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As 3D protein-configuration data is piling up, there is an ever-increasing need for
well-defined, mathematically rigorous analysis approaches, especially that the vast
majority of the currently available methods rely heavily on heuristics. We propose an
analysis framework which stems from topology, the field of mathematics which studies
properties preserved under continuous deformations. First, we calculate a barcode
representation of the molecules employing computational topology algorithms. Bars in
this barcode represent different topological features. Molecules are compared through
their barcodes by statistically determining the difference in the set of their topological
features. As a proof-of-principle application, we analyze a dataset compiled of ensembles
of different proteins, obtained from the Ensemble Protein Database. We demonstrate that
our approach correctly detects the different protein groupings.
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1. INTRODUCTION
The comparison of proteins and other chemicals in general is a
relevant topic in many scientific fields. Perhaps one of the most
important applications is drug design [1]. Its importance is also
signaled by the many existing approaches and similarity measures
elaborated in the last decades (see the review of Nikolova and
Jaworska 2).

The literature of the comparison methods is vast and we do
not intend to list and overview all the techniques that have been
developed to tackle these problems. However, we would like to
enumerate a few approaches in order to motivate the present
work.

First of all, the comparison methods can be divided into two
broad classes: superposition and descriptor methods [3]. The for-
mer aim to calculate the best alignment of the molecules and
quantify the similarities as some measure of the overlap while
methods in the latter category describe the molecules with certain
feature vectors and assess similarities by comparing the features,
thus being independent from molecular orientation. Most meth-
ods in both categories treat molecules as rigid objects, however,
in the last decade plenty of methods emerged which address
flexibility, too.

Aligners first choose a scoring function which indicates the
overlap of the compared molecules. Once the choice is made,
the correspondence among molecules has to be found, which
is an optimization problem. Thus, the crucial step here is the
choice of the scoring function. Although there are few empirically
parameterized models, the methods are based on “ad hoc” scor-
ing functions [4]. Flexibility is usually treated in the mechanical
sense, aligners define rigid substructures but allow movements at
the joints of these [4].

Descriptor based methods seek to build a rotation and trans-
lation invariant signature to represent a molecule and use the
signature to compare these molecules [5]. However, similarly
to the scoring functions of the aligners, these signatures are
mostly based on heuristic algorithms and they seldom have a

rigorous mathematical motivation. Perhaps the methods with the
most theoretical foundations are the ones based on graph the-
ory [6]. Additionally, descriptors come short to deal with flexible
molecules as addressing this issue in terms of signatures is still
challenging [5].

Although, as noted above, many approaches exist, it is evi-
dent that they often lack mathematical rigor, especially when
treating flexible molecules, despite the fact that a solid math-
ematical basis is required in order to ensure reliability. While
methods, such as the ones relying on geometric comparison
of molecules, may fail when handling flexible structures, these
approaches possess a proper theoretical foundation. Geometric
comparison methods, for instance, are usually based on volume
overlaps, i.e., set intersections in a mathematical terminology, and
they perform extremely well on rigid bodies. To achieve a similar
performance for flexible structures, it is indispensable to base the
approaches on mathematics specifically developed for studying
flexible manifolds, namely mathematical topology. Proper math-
ematical handling should be, of course, only the basis on which
methods should build the knowledge from chemistry, physics and
biology. This is especially the case since in recent years flexibility
turned out to be a very important feature of many proteins [7]
as it may influence binding affinity [8] and functionality [9]. We
believe, it is crucial to minimize possible flaws and place meth-
ods addressing the comparison of flexible molecules in a proper
mathematical context.

We approach the problem of comparing flexible structures
from this perspective. We introduce a framework, relying mainly
on elements of computational topology and graph theory. The
framework is intended to support a basic comparison method
relying on the calculation of certain topological properties of
the molecules, in terms of topological invariants, on different
geometric scales. A given configuration of a protein is a repre-
sentation of a topological space which is homeomorphic with all
the possible foldings of the chemical structure. Based on this,
we elaborate a method, enabling a comparison which takes into
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account the possibly flexible nature of certain molecules. We do
this without considering chemical information.

