these linear terms
contribute non-vanishing terms. This will be best appreciated in
section (4.5) where we recover them through modular invariance.

The rest of the section is as follows. In section (4.1) we give an
overview of the different contributions from the various bosonic
and fermionic quantum fluctuations, taking into account non-
trivial holonomy induced boundary conditions. In section (4.2)
we explain the geometric significance of the action (Equation
47) for a closed geodesic. There discuss the zero modes of the
quadratic action and we give an argument for the asymptotic
energy of the oscillator modes in general curved space.

We then make a further perturbative expansion of the
quadratic action in the curvature tensor in section (4.3), allowing

7The shift of moding is reminiscent of a spectral flow, which does not break
supersymmetry. However, here susy is broken due to the explicit mass matrix
for bosons and but not fermions.

us to compute the leading contribution for a general Ricci-flat tar-
get space M. We also then comment on the subleading corrections
in this expansion, relating them to sub-principal wave invariants
introduced by [21] [10] in the context of spectral geometry.

In section (4.4) we study an explicit (non-compact) exam-
ple, the Eguchi-Hanson metric and discuss the stability of all
geodesics on this space. In section (4.5) we close the loop of ideas
by showing that the trace formula (37) gives us a ZQM that agrees
with Zwinding by performing explicitly the τ → −1/τ transform.

4.1. FREE AND MASSIVE CONTRIBUTIONS
We now explain the one loop determinant due to quantum fluc-
tuations of various longitudinal and transverse modes. First the
longitudinal bosonic mode contributes as a (non-compact) free
boson at one loop order (worldsheet action)

Z
B, longitudinal
γ, 1 − loop (τ) = 1√

τ2|η(τ)|2 (48)

This factor is modular invariant by itself and so is not very useful
for inferring information about winding sector states.

The fermions are also massless at one loop order, and we
find the free fermion partition function with twisted boundary
conditions (which we keep general)

ZF
γ, 1 − loop(τ) = 1

η(τ)2

2∏
i = 1

θ

[
αi/2
βi/2

]
(0; τ) (49)

where we write explicitly only the chiral sector. The explicit
value of (αi, βi) depends on periodicity induced by action of the
Poincaré operator along γ(σ). And αi represents a spatial twist
(i.e., winding mode) while βi is a gauging or temporal twist. The
contribution of each (combined complex) fermion

Zα
β(τ) = 1

η(τ)
θ

[
αi/2
βi/2

]
(0; τ) (50)

is known to transform as

Zα
β(τ) = Zα

β+α−1(τ + 1) = Zβ−α(−1/τ) (51)

The phases under τ → τ + 1 constrains modular invariance in
the sum over spin structures in a string theory partition function.
In our case, the fermionic phase and the bosonic one cancel, as
both have identical frequency shifts due to the Poincaré map.

It is perhaps amusing to consider behavior of the partition
function when D = 4, letting the curvatures Rμνρλ blow up along
the geodesic neighborhood so that the transverse massive bosons
decouple, then combining the remaining degrees of freedom we
find the following result8

ZF, B0
γ, 1 − loop(τ) =

∣∣∣∣ θ1θ2

η(τ)3

∣∣∣∣
2

(52)

8Note the labels below in the θ1 and θ2 are only reflecting which holonomy
condition they should be associated to, and are not the usual nomenclature of
θ-functions as used in [22].
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which bears a formal resemblance to the massive characters9 often
seen in computing K3 elliptic genus [23][24]. In the present con-
text, it is curious to observe that a theorem due to Bourguignon
and Yau states that if there is a locally length minimizing closed
geodesic on K3 (or its quotients), all sectional curvatures must
vanish identically along it [25].

On the other hand, the full one-loop torus partition function
for winding states including the transverse degrees of freedom
(written for the case D = 4 )

Z1 − loop(τ) =
∑

γ stable
n ∈ Z

e
− L2

2πα′ |nτ|2
τ2√

τ2η(τ)3η̄(τ̄)3

∏
i = 1, 2

∣∣∣∣θ
[

si

s̃i + nβi
2 |π

]
(0; τ)

∣∣∣∣
2

∏
k

det
[
(∂2

σ − k2)1l + M(σ)
]

(53)

The θ-function characteristics are determined both by the frame
holonomy around γ and the fermions flat-space periodicity
labeled by spin structure (si, s̃i), while most often we will restrict
to NS sectors in our discussion. The infinite product over mode
number k is a reduction along the direction transverse to the
geodesic direction on the worldsheet (“time” or t), the resulting
“index form” is often used in Riemannian geometry and will be
the topic of next section.

4.2. ZERO MODES AND LOOP PARTITIONS
This section is a small detour and explains some useful facts about
Jacobi vector fields and the index form. The Jacobi vector fields
are zero modes of the temporal reduced winding sector sigma
model action, the index form. They give the moduli space for
non-isolated geodesics mentioned in the generalized version of
Claim (2).

For an isolated stable geodesic, all fluctuations in the trans-
verse directions are massive. In such cases, there are no periodic
smooth Jacobi vectors along γ. When γ(σ) belongs to a parame-
terized family, it is useful to introduce the Jacobi vector field. It
satisfies the following equation

∇γ′∇γ′ J(σ) + R
(
γ′, J

)
γ′ = 0 (54)

where in components the RHS is Rl
kij

(
γ′)i

Jj
(
γ′)

l. We see that
the Jacobi fields are the zero modes of the action. In fact its
contribution to the action is a total derivative.

Consider the following functional of γ(σ), usually called the
index form

I1d =
∮

dσ
[

Gij(γ(σ))ξ′iξ′j − Rλiρj(γ(σ))
(
γ′)λ (

γ′)ρ ξiξj
]

(55)

This is the reduction of our 2d quadratic sigma model action
along γ. The Jacobi Equation (54) immediately shows that Jacobi
vectors minimizes the index form. The null space of the index
form considered as a bilinear form on TγM is spanned precisely

9More precisely massive characters of N = 4 supersymmetric su(2) current
algebra at level 1 in the Neveu-Schwarz sector.

by the Jacobi vector fields. For a Jacobi field, applying Equation
(54) gives

∮
dσ

d

dσ

(
Gij(γ(σ))ξi dξj

dσ

)
= 〈

J, J′〉 ∣∣Lγ

0 = 0 (56)

The index form is positive definite for length minimizing
geodesics. While if the geodesic γ(σ) contains conjugate points,
the dimension of subspace in TγM on which the index form
is positive definite jumps by an integer whenever it goes past a
conjugate point (of a chosen origin) [27].

This integer is the number of distinct minimal geodesic
between the conjugate pair. This defines an index, which is a
monotonic function of the arc length parameter σ. For a closed
geodesic we then recover the conclusion from physical consid-
erations in section (2.4), for the stability of the iteration of an
unstable geodesic gets worse and worse as it wraps around more
times.

The Jacobi vectors are null, meaning it is orthogonal to all
other vectors of TM with respect to the bilinear form I1d. In other
words, taking a linear combination of a non-zero mode ϕ(σ) and
any Jacobi vector field J(σ),

ξi(σ) = ϕi(σ) + Ji(σ) (57)

the action

I1d[ξ] =
∮

dσ

[(
ϕi′)2 − Rμiνj

(
γ′)μ (

γ′)ν ϕiϕj
]

= I1d[ϕ]
(58)

since the cross terms vanish by Jacobi equation. This shows
that such zero modes completely decouple from non-zero
oscillator modes, and their quantization leads to the addi-
tional factor in Equation (5) which measures motion on the
moduli space of nearby geodesics. This aspect of our dis-
cussion is formal without looking at the behavior of an
actual metric which supports non-isolated geodesics of such
properties.