We emphasize that we do not intend to provide yet another
ready-to-use method for classifying/scoring proteins which would
outperform the existing ones. In turn, we would like to intro-
duce a framework which allows the elaboration of new, possibly
different comparison methods. The proposed approach is not an
aligner, therefore comparing it to existing protein aligners is not
reasonable. On the other hand, while the framework can be per-
ceived as a descriptor, it is much more generic, for instance, it
allows the calculation of other properties (e.g., compressibility
10). While descriptors highlight different features of proteins, the
here introduced approach is very versatile and the used topolog-
ical representation may encode different descriptors in different
ways.

Of course, we understand that the field needs approaches
which, based on recorded crystallographic configurations, are
able to infer different properties of proteins. We strongly believe
that the ideas presented in this paper may open the path to fruitful
approaches through the application of computational topology.

One of the huge benefits of the framework is its modularity:
topological representations may be altered to suit specific needs;
different methods may be used to compare topological invariants
(see for instance 8, 11); the clustering method used to sort the
different proteins based on the calculated measures may also be
changed. All these modifications can be carried out independently
from each other. Possibilities are numerous and surveying all of
them is out of the scope of this paper. In addition, knowledge as
chemical information can constitute an “extra dimension” of the
analysis and can be taken into account in different ways.

We demonstrate that the framework is viable by finding the
correspondence between different foldings of the same proteins.
In this sense, the presented application is not a classical protein
classification, but rather a simple proof of principle.

2. METHODS
2.1. TOPOLOGICAL INVARIANTS
Our method relies on the calculation of the persistence inter-
vals of the Betti numbers [12] for the investigated structures.
Betti numbers [13] are the counts of different topological fea-
tures like connected components (0th Betti number), holes (1st
Betti number), voids (second Betti number) and their higher-
dimensional generalizations. Of course, since real world struc-
tures are three-dimensional ones, we do not have to deal with
these generalizations. The persistence intervals of these features
denote the geometric scales on which the given features do not
change. To have a better understanding of the concept, let us
consider the following scenario. Let S = {(x, y, z)|x, y, z ∈ R} be
a point-set sample of an unknown O object embedded in the
three-dimensional space, where R is the set of real numbers. Note
that O could consist of multiple pieces (components). In order
to calculate the Betti numbers, that is, count the components,
the holes and the voids present in O based on the S sample, we
have to reconstruct O from S. One could conceive different ways
of reconstructing the object. Perhaps the most straightforward
method is to connect each point with its nearest neighbors. We
can define the nearest neighbors of the points by calculating the

Delaunay triangulation [14] of S and discard the edges which are
larger than an lc cutoff length. This cutoff length can be defined
as some fraction of the maximal edge-length in the triangulation,
for instance. The remaining triangles are considered face elements
and the tetrahedrons are treated as solid volume.

Components are relatively easy to count. Any two points from
S which have a path between them along the edges of the trian-
gulation (that is, they are connected) are in the same component.
Two points connected by no path are in different components.
Components thus can be counted by counting the subsets of S
which are not connected to each other through the edges of the
triangulation.

Counting holes and voids is a bit more difficult. In order to
illustrate the problem, imagine a ball. It has a single compo-
nent (everything is connected), no holes (otherwise the air would
escape) and a single void (the space enclosed by the shell of the
ball). A single perforation on the surface of the ball is not con-
sidered a hole. The reasoning behind this is the following: in
theory, we could hold the ball membrane from the boundaries
of the perforation and stretch it out until the membrane flattens
out completely. Thus a ball with an opening on a membrane is
homeomorphic to a plane without holes. If we puncture the shell
again, we will have an object homeomorphic with a plane with a
hole on it. Thus only the second hole on the surface of the ball is
counted as a hole. Note also that as soon as we created the first
perforation, the void disappears because of the homeomorphism
with the plane. When counting holes and voids, one has to take
into account these effects. For instance, only the triangle-faced
polyhedrons with more then four faces create voids.

Considering these criteria, we can proceed with the calcula-
tion of the Betti numbers for the object obtained through the
reconstruction process based on S. If S is a good sample and is
dense enough, that is, the distance between nearest neighbors in
S is roughly uniform and is much smaller than the diameter of
O, then S captures well the topology of O and the Betti numbers
measured on S will be good descriptors of the topology of O.