From the perspective of Morse theory [27], the one dimen-
sional sigma model is the Hessian of the energy functional whose
critical points among all closed loops are the closed geodesics.
The loop space �M is the configuration space of the quantum
sigma model. This allows us to deal with semiclassical modes geo-
metrically, by thinking of them as a (transverse) standing wave
dissecting the closed geodesic γ into n strands. In the case of an
isolated close geodesic, the above are the favored modes of motion
(up to longitudinal reparametrization).

As a result we find a n-piece partition of the geodesic γ(σ)

by a nearby loop ωn, not necessarily geodesic itself. For a fixed
geodesic γ ∈ �M, beyond a certain mode number N the parti-
tion is fine enough that generically all the (string) strands are
each length minimizing geodesic arcs. On M the length scale
determining the minimal N for which all n > N partitions are
fine enough is the injectivity radius, rinj. It does depend on the
partition points.

Frontiers in Physics | Mathematical Physics December 2013 | Volume 1 | Article 26 | 10

http://www.frontiersin.org/Mathematical_Physics
http://www.frontiersin.org/Mathematical_Physics
http://www.frontiersin.org/Mathematical_Physics/archive


Gao and Douglas Geodesics on Calabi-Yau manifolds

Taking the minimal value of injectivity radius rinj along γ(σ),
label it rinj,γ We can estimate the minimal partition number to be

Nγ ∼ Lγ

rinj
(59)

For n > Nγ then each strand is within injectivity radii of all
the partition n-tuple of points (p1, p2, . . . , pn) = γ(σ) ∩ ωn

involved. Hence the index form I1d is positive definite on each
interval (σi, σi + 1), moreover its value is bounded below by that
of the geodesic arc γσi,σi + 1 .

Hence the growth of energy for the partition for a perturbation
of γ ∈ �M to a loop ωn nearby, is bounded below by a sum of n
terms each being positive. This bound gets better with larger val-
ues of n, where kinetic contribution to I1d dominates, since each
γσi,σi + 1 is a better and better approximation to a geodesic on R

D.
The injectivity radius is essential in reaching the approximation
by R

D.
This gives the asymptotical growth of oscillator modes contri-

bution to the winding string action, which in flat space we know
is linear with respect to oscillator mode numbers. We can make
this argument more explicit, for all n > Nγ we have asymptotic
values

I1d[ωn] =
n∑
i

I1d
[
ωpi, pi + 1

] ≥
n∑
i

I1d
[
γσi, σi + 1

]

≥ n · Lγ

n
·
(

1(
Lγ/n

)
)2

= n2

Lγ

(60)

where the estimated energy are those from Dirichlet boundary
problems with end points (σi, σi + 1). Normalizing as usual the
oscillator modes commutators, the energy of an excited state then
grows linearly in number of oscillator operators.

4.3. DIAGRAMMATICS (A FURTHER CURVATURE EXPANSION)
The general calculation of the determinant requires knowledge of
the metric on M. In the cases of interest, namely Ricci flat man-
ifolds, we are forced to deal with the absence of such. We will
here introduce a further expansion of the path integral exponent
involving curvature tensors, which is a good approximation near
the large volume limit.

Order by order we still find terms which require the geometric
information about M to evaluate, however, for a Ricci-flat M we
will see that the contribution linear in curvature vanishes. This
lets us evaluate the path integral up to this order, with the con-
sequence of not including the local information (“germ”) of the
metric near the geodesic γ. This is a technical hurdle that we hope
to overcome in future work by studying approximately Ricci flat
metrics10.

10In case we had an explicit metric, we may simply quantize the string
oscillators to be αi

n + ν(σ)ei(n + ν)t , α̃i
n − ν(σ)ei(n − ν)t where αi

n + ν(σ) solves the
curvature perturbed equation of motion. In effect, this is the same as reducing
to one dimensional sigma model and evaluating the determinant of the index
form.

The leading few terms in this expansion are as follows

Zγ

1 − loop[τ] =
∫ 3∏

�= 1

[
Dϕ�

]
exp

[∫
d2σ ∂ϕi · ∂ϕi

− Mjk(σ) ϕjϕk
]

=
∫ 3∏

i = 1

[
Dϕi

]
exp

[∫
d2σ ∂ϕi · ∂ϕi

]
(

1 −
∫

d2σMjk(σ) ϕjϕk(σ, t)

+ 1

2!
∫

d2σ

∫
d2σ̃Mjk(σ)Mj̃k̃ (σ̃) ϕjϕk(σ, t)

×ϕj̃ϕk̃ (σ̃, t̃
) + . . .

)
(61)

where we are working with free transverse bosons and treating
the position dependent integrated curvature term as perturba-
tion. Inspecting the example of Eguchi-Hanson space, we find in
that case the curvature term is explicitly diagonalizable over the
whole geodesic (see section 4.4), if one could do so on a compact
Ricci flat space our result below can obviously be improved. It is
not clear we can assume this scenario.

In the free theory limit, we have correlation functions

: ϕi(σ, t)ϕj (σ̃, t̃
) :∼ δij ln |z − z̃| (62)

and so when M is Ricci flat, the leading curvature expansion gives
zero, since the trace of Mij vanishes. In such an approximation,
we then find the NLSM torus partition function (here D = 4 but
generalizations are obvious)

Z1 − loop(τ) =
∑

γ stable
n ∈ Z

e
− L2

2πα′ |nτ|2
τ2√

τ2

3∏
i = 1

∣∣∣∣θ
[ nαi

2 |π
0

]
(0; τ)

∣∣∣∣
−2

∏
j = 1, 2

∣∣∣∣∣θ
[

sj

s̃j +
nβj
2 |π

]
(0; τ)

∣∣∣∣∣
2

(63)

for stable γ all the frequencies are real and quantization of (free)
oscillators is straightforward. The correction to this result will
arise at curvature tensor squared ||R2|| level, assuming the man-
ifold M is Ricci flat. This also discards interference between
winding states, as can be seen from the simple sum over distinct
γ’s. When the closed geodesic has moduli, further modification is
required.

As can be seen from Appendix A1, we need to include addi-
tional interaction vertices in the worldsheet action to have a
consistent curvature expansion. Examples are the cubic interac-
tion for the transverse bosons ξi and quartic interaction for the
fermions. In a more complete calculation, at ||R||2 order we need
to combine the term found at second order here with the above
mentioned terms which were dropped in our one-loop determi-
nant approximation. These are complicated polynomials in the
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curvature tensor, but they do have well-established significance in
the study of spectral geometry.

There is an interesting connection between our expansion
above and the so-called sub-principal wave-invariants introduced
by [21][10]. The second order term in Equation (61) is an
integration of the worldsheet Green’s function for free bosons.

∫
d2z

∫
d2z̃

[
G′(z, z̃)

]2
Mjk(z)Mjk (z̃) = Tr (M(z)G′ (z, z̃)2 M (z̃))

(64)
where the trace operation sums over both field indices and
worldsheet coordinates.

To make contact with the trace formula (for a particle), rewrite
the Green’s function as a sum over images

G′(z, z̃) ∼ −α′

2

∑
m, n

ln
(∣∣z − z̃ + mω1 + nω2

∣∣2) (65)

Now if we let the arguments in the Green’s function go to
zero and replace the divergent correlator by simply δ2(σ, σ̃) and
keep the sum over images. At ||R||2 order, after integrating over∫

d(σ − σ̃), we get an infinite sum with each term looking like the
following ∫

dt

∮
dσ Mjk(σ)Mjk(σ) (66)

This fits nicely into the residue expansion of the wave trace near
the length of a periodic geodesic (i.e., its singular support). As
explained in [10]. These are all local invariants depending only on
the germ of the metric near the geodesic’s tubular neighborhood
and can be evaluated following the method surveyed in [10].

The
∮

dσ integrands of curvature polynomials performed in
Fermi Normal Coordinates as we see above, are called Fermi-
Jacobi-Floquet polynomials Iγ, k

11 in [10]. Their integration along
a closed geodesic orbit gives the “subprincipal” wave invariants
aγ,k [see Theorem (5.1) in [10]]. The simple formula introduced
in Equation (36) is the principal wave invariant aγ, 0 associated to
the trace formula.

We won’t give the explicit expressions for Iγ, k here, the explicit
forms seem to be only known for two dimensional manifolds M
[see Equation (5.5) in [10]]. The explicit construction of Iγ, k

involves products of contraction of covariant derivatives of the
Riemann curvature tensor with the tangent vectors d

dσ
, ξ and

with each other. This follows completely from a Fermi normal
coordinate expansion, just as in our NLSM action expansion.

In fact, since the functional leading to these wave-invariants
are nothing but the length of γ whose second variation is exactly
what we call quadratic action for fluctuations, we find it com-
pelling to propose there is an exact agreement of the terms in
our diagrammatic expansion and Iγ, k (when including higher
degree vertex on the worldsheet). It will be an interesting problem
work out the explicit forms of these Iγ, k curvature polynomi-
als for general higher dimensional manifolds M. In terms of

11The “floquet” is simply the geometric series related to the Poincaré holon-
omy, explicitly defined as βi = 1

1 − eiθi
for each angle of rotation. See Equation

(36).

physics, the limit we are taking here is an optical limit of the path
integral.

4.4. AN EXPLICIT EXAMPLE: EGUCHI-HANSON SPACE
In D = 4 the obvious target space to consider is K3 which is
Ricci flat. K3 has a moduli space which is locally a quarternionic
coset, and the superconformal characters of K3 [28] provide an
intriguing representation of the Mathieu group M24 [29, 30].
The Enriques surface is another example of interest, which has
vanishing Ricci curvature but non-trivial canonical bundle.

Constructing a geodesically complete exactly Ricci-flat metric
on K3 is obviously a challenging problem on its own, which we
will not discuss here. We will content ourselves at present with an
explicit check of some of our basic ideas using an concrete non-
compact Ricci flat example.

For this, we consider the Eguchi-Hanson space T∗
P

1 [31]
which provides a reasonable model of K3 [32] near each of its
blow-up cycles, which may be situated in a family of Einstein
metrics approaching the orbifold limit [33].

The geodesics on Eguchi-Hanson space are integrable, as
shown in [34]. One would like to identify a stable geodesic on
Eguchi-Hanson space. This is found by looking at the second
variation, namely the index form (Equation 55) for the chosen
geodesic. As M is Ricci flat, there are always negative sectional
curvature components, and the stable geodesic if it does exist, is
stabilized due to the kinetic contribution of the local eigen-basis
around γ.

Some simple cases are immediately clear, the blow-up cycle P
1

is geodesic with all its geodesics closed, namely all the large cir-
cles. A straightforward calculation shows that the curvature-mass
term Mij = Rγ′iγ′j(γ(σ)) can be diagonalized leading to constant
mass terms for the fluctuation modes. In particular, the longi-
tudinal mode along γ is indeed massless, there are two negative
mass2 modes and one positive direction. The eigenvectors in the
local frame rotate along γ, however, the negative modes are not
involved, so their kinetic energy is zero, and the large circles on P

1

are all unstable as expected. Additionally, the mass matrix entries
have size a−4 and goes off to infinity in the orbifold limit which
is a = 0.

It is generally desirable to consider the possibility of a closed
stable geodesic inside this small ε-patch of the Kummer surface,
we may look for orbits that either stays at a constant radius or
oscillates between two turning points in the radial direction. The
second choice can be ruled out in general for Eguchi-Hanson
space. The argument is simple, and uses the explicit solution of
the radial and θ-direction geodesic motion. We give here only the
result of the calculations.

Assuming that there is a oscillatory motion between two
extremal values of r, then these must be points where ṙ = 0.
Indeed, the general case admits two such turning points. It also
turns out that the θ motion is completely determined by radial
motion, as a result, we can find the change in angle θ between
these two turning points. We find that �θ has non-vanishing
imaginary part, which is unphysical. So all geodesics (coming in
toward the bolt) must turn away at max(a, 2J/

√
E).

As a result, the only confined motion in Eguchi-Hanson
space is a round trajectory at fixed radius r0 = max(a, 2J/

√
E).
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Considering this case, we find the diagonalized mass matrix to
again have the same pattern of (0,−, −, +) eigenvalues. The non-

zero values are (− a4

r4
E2

2J2 ,− a4

r4
E2

2J2 , a4

r4
E2

J2 ) where r2 has constant

value12. Again, calculating the combined value of kinetic (which
vanish) and curvature terms, we find the negative directions stay
negative. So these are also unstable geodesics.

Another obvious choice is the radial motion. Due to the sym-
metry of Eguchi-Hanson space, we can do better, solving rather
straightforwardly the case of motion in (r, θ)-plane of the polar
coordinate. These are non-compact motions, which will escape
to infinity. However, considered as part of the Kummer surface,
they are interesting candidates for stable closed geodesics. Going
to the inertial frame for the geodesic characterized by energy E
and angular momenta J, the canonically normalized action for the
fluctuating fields have three distinct radially varying mass2 values.

They are the combinations of eigen-frame rotational kinetic
term and the original curvature induced mass. The former has
a uniform value for all four eigenvectors of the curvature-mass
matrix13

m2
0(r) = 4J2

(
r4 − a4

)
r8

∼ 1

r4
(67)

This is the total mass2 for the eigenvector with zero Mij eigen-
value. This value is strictly positive, as r > a is always true.

The two negative modes of Mij have identical values of mass2

m2
1(r) = 4J2

(
r4 − a4

)
r8

− 2Ea4

r6
∼ 1

r4
(68)

Clearly the first term dominates as large values of r, as the curva-
ture has a much faster decay as r−6. This showcases the general
mechanism by which the geodesic stays stable against sectional
curvature. If not for the first term, these directions are unstable
directions and the geodesic would unwind along them. There is
a region around the blow-up cycle which destabilizes geodesics
coming too close to it. It would be interesting to study this fur-
ther in a compact example, as what we see in this example could
work out there as well.

The last mode has positive values for both terms

m2
2(r) = 4J2

(
r4 − a4

)
r8

+ 4Ea4

r6
∼ 1

r4
(69)

For a crude model of compacitification we may cut a ball of radius
� � a. The size of the integrated mass term in the worldsheet
action is then 1/�3 � 1 for the non-compact geodesic under dis-
cussion. As we scale down the Eguchi-Hanson space to fit inside
a ball of size ε cut out from say T4/Z2, the coordinates pick up
inverse factors of ε, making the most dominant term scale as
ε−2�−3. This shows that so long we take the original ball to be
very large, the eventual integrated mass term, � · m2 ∼ ε � 1
(or �−1 � 1), and can be safely neglected at leading order. The

12When the orbit is at r = a, the energy is in fact E = J2

a2 , and these values are
infinite in the orbifold limit as mentioned earlier.
13The radial coordinate r does not parameterize arc length of γ, but this is not
significant for the current discussion.

quantization of oscillator modes then resembles the free theory,
leading to growth of density of oscillator states in the UV similar
to flat space.