However, if S is a sparse sample of O, the reconstruction pro-
cedure may yield an incorrect representation of O. To render the
method more robust, instead of considering only one geometric
scale defined by the fixed cutoff-length of the triangle edges, we
consider more geometric scales by varying lc from zero to infinity.
We calculate the Betti numbers for each value of lc and register it.
Calculating the Betti numbers infinitely many times is not feasible
of course, however, in practice, it is enough to consider the length
of the longest edge in the triangulation as the upper bound for
lc. Figure 1 illustrates the process of reconstructing a particular
object for different lc cutoff values.

In principle we could use any triangulation or any (even non-
planar) graph defined on the S set. The Delaunay triangulation,
however, is a good compromise between calculation complex-
ity and memory efficiency when calculating the Betti numbers.
Considering the complete graph on S is, in computational topol-
ogy terms, equivalent to the construction of the Rips-complex
[15], while the Delaunay construction is analogous to the calcu-
lation of the α-complex [16].

Given that a hole exists at a particular cutoff lc, there is a
largest cutoff l′c ≤ lc, for which the hole is not yet present in
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FIGURE 1 | The figure illustrates how a particular point-set is scanned

on different scales. The length scale (the cutoff lc ) is indicated by the length
of the red lines in the upper row. In the same row, gray lines indicate the
edges in the Delaunay triangulation. When the length of the red segments is
equal (or larger) to that of a particular edge, it means that the endpoints of
that edge are separated by a distance correspondent to the value of the lc
cutoff (or they are closer) and they are connected at this stage. The process
of connecting the points is indicated in the lower row. Distances are of
course measured from one point to another and not from the middle of the
segments, the red lines serve only as a visual indication of the value of the
cutoff lc . Note that when all three edges of a triangle are formed, the triangle
itself is also added to the object (these triangles are shaded by a darker gray
color in the lower row). In the first two scales (from the left) the cutoff lc is
smaller than any distance between the points, thus no points are connected
yet and there are 15 connected component (each point is a separate

connected component), and no holes (voids cannot form as the example is in
two dimensions). At the third scale (third column from the left), the cutoff
exceeds the distance between two of the points and they are connected,
thus there will be 14 connected components, the freshly connected pair
forming a single connected component. At the fifth scale (fifth column from
the left), the first triangle is formed and added to the object. At this stage
there are four connected components but still no holes. At the next cutoff
level (sixth column from the left), most of the triangles had formed and they
enclose a hole (the white unshaded region). In this case we have a single
connected component (all the points are connected) and a hole. Note that
holes need not be surrounded by formed triangles. Edges also can form
holes. In the last column, the cutoff has reached a value larger or equal to that
of the longest edge in the triangulation and all the edges and triangles are
added to the object, thus the hole observed in the previous column is filled
in. In this case the object has a single connected component and no hole.

the reconstructed object and there is a smallest one l′′c ≥ lc for
which the hole is filled in. The interval (l′c, l′′c ) is the persistence
interval of the mentioned hole. The wider the interval, the more
important (persistent) the corresponding topological feature is.
Although the triangulation may alter even for small coordinate
changes, important/persistent features are usually not influenced
by such effects if the sampling is good enough. These features are
altered only when the structure of the whole point-set is changed.

Betti numbers are topological invariants as their value is
invariant under continuous deformation of the objects such
as stretching or bending, for instance (tearing and gluing are
not continuous deformations). Continuous deformations do not
change the topology of the objects, thus Betti numbers are handy
invariants when comparing different topologies.

Calculating Betti numbers is generally a relatively abstract and
complex task and requires a deeper understanding of algebraic
and computational topology. A very sketchy pseudo-code is pre-
sented in Algorithm 1. The reader is referred to Edelsbrunner
and Harer [13] for details. However, plenty of open source soft-
ware packages were developed in recent years which enable the
calculation of these topological invariants [17–19].

2.2. A GRAPHICAL REPRESENTATION OF THE TOPOLOGY
There is a convenient way to represent the information gained
through the scanning of S described above. Instead of simply
counting the components, holes and voids, we construct a dia-
gram for each of the Betti numbers. The horizontal axis of
the diagram will correspond to the lc cutoff. We represent each
instance of components, holes and voids on the corresponding
diagram with a horizontal bar. The starting-point of the bar

corresponds to the cutoff value at which the instance was cre-
ated while the end-point of the bar is the cutoff value at which
the instance ceased to exist. The vertical ordering of the bars is
arbitrary. This representation was developed by Carlsson and his
collaborators (see, for instance, Carlsson 12. For a short review
see Ghrist 20). In Figure 2 we present such a plot for a particular
point-set.