Summarizing, for the non-compact Ricci-flat Eguchi-Hanson
space, we find the unbounded geodesics are stable against varia-
tions and the induced mass term agree with the picture that they
do not cause significant change to the quantization of oscillator
modes and their high energy level spacings. It is clearly desirable
to test this picture further with a smooth closed geodesic on a
compact Ricci-flat metric on K3, such as ones constructed using
the gluing technique.

4.5. TRACE FORMULA AND MODULAR INVARIANCE
In this section, we will show that the trace formula (Equation 37)
transforms the worldsheet torus partition function (Equation 63)
in winding sector to that in the momentum sector. For simplicity
of discussion, we take again dimension of M to be D = 4, while
the generalization is obvious.

For the physics points we want to make, we want stress again
that the trace formula is different from the modular property of
the NLSM Hilbert space. The trace formula makes no assump-
tions about the stability of the geodesics included in the support
of the wave-trace. In cases like the sphere with the round metric,
there are no stable geodesics to talk about, while the trace formula
holds none-the-less.

In the simpler case of Gutzwiller’s trace formula [8], the
“empirical” distinction between stable and unstable cases, as also
mentioned in [17], is that stable geodesics correspond to a δ-
function peaks of the Laplacian spectrum distribution, while an
unstable geodesic gives rises to smooth peaks with width. In
this sense, while the trace formula does not discriminate against
unstable geodesics, it also preserves its instability in the “dual”
spectrum.

For a meaningful discussion of the Hilbert space of the NLSM,
we need to talk about stable geodesics. In view of the “preser-
vation” of stability by the trace formula for a particle, we think
of the trace formula as a machine that is useful for mapping
true (i.e., stable) states in the winding sector to true states in
the momentum sector. We will show that it indeed does this job,
and comment on the evidence from this in support of our more
general claims about the number of stable closed geodesics on a
general Calabi-Yau manifold.

First, we have the leading order partition function in the
momentum sector, given by the Laplacian spectrum � = λ2

following from the trace formula. A genuine set of data for
the (UV) asymptotics of the Laplacian spectrum on a Calabi-
Yau is obviously more fitting for making a prediction for the
geodesic spectrum, we do not have such data. In fact, numer-
ical methods as developed in [35–37] are more suitable for
addressing the low lying eigenvalues of the Laplacian due to
resolution limitations. This is the same limitation on being
able to tell whether a discretized geodesic is closing (or closing
smoothly).

For a trace over the momentum sector of the Hilbert space, we
will consider explicitly the bosonic contributions, as the fermionic
case does not involve non-trivial zero modes and the correspond-
ing discussion is simpler. The momentum states are given by
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a sum over all eigenvalues appearing in the formula (37) and
associated oscillators.

For the momentum sum, consider the (quasi-)eigenmodes
corresponding to these asymptotic eigenvalues are Gaussian
beams, which is of the form

	λ(X) � eiλσ + ξi(σ)Mij(σ)ξj(σ)

[
c0(ξ) + c1(ξ)

λ
+ c2(ξ)

λ2
+ . . .

]
(70)

and can be inductively solved (see [19]), with λ the eigenvalue
and Mij(σ) the curvature in Fermi normal coordinate. Vertex
operators for momentum states can be constructed from the
eigenfunctions of Laplacian by adding oscillators (derivatives of
X), for example

Vij(λ) ∼ ∂ξi∂ξj	λ(X(σ, t)). (71)

To leading order (where the left and right-moving Hilbert spaces
decouple), we can take the bosonic partition function in the
momentum sector to be

Zmome.(τ) = tr
(

qL0 q̄L̃0

)
=

tr
(

q�q̄�̃
)

|η(τ)|4

∏3
i = 1

∣∣∣∣θ
[

0
miαi

2

]
(0; τ)

∣∣∣∣
2

(72)

where

� = 1(
Lγ

)2

(
2πn + α1m1 + α2m2 + α3m3 + νγ

)2 + o
(
n−1/2)

�̃ = 1(
Lγ

)2

(
2πn − α1m1 − α2m2 − α3m3 − νγ

)2 + o
(
n−1/2)

(73)

where we have renamed rotation angles to avoid confusions. As
before, we have n, mi ∈ Z, and q = e2πiτ. Notice that by choosing
the form of �̃ we are specifying the spin of the momentum states.

Notice that invariance of Zmome.(τ) under τ → τ + 1 is not
obvious for generic values of the rotation angles which are irra-
tional. This can be remedied by either making the momentum
sector vacuum picking up a phase proportional to τ1 or introduc-
ing an explicit Wilson line for the rotating frame. In the former
case, the vacuum is aligned to the creation and annihilation oper-
ators which rotates around γ (see section 3.3), and Hermiticity of
the action is preserved.

Next we show that this sector of the partition function over
momentum states transforms under τ → − 1

τ
into the partition

function for the winding states. We apply the Poisson resumma-
tion formula to the sum over n, this turns the momentum factor
into

tr
(
q�q̄�

) = Lγ√
τ2

∑
mi

∑
k ∈ Z

(
e
− L2

γ
4τ2

k2 + τ1
τ2

(νγ +∑
i miαi)k

)

e
− 2π

L2
γ
(νγ +∑

i miαi)
2 ττ̄

τ2 (74)

Recall the familiar transformation τ2 → τ2
ττ̄

and let us focus on
the first term in the exponent, then

∑
k ∈ Z

e
− L2

γ
4τ2

k2 τ→− 1
τ−−−−→

∑
k ∈ Z

e
− L2

γ
4τ2

|kτ|2
(75)

giving precisely the classical contributions to the partition func-
tion of iterates of a winding string of length Lγ.

The other factors in Equation (74) deserve a separate explana-
tion, they transform under τ → −1/τ into

e
τ1
τ2

(νγ +∑
i miαi)k

e
− 2π

L2
γ
(νγ +∑

i miαi)
2 1

τ2 (76)

The second term arises from the shift of zero point energy by
twisted boundary conditions as in Equation (45), with holon-
omy induced shift by

(
νγ + ∑

i miαi
)
. When we include fermions,

these terms cancel in the Neveu-Schwarz sector. The τ1
τ2

term
comes from the spin of the momentum sector states, where the
τ → τ + 1 invariance was restored by frame rotation under Pγ.

To compare the rest of the momentum sector partition func-
tion with the winding partition function, recall for transverse
bosons with non-trivial holonomy in the winding direction (spa-
tial twist)

|η(τ)| ·
∣∣∣∣θ

[ miαi
2

0

]
(0; τ)

∣∣∣∣
−1

(77)

And the total bosonic contribution to the winding sector partition
function from Equation (63)

Zwind.(τ) =
∑
k ∈ Z

e
− L2

γ
4τ2

|kτ|2
√

τ2
|η(τ)|4

∏3
i = 1

∣∣∣∣θ
[ miαi

2

0

]
(0; τ)

∣∣∣∣
2

(78)

Combining Equations (72), (74), (76), and (78), and up to fac-
tors of

√|τ| which can be easily fixed from the number of degrees
of freedom, we see that the non-trivial part of the transforma-
tion under τ → −1/τ exchanges the temporal and spatial twists
exactly as follows from Zα

β(τ) = Zβ−α(−1/τ). It’s also useful to
realize that complex conjugation reverses the sign of the char-
acterestics in the θ-function. The fermionic case follows exactly
the same pattern, with proper modifications of periodicity for the
θ-functions.