Carlsson’s diagrams can be viewed as a fingerprint, a barcode
of the structure. It encodes all the information regarding the Betti
numbers on different scales. Betti numbers can be extracted by
drawing a vertical line at any cutoff value and counting the num-
bers of the intersections with the bars of the diagram. Barcodes
for components, holes and voids are also called dimension zero,
dimension one and dimension two intervals/barcodes, respec-
tively. These barcodes constitute the topological basis of our
approach.

Dimension zero intervals are somewhat special. Since all the
points exist for lc = 0, and none of them are connected at this
cutoff value, all the points are in different components. There will
be as many zero dimension intervals as many points there are and
all these intervals will have a starting point of zero. As we increase
the lc cutoff, points will start to be connected. Whenever two
points from two different components are connected the compo-
nents will be unified and the number of components is decreased,
thus one of the intervals representing the just connected com-
ponents is closed. Note that for any nonempty point-set there
is always at least one component. Therefore, one of the intervals
will always range from zero to infinity. Being always the same, it
carries no information, thus it can be removed from the set of
intervals.
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Algorithm 1 | Calculating the persistence intervals.

1: procedure PersistenceIntervals(S, lmax , dl) � dl is the increment of the cutoff lc and lmax is its maximal value.
2: Register all points as separate connected components in an object array OA
3: set B0[1..N, 1] = 0 � B0 will contain the persistence intervals for dimension 0, they always start at 0; N is the number of points
4: Calculate the Delaunay triangulation DT
5: Calculate the length of the edges d(e) in DT
6: Initialize adjacency matrix A = 0 � the N × N matrix tracks the process of connecting points; it has a value of 1 if points are connected, 0 otherwise.
7: for lc ← 0, dl, 2dl, ..lmax do

8: for e ∈ DT do

9: if d(e) ≤ lc AND Aes ,ee = 0 then � es and ee are the start and endpoints of the edge e
10: Connect the points es and ee

11: Aes ,ee = 1, Aee,es = 1 � mark the connection in the adjacency matrix
12: Register the “death” of the component in which es was (B0

[
ComponentOf (es), 2

] = lc )
13: Register the new component in place of the component in which ee was (OA[ComponentOf (ee)] = ComponentOf (es)+ ComponentOf (ee))
14: if new triangle then � check whether any of the triangles in DT have their equivalent as the result of the newly connected points
15: Check if a hole h “was born”, if so, set B1[h, 1] = lc � B1 contains the dimension 1 persistence intervals (for holes)
16: Check if a hole h “died”, if so, set B1[h, 2] = lc
17: Check if a void v “was born”, if so, set B2[h, 1] = lc � B2 contains the dimension 1 persistence intervals (for voids)
18: Check if a void v “died”, if so, set B2[h, 2] = lc
19: end if

20: end if

21: end for

22: end for

23: end procedure

24: procedure ComponentOf (p) � Searches for the connected component in which point p is embedded
25: for c ∈ OA do � Loop through all connected components
26: if p ∈ c then

27: return c
28: end if

29: end for

30: end procedure

2.3. THE DISTRIBUTION OF TOPOLOGICAL FEATURES
Objects, in general, can be characterized by the size of their com-
ponents, the way these are joined together and the size of the holes
and voids that form during the building process. On the other
hand, the end-points of the dimension zero bars have values sta-
tistically proportional to the spacing between sub-components of
the system, while their number carry information regarding the
size of the represented structure. The end-points of the dimension
one bars have values statistically proportional to the diameters of
the holes in the system. Similarly, end-points of the dimension
two bars have values statistically proportional to the diameters
of the voids. The dimension zero intervals always start at zero,
thus it is only the end-point which matters in this case. The start-
ing points of the dimension one and two intervals would mostly
depend on the density of the points. In this sense, it is enough
to describe the objects with the end-points of the intervals. Even
more, we can replace the set of the end-points by the distri-
bution of these, that is, by the normalized sum of Dirac delta
functions centered at the end-points of the intervals, thus rep-
resenting an object with a probability distribution. Then we can
measure the similarity/dissimilarity between two objects as the
similarity/dissimilarity between the representing distributions.