We can conclude from the above calculation that the trace
formula, when applied to stable closed geodesic spectrum, or
equivalently the associated Laplacian eigenvalues in the sense of
[17], does lead to modular invariance of the torus partition func-
tion in the limits under consideration. This, however, will not
prove our general claims as put forward in the introduction,
which has additional motivations from well known facts about
conformal field theory associated to Calabi-Yau spaces and their
orbifold limits. The τ → − 1

τ
transform of the momentum sector

partition function which itself is more straightforward to obtain,
is a more stringent check of the limit we used to obtain the
winding sector partition function.
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Still, it is a mild assumption that the Laplacian spectrum
gives the momentum sector of the NLSM (at least in large vol-
ume limit), and a further reasonable assumption that the closed
geodesic contribute as winding states to the NLSM partition func-
tion. Then based on the asymptotics of the Laplacian spectrum,
which can be obtained entirely independent of the trace formu-
las, and has definitely polynomial growth, it seems the stable
closed geodesics on a Calabi-Yau manifold should have the same
polynomial growth with respect to its length L, as LD.

From the mathematics literature, the discussion of stable
closed geodesic is still a challenging problem. There is the famous
result of Serre [40] that on a compact Riemannian manifold there
are infinitely many geodesics connecting any pair of points. The
proof is based on spectral sequence techniques and makes essen-
tial use of the path/loop space �M (and �M). Later, Gromov’s
result [41] give lower bounds relying on information of homol-
ogy of the path space, the number of geodesics between a pair of
points p, q ∈ M is bounded

#(L|p, q) ≥ a

L

∑
n ≤ bL

bn(�M) (79)

where a and b are (which are not algorithmically given) constants
and bn(�M) the betti numbers. For dominantly most manifolds,
the above sum grows exponentially with respect to L (examples
are discussed in [11, 12]).

In rare cases, the growth with respect to L is polynomial [42]
and this includes elliptic surfaces such as K3 (we are not aware
of claims about Calabi-Yau 3-folds). In fact the growth applies
also to closed geodesics, in the cases mentioned. This is circum-
stantial evidence for our proposals, however, there are not sharp
statements (aside from ours) about the power of the polynomial
growth with respect to length.

In view of this, further mathematical evidence, presum-
ably from studying approximately Ricci flat metrics asymptotic
Laplacian spectrum, would form very interesting inputs for estab-
lishing (or disproving) the asymptotic behavior of geodesic length
spectrum we propose. Finding the explicit (2nd variation-)stable
closed geodesics will of course add substantial support to our
present proposals.

Incidentally, there is a well-known14 Splitting-theorem [43]
prohibiting the existence of globally length-minimizing geodesics
on manifolds which has non-negative Ricci-curvature (including
Ricci-flat) and is not of the direct product form MD − 1 × R. The
locally length-minimizing geodesics we study, which are stable
due to positive second variations of the action, are not banned by
this theorem. The theorem of Bourguignon and Yau [25] places
some constraints on the behavior of sectional curvatures in the
K3 case, however, assuming the locally length minimizing closed
geodesics to be a measure zero set on the manifold (this is the case
for the flat tori), then we again find no apparent contradiction.

5. COMPARISON WITH ORBIFOLD CFT
In this section we make some exploratory comparison with the
orbifold limits of K3. Our main goal is limited to showing the

14At least to mathematicians and we thank Michael Anderson for clarifying
this point for us.

consistency of the (free) CFT partition function with the pres-
ence or absence of winding sectors in the large volume limit, on
Eguchi-Hanson space.

We consider the non-compact orbifold R
4/Z2 which is the sin-

gular limit of the Eguchi-Hanson space discussed in section (4.4).
The discussion is nearly identical for T4/Z2.

The action of Z2 simply inverts all (signs) of R
4 coordinates,

the action on the (free) fields are then

∂Xμ → −∂Xμ

ψ
μ
± → −ψ

μ
± (80)

The action on fermions follow from preserving N ≥ (2, 2)

worldsheet left and right moving supersymmetries. There is an
unique fixed point (the origin) for R

4/Z2 while there are 16 for
T4/Z2.

For relation with the winding states, we first consider the
untwisted sector on the orbifolds. Here we have indeed states
which carry momentum, identical to the double cover R

4 or
torus. The untwisted sector has the partition function

Zuntwisted(τ) = 1

2

[
Z(0, 0)(τ) + Z(0, 1)(τ)

]
(81)

where

Z(0, 0)(τ) =
[

1

|η(τ)|8
∫ (

4∏
i

dpi

)
q
∑4

i p2
i q̄

∑4
i p2

i

](∣∣∣∣θ3(τ)

η(τ)

∣∣∣∣
4

+
∣∣∣∣θ4(τ)

η(τ)

∣∣∣∣
4

+
∣∣∣∣θ2(τ)

η(τ)

∣∣∣∣
4
)

(82)

is modular invariant. This is the only sector containing zero
modes (momentum) which are projected out in the twisted
sectors.

In case of T4/Z2 the integration over the continuum is
replaced with a sum over momentum and winding, as in the tori
case, and as in that case modular invariance is manifested as the
τ → −1/τ exchange of momentum and winding sectors. These
we expect to turn into stable closed geodesic once we turn or
marginal deformations, which is in the twisted sector. Notice that
the set of closed geodesics on tori has measure zero (and indeed
curvature vanishes along these [25]).

Modular invariance of the second term of Zuntwisted (with
insertion of Z2 element) dictates inclusion of twisted sectors, and
the following combination is required

Z(0, 1)(τ) + Ztwisted = Z(0, 1)(τ) + Z(1, 0)(τ) + Z(1, 1)(τ) (83)

where the subscript (r, s) is the usual notation for twisting in time
and space direction of the worldsheet. Each sector has a 16-fold
degeneracy which we divide by and a weight of 8 from the orbit,
so we find an overall factor of 1

2 as in Equation (81).
For the (r, s)-twist sector, consider the bosonic and NS-

sector fermion contributions (for N = (4, 4) one can include the
SU(2)1 isospin)
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Zr, s(τ) =
∣∣∣∣∣θ3

(
z + r + sτ

2

)
θ3

(
z − r + sτ

2

)
θ1

( r + sτ
2

)2

∣∣∣∣∣
2

(84)

The R-sector result comes from inserting (−)F and shifting
z → z + 1 + τ

2 . Using formula from [26] one can rewrite the
holomorphic factors

χr, s(τ) = −
(

θ1(z)

θ3

)2

−
(

θ3(z)

θ3

)2
(

θ3
( r + sτ

2

)
θ1

( r + sτ
2

)
)2

(85)

Each of these contributions can be decomposed into the sum
of a BPS character and infinitely many non-BPS (massive) char-
acters. Explicit forms of these decompositions can be found in
e.g., [24]. For the untwisted Z(0, 1) the BPS character is that of
the identity representation with (h, l) = (h̄, l̄) = (0, 0). For the
twisted sectors, the BPS representation (in NS sector) is that of
(h, l) = (h̄, l̄) = (1/2, 1/2) which is marginal and corresponds
to a moduli. In the c = 6 theory with N = (4, 4) worldsheet
superconformal algebra, these are the only two possible BPS
representations.

The twisted states are realized by the vertex operator involving
the unique twist field σ(z, z̄) of dimension (1/4, 1/4) in the case
of R

4/Z2

e−φ − φ̄σ e± i
2 (H1 + H2) (86)

and for T4/Z2 one has 16 such twist fields. The twisted partition
function in NS sector has the decomposition [38]

Ztwisted(τ, y) = |χ1, 0|2 + |χ1, 1|2 (87)

y = e2πiz and explicitly the holomorphic blocks are

χ1, 0 = −
(

θ1(z)

θ3

)2

−
(

θ3(z)

θ3

)2 (
θ4(τ)

θ2(τ)

)2

χ1, 1 = −
(

θ1(z)

θ3

)2

− q−1/2
(

θ3(z)

θ3

)2 (
θ1(τ)

θ3(τ)

)2

χ0, 1 = −
(

θ1(z)

θ3

)2

− q1/2
(

θ3(z)

θ3

)2 (
θ2(τ)

θ4(τ)

)2

(88)

On the other hand the BPS and massive characters are given by

chNS
0 (l = 1/2) = −

(
θ1(z)

θ3

)2

− h3(τ)

(
θ3(z)

η(τ)

)2

chNS
0 (h, l = 0) = qh − 1

8
θ3(z)2

η(τ)3

h3(τ) = 1

η(τ)θ3(τ)

∑
m ∈ Z

q
m2
2 − 1

8

1 + qm − 1
2

(89)

where h3(τ) is one of the so called Mordell functions. To expand
the holomorphic blocks in terms of the characters, we use the

well-known identity 2η3(τ) = θ2(τ)θ3(τ)θ4(τ), which leads to

χ1, 0 = chNS
0 (l = 1/2) −

(
h3(τ) + θ4(τ)

4

4η(τ)4

)(
θ3(z)

η(τ)

)2

χ1, 1 = chNS
0 (l = 1/2) − h3(τ)

(
θ3(z)

η(τ)

)2

χ0, 1 = chNS
0 (l = 1/2) −

(
h3(τ) + q

1
2

θ2(τ)
4

4η(τ)4

)(
θ3(z)

η(τ)

)2

(90)

Expanding in q the coefficient of θ3(z)2

η(τ)3 then leads to an infinite

sum over massive characters. All three series can be considered a
power series of q

1
8 and share the lowest order term of q

3
8 , which

gives the lowest operator’s dimension h = 1
2 . For more details on

these expansions, see for example [39].

It is curious the massive characters qh θ3(z)2

η(τ)3 appeared in our

one-loop determinant in Equation (52) when the massive trans-
verse bosons are decoupled. This is probably just a coincidence.
Can these twisted sector massive representations can be associ-
ated to winding strings, on K3 or Eguchi-Hanson spaces? Due to
Z2 projection, in a twisted sector the winding string must lie in a
fixed locus, for example the interval connecting two fixed points.

Based on the fact that these characters appear for the non-
compact ALE-spaces, especially Eguchi-Hanson [38], this possi-
bility seems unlikely, since for the latter space there is only one
unique fixed point. Furthermore, in the semiclassical calculation
leading to Equation (52), to really decouple the transverse bosons
the curvature must be large along the whole length of the wind-
ing string, which isn’t realized unless the winding states are on the
blow up cycle that shrinks in the orbifold limit, which we know as
unstable.

As far as Eguchi-Hanson space is concerned, we find it con-
sistent with the known picture where twisted sector states are
associated with the Kähler modulus and the massive contribu-
tions as observed in [38] simply complete the BPS characters �(2)

invariant.
One (of many) question that seems to arise from these con-

siderations that of explaining how the rather transcendental spec-
trum of the closed geodesics could evolve into the finite rational
operator spectrum of an orbifold CFT, is exemplified in the above
consideration of massive characters for the twisted sector. This
was one of our original motivations for undertaking the studies
in this paper and it remains a mysterious question, while we hope
we’ve made clear the direction we believe could lead to its answer.

6. CONCLUSION
Motivated by the similarity bebtween the Selberg/Gutzwiller trace
formula and the modular invariance of the Hilbert space of
conformal field theories [see section (3.1)], we proposed an inter-
pretation for the trace formula as relating two subsectors of the
conformal field theory Hilbert space, with distinct origins in
target space geometry. The two subsectors are conventionally con-
sidered momentum and winding states for the string moving on
the target space geometry, and are responsible for fleshing out
the modular invariance of string worldsheet one-loop partition
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function in case the CFT is at a point of its moduli space where
target space is either flat tori or an orbifold of these.

In this paper we have introduced a generalization of the
Riemann normal coordinate method of [1], namely the Fermi
normal coordinate, as a new way to study expansion of the NLSM
near a non-trivial critical point, such as a closed geodesic on
target space. The expansion of the action in this coordiante is
straightforward and explained in detail in Appendices (A1), (A2).
Non-trivial new features of the quantization problem are revealed
in section (3), especially the non-trivial action of the linearized
Poincaré map on the first neighborhood of the closed geodesic in
the cotangent bundle T∗M. These lead to intricate modifications
to the flat space procedure of quantizing both momentum and
winding strings.

Based on these new ideas, we were then able to write down
a leading order result for the contribution of both winding and
momentum strings to the one-loop partition function of the
NLSM with a general non-trivial Calabi-Yau manifold as target
space in section (4). The Fermi normal coordinate expansion
leads to natural interpretation of our calculations as the stringy
version of principal and sub-principal wave invariants [see section
(4.3)] studied in the subject of spectral geometry (for a survey
see [19]).

It is non-trivial that the string theory spectrum due to oscil-
lator modes should have the same asymptotic behavior in curved
Calabi-Yau spaces as in flat space, and we give an argument for
this based on the concept of injective radius in section (4.2).
With these pieces in place, we give the final results of the parti-
tion function, in the leading order of the curvature expansion,
and show that it passes the stringent consistency test of modular
invariance, in section (4.5). Here the trace formula of Guillemin
and Weinstein as displayed in Equation (36) is crucial, as well as
the Laplacian spectrum associated to a closed geodesic derived
from it, as seen in Equation (37). Based on modular invariance,
we infer that the number of stable (locally length minimizing)
closed geodesics must grow asymptotically as the power LD, where
D is the real dimension of the target space and L the length of
the geodesic. Since we have only looked at the large volume and
quadratic limit of the NLSM, quantum corrections is possible to
the actual power law, depending on the point of moduli space of
the CFT.

As further evidence of the consistency of our proposal, we
explicitly study all geodesics in the non-compact example of
the Ricci-flat Eguchi-Hanson metric, and compare our partition
functions with non-BPS characters’ contribution to the elliptic
genera of compact K3, which are obtained at orbifold points of
the moduli space of K3. The former substiantiates our claim of the
existence of stable closed geodesics, which are not mathematically
understood very well in current literature, especially regard-
ing Calabi-Yau (i.e., Ricci-flat) manifolds. The orbifold elliptic
genus results are consistent with our proposal that the geodesics
are worldsheet susy breaking states and will not contribute to
index-like one-loop partition functions of the Calabi-Yau SCFTs.

Much is left open for future studies, among the many possi-
ble venues of advance, here we mention two which we consider
especially pressing. First, by the theorem of [25], we know that
at least on K3, for every stable closed geodesic in the proposed

string spectrum, the associated sectional curvatures all must van-
ish along it. This leads to the question whether our proposal is
consistent with current constructions of numerical approxima-
tions to the K3 metric, for example in [35–37]. In particular
it will be interesting to see if there are loci on these numer-
ical approximations where the sectional curvature indeed all
vanish. Second, along the lines of Morse theory in the non-
degenerate [47] and degenerate [48] geodesic cases, one would
like to have a more refined version of the Palais-Smale condi-
tion, possibly allowing the discrimination between stable and
unstable closed geodesics. The methods of [47, 48] allows one
to prove the existence of infinitely many geometrically distinct
closed geodesics given certain assumptions on the homology of
loop space �M. The closed geodesics so found, however, have
non-zero Morse index and are stationary points but not (local)
minima of the length functional. We hope a direct improve-
ment of this method would lead to a satisfying answer regard-
ing the existence of infinitely many stable closed geodesics on
a compact Calabi-Yau manifold, which is required before we
can address the more quantitative issue of asymptotic number
growth.
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A. APPENDIX
A1. FERMI NORMAL COORDINATE EXPANSION
We start with the bosonic action, which reads

S = T

2

∫
d2x

√
hhαβ∂αXμ∂βXνGμν(X) (91)

usually T = 1/2πα′. hαβ is the worldsheet metric and Gμν that
for the target space. Here indices are α, β = σ1, σ2; and μ, ν are
space-time coordinate labels. We find the harmonic map equation
in explicit form

√
h −1∂α

(√
hhαβ∂βXμ

)
+ hαβ�

μ
νλ∂αXν∂βXλ = 0 (92)

here �
μ
νλ is the Christoffel symbol for the metric Gμν. In confor-

mal gauge, the equation reduces and for solutions depending on
σ only we find the geodesic equation.

We make use of Fermi normal coordinate and expand around a
closed geodesic γ(σ) in target space15. For complementary details
see [44]. The Fermi conditions are

gμν|γ(t) = δμν , �
μ
νλ|γ(t) = 0 (93)

Taking a geodesic λσ(s) going off the closed loop γ(σ)

parametrized by s, we set up a coordinate chart on a open set.
Using the solutions of the geodesic equation we can Taylor expand
the worldsheet fields

Xμ(s) = Xμ(0) + dXμ

ds
|s = 0s + 1

2!
d2Xμ

ds2
|s = 0s2

+ 1

3!
d3Xμ

ds3
|s = 0s3 + O(s4) (94)

As yi(s) is a geodesic, applying the geodesic equation leads to

Xμ(s) = Xμ(0) + ξμs − 1

2!�
μ
νλ|s = 0ξ

νξλs2 − 1

3!
(
�

μ
(νλ, ρ)

− 2�
μ
(νδ�

δ
λρ)

)
|s = 0ξ

νξλξρs3 + O(s4) (95)

Using Equation (93) one can show also the completely sym-
metrized partial derivatives of the Christoffel symbol in the
transverse directions vanish, for example

�
μ

(jk, l)|γ = 0 (96)

In the Fermi normal coordinate

Xi(s) = Xi(0) + ξis, X0(s) = σ (97)

Taylor expansion once again gives the equation for the local basis

eν
(μ)(t) = ξν

(μ)(0) + deν
(μ)

dt
|t = 0t + 1

2!
d2eν

(μ)

dt2
|t = 0t2

+ 1

3!
d3eν

(μ)

dt3
|t = 0t3 + O(t4)

15FNC also exists for accelerated or rotating observers.

Taking the initial basis to be orthonormal eν
(μ)(0) = δν

μ and solve
the transport equation

Deν
(μ)/dt = deν

(μ)

dt
+ �ν

λρeλ
(μ)u

ρ = 0 (98)

We recover the Riemann normal expansion

eν
(μ)(t) = δν

μ + 1

6
Rν

μ00 t2 + 1

4!Rν
μ00;0 t3 . . . (99)

Take the base point for geodesic line λ(s) on γ(σ) to be identified
as s = 0, the geodesic equation solution gives the coordinates of
geodesic motion

ζμ(s) = ζμ(0) + d

ds
ζμ|s = 0 + 1

2!
d2

ds2
ζμ|s = 0 t2 + . . .

= ζμ(t) + xieμ

(i)(t) s + 1

6
Rμ

λρ0(t = 0)

(xieλ
(i)(t)xjeρ

(j)(t)) s2t + . . . (100)

Notice here the initial velocity is given as xieμ

(i)(t) in the basis
determined by Equation (99), additionally the Christoffel symbol
�

μ
νλ(t) is expanded similarly along γ(t). Expanding out to first

two orders, we see the following results

ζ 0(s) = t + 1

3
R0i0j

(
xixj

)
s2t + . . .

ζ i(s) = t + 1

6
Ri

0j0

(
xj
)

st2 + 1

3
Ri

jk0

(
xjxk

)
s2t . . . (101)

The fermi normal coordinates for the above point is (ξ0, ξi) =
(t, xi), so the coordinate change required to fermi normal coordi-
nate is

ζ 0(s) = ξ0 + 1

3
R0i0j

(
ξiξj

) (
ξ0) + . . .

ζ i(s) = t + 1

6
Ri

0j0

(
ξj
) (

ξ0)2 + 1

3
Ri

jk0

(
xjxk

) (
ξjξk

) (
ξ0) . . .

(102)

And applying the transformation rules gμν(FNC) =
gλρ(RNC)

∂ζλ

∂ξμ
∂ζ ρ

∂ξν we finally arrive at the expansion of the
metric in fermi normal coordinate

g00 = 1 + R0i0jξ
iξj + O (

ξ3)
g0i = Rijk0ξ

jξk + O (
ξ3)

gij = δij + Rikjlξ
kξl + O (

ξ3) (103)

The bosonic non-linear sigma model action is expanded order by
order in Fermi normal coordinate, where Xμ is the background
field much like the expansion in Riemann normal coordinate in
[45, 46]. Notice at fourth order in ξi we have terms involving
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Riemann tensor squared. Using Equation (97) the action reads

I[X + π] =
∫

d2z
1

2
δμν∂αXμ∂αXν

+
∫

d2z
1

2

{
δij∇αξ

i∇αξ
j + (∇αξ0)

2

+ R0ij0(t)∂αX0∂αX0ξiξj
}

+
∫

d2z

(
4

3
R0jki(t)∇αξ

i + R0jk0(t)∇αξ0

)
∂αX0ξjξk

+
∫

d2z
1

2

1

3
R0ij0,k(t)∂αX0∂αX0ξiξjξk + . . . (104)

Conformal condition easily follows. Wave function renormal-
ization is identical for the background and fluctuation fields.
The only non-zero interaction term to this order is a spacetime
dependent mass term

R0ij0(t)∂αX0∂αX0ξiξj

Contribution to the stress tensor is

α′R0i0jδ
ij ln(�/μ) = α′R00 ln(�/μ)

The fixed point requires the component R00 of Ricci tensor
vanishing.

A2. FERMION IN FERMI NORMAL COORDINATE
The two dimensional N = 1 supersymmetric non-linear sigma
model has the following action in components form

I[X, ψ] = 1

2

∫
d2z gμν(X)∂αXμ∂αXν + igμν(X)ψ̄μγαDαψ

ν

+ 1

4
Rμνλρ

(
ψ̄μψν

) (
ψ̄λψρ

)
(105)

We use the following notation for the Fermionic fields and
gamma matrices in two Euclidean dimensions

γ0 = σ2 =
(

0 −i
i 0

)
, γ1 = σ1 =

(
0 1
1 0

)
,

γ5 = σ3 =
(

1 0
0 −1

)

ψ̄μ = ψcγ0 = (ψtC)γ0 = (
ψ

μ
+ ψ

μ
−
) ( 0 −i

i 0

)(
1 0
0 −1

)

= i
(
ψ

μ
− ψ

μ
+
)

(106)

where C is the charge conjugation matrix. The action then reads

I[X, ψ] = 1

2

∫
d2z gμν(X)∂zXμ∂z̄Xν + igμν(X)ψ

μ
+Dz̄ψ

ν+

+ igμν(X)ψ
μ
−Dzψ

ν− + 1

2
Rμνλρψ

μ
+ψν+ψλ−ψ

ρ
−

(107)

where Dαψ
μ = ∂αψ

μ + �
μ
νλ(X)∂αXνψλ.

In the Fermi normal coordinate, we have the following Taylor
expansion of the Christoffel symbols along the geodesic γ(t),
where x0 = σ, xi = ξis.

�
μ
νλ(t, s) = �

μ
νλ, ρ

(
δ0
νxρ + δ0

λxρ
) + �

μ

νλ, k ξks

+ 1

2!�
μ
νλ, ρσ xρxσ + ...

= δ0
νRμ

λρ0xρ + δ0
λRμ

νρ0xρ − 1

3
δi
νδ

j
λ

(
Rμ

ijk + Rμ

jik

)
xk

+ 1

2
δ0
νRμ

λρ0;0xρx0 + 1

2
δ0
λRμ

νρ0;0xρx0 + . . .

The worldsheet supersymmetry transformations are

δXμ = ε̄ψμ

δψμ = −/∂Xμε − �
μ
νλ(ε̄ψν)ψλ (108)

In components they read

δXμ = iε−ψ
μ
+ + iε+ψ

μ
−

δψ
μ
+ = −ε−∂zXμ − iε+ψν−�

μ
νλψλ+

δψ
μ
− = −ε+∂z̄Xμ − iε−ψν+�

μ
νλψλ− (109)

When the target space manifold is Kähler, there is an additional
supersymmetry invariance under

δXμ = J μ
νε̄

′ψν

δ(Jψ)μ = −/∂Xμε′ + 1

2
�

μ
νλJ ν

ρJ λ
σ

(
ψ̄ρψσ

)
ε′ (110)

The complex structure J μ
ν allows to split the complexified tan-

gent bundle TCX = T0, 1X ⊕ T1, 0X, and the extended N =
(2, 2) supersymmetry transformations parameterized by the pair
of spinors (ε, ε̃) read in complex coordinates

δXi = iε−ψi+ + iε+ψi−

δXī = iε̃−ψī+ + iε̃+ψī−

δψi+ = −ε̃−∂zXi − iε+ψ
j
−�i

jkψ
k+

δψī+ = −ε−∂zXī − iε̃+ψ
j̄
−� ī

j̄k̄
ψk̄+

δψi− = −ε̃+∂z̄Xi − iε−ψ
j
+�i

jkψ
k−

δψī− = −ε+∂z̄Xī − iε̃−ψ
j̄
+� ī

j̄k̄
ψk̄− (111)

We shall note here that in supersymmetric theories for local-
ization arguments to work, one needs the Fermionic fields to
satisfy periodic boundary conditions since the supersymmetry
transformation parameters do.
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Collect the classical and quantum terms of the action. Bosonic
terms

I2
B =

∫
d2z

1

2
δμν∂αXμ∂αXν

+
∫

d2z
1

2

{
δij∇αξ

i∇αξ
j + (∇αξ0)

2

+ R0ij0(t)∂αX0∂αX0ξiξj
}

(112)

Fermionic terms are important only to quadratic level

I2
F = 1

2

∫
d2z i

(
ψ0+Dz̄ψ

0+ + ψ0−Dzψ
0−
)

+ i
(
ψi+Dz̄ψ

i+ + ψi−Dzψ
i−
)

(113)

Higher order terms in the connection give rise to interaction
vertices between bosons and fermions and are dropped.

A3. GEODESICS BREAK WORLDSHEET SUSY
First we use the real notation forN = (1, 1), where it makes sense
to separate the parallel and transverse fields. Along the geodesic,
the affine connection vanishes in the normal coordinate and the
supersymmetry transformation rules are

δXμ = iε−ψ
μ
+ + iε+ψ

μ
−

δψ
μ
+ = −ε−∂zXμ

δψ
μ
− = −ε+∂z̄Xμ (114)

In the fermi normal coordinate, the geodesic is simple and the
worldsheet can wind integer times around the geodesic length Lγ.
Let the periods of the worldsheet torus be ω1 and ω2, the generate
the lattice � such that � = C/�. Then denote the modulus by
τ = ω2/ω1 and the boundary conditions for the zero-modes are
(without Poincaré map effect16)

Xi(σ1 + Re(ω1), σ2 + Im(ω1)) = Xi(σ1 + Re(ω2), σ2

+ Im(ω2)) = Xi(σ1, σ2)

X0(σ1 + Re(ω1), σ2 + Im(ω1)) = X0(σ1, σ2) + n1L

X0(σ1 + Re(ω2), σ2 + Im(ω2)) = X0(σ1, σ2) + n2L

ψμ(σ1 + Re(ω1), σ2 + Im(ω1)) = ±ψμ(σ1, σ2)

ψμ(σ1 + Re(ω2), σ2 + Im(ω2)) = ±ψμ(σ1, σ2) (115)

16The discussion here only concerns the classical solution. Further, as we
argue in the main text, the holonomy around the closed geodesic does not
effect the super-current.

The zero mode part of the worldsheet fields are determined from
the above boundary conditions, especially

X0(σ1, σ2) = n1Im(ω2) − n2Im(ω1)

Re(ω1)Im(ω2) − Re(ω2)Im(ω1)
L σ1

− n1Re(ω2) − n2Re(ω1)

Re(ω1)Im(ω2) − Re(ω2)Im(ω1)
L σ2 + . . .

(116)

Recall our convention that z = (σ1 + iσ2)/2, z̄ = (σ1 − iσ2)/2
this gives

X0(z, z̄) = i
n1ω̄2 − n2ω̄1

Im(ω̄1ω2)
L z − i

n1ω2 − n2ω1

Im(ω̄1ω2)
L z̄ + . . . (117)

The ground state associated to the classical geodesic solution has
the following non-zero variations when acted on by supersymme-
try

δψ0+ = −ε−∂zX0 = −i
n1ω̄2 − n2ω̄1

Im(ω̄1ω2)
Lε−

δψ0− = −ε+∂z̄X0 = i
n1ω2 − n2ω1

Im(ω̄1ω2)
Lε+ (118)

Here ε± are the two independent real supersymmetry transforma-
tion parameters. Trading ε± for the pair of linear combinations
(ε1, ε2) = (

ε++ε−
2 ,

ε+−ε−
2 ), we have

δ1ψ
0+ = −i

n1ω̄2 − n2ω̄1

Im(ω̄1ω2)
Lε1

δ2ψ
0+ = +i

n1ω̄2 − n2ω̄1

Im(ω̄1ω2)
Lε2

δ1ψ
0− = i

n1ω2 − n2ω1

Im(ω̄1ω2)
Lε1

δ2ψ
0− = i

n1ω2 − n2ω1

Im(ω̄1ω2)
Lε2 (119)

Obviously one linear combination of the pair (ψ0+,ψ0−) is invari-
ant under transformation parameterized by ε1 and another lin-
early independent combination is invariant under ε2.

Explicitly we have

δ1[(n1ω2 − n2ω1)ψ
0+ + (n1ω̄2 − n2ω̄1)ψ

0−] = 0

δ2[(n1ω2 − n2ω1)ψ
0+ − (n1ω̄2 − n2ω̄1)ψ

0−] = 0 (120)

We see that generally they are independent, except when one of
the coefficients vanish which corresponds to ∂zX0 = 0 or ∂z̄X0 =
0, i.e., anti-holomorphic and holomorphic maps, which leaves,
respectively, ψ0+ and ψ0− invariant.
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