2.4. THE WASSERSTEIN DISTANCE
There are a number of ways to compare two distributions. One
can calculate any of the suitable f -divergence measures [21], for

instance, the Kullback–Leibler divergence [22]. However, these
measures are not necessary proper distances, in particular, they
may not be symmetric or transitive. Another approach is to cal-
culate the Wasserstein (or Vasershtein in the original spelling)
distance (for a comprehensive review see Villani 23 between the
probability densities). The Wasserstein distance is a proper met-
ric and can informally be introduced with a simple analogy: the
distance is proportional to the physical work needed to trans-
form a pile of earth shaped like one of the density functions to
a pile shaped like the other density function. Based on this anal-
ogy, the Wasserstein distance is sometimes referred to as the earth
movers distance (EMD). In fact, the Wasserstein distance is a class
of distances parameterized with a p ≥ 1 parameter in which the
EMD corresponds to the 1st (p = 1) Wasserstein distance. As in
the present work we only use the 1st Wasserstein distance, we
may drop the notation regarding the parameterization or we will
simply refer to it as EMD.

Given two probability density functions fX and gY , a more
mathematical definition of the EMD can be given as

dEMD(fX, gY) = inf
γXY

E
[
d(x, y)

]
, (1)

where the infimum is taken over the joint distribution γXY of x
and y with marginals fX and gY . d(X, Y) is a distance function and
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in the simplest case is the absolute difference of the arguments,
that is, d(X, Y) = |X − Y |.
3. APPLICATION AND RESULTS
We measure dissimilarity between two chemical structures as
indicated in the previous sections. We treat a molecule as a point-
set defined by the coordinates of its atoms. We calculate the
persistence intervals and compute the distribution of the upper
boundaries of the intervals. We proceed in this manner for each
molecule we want to classify. Finally we calculate the Wasserstein
distance among each pair of distributions, constructing thus a
fully connected weighted graph of the molecule ensembles with
the weights corresponding to the Wasserstein distances.

In order to classify the molecules, we simply need to cluster the
obtained graph. For this purpose we apply the k-means algorithm
[24]. This algorithm simply divides the sample into k groups so
that the formed groups are as compact as possible.

We used different software to conduct our studies. We
calculated the persistence intervals using the Dionysus soft-
ware [17], we computed the Wasserstein distances with a
code provided by the authors of Ref. [25], available for free
online on their website. We carried out the clustering step
with the built-in k-means algorithm of the MatLab’s statistical
toolbox, but, of course, any implementation of k-means is
suitable. A source code to reproduce the results is available
online (http://wwwcp.tphys.uni-heidelberg.de/plos/calculate_
clustering.zip).

FIGURE 2 | Persistence intervals for a particular set of points. Red bars
represent the dimension 0 intervals, green bars represent dimension 1
intervals. Note that for connected components there is an interval which
closes at∞. Since this bar is present for any non-empty point-set, it carries
no information, therefore it can be removed from the representation. The
process of connecting the points is also presented on the upper side of the
figure for certain values of the lc cutoff.

3.1. THE ENSEMBLE PROTEIN DATABASE
For testing and demonstrative purposes, we apply our approach
to a set of structures obtained from the Ensemble Protein
Database (EPDB) [26]. We analyze five approximate ensem-
bles constructed for the following proteins: Barstar (1A19),
Calmodulin (1CFD), Ferredoxin-2 (1FXD), Alpha-Amylase
inhibitor (1HOE), and Human CDC25B Catalytic Domain
(1QB0). There are 191 configurations for Barstar, 196 for
Calmodulin, 141 for Ferrodexin-2, 129 for the Alpha–Amylase
inhibitor and 495 for the Human CDC25B Catalytic Domain.

Feeding the configurations to our method, without includ-
ing any information about the origin of the conformations, we
expect that the approach is able to distinguish between the dif-
ferent proteins. We will compare each protein configuration with
every other configuration and calculate the Wasserstein distance
for all of the pairs. It is convenient to display the results of the
comparison in a color-coded matrix where each row and column
corresponds to a protein. The ordering of the proteins in the rows
and the columns are the same. Throughout the rest of the paper
we apply the same ordering of the proteins in each figure, where
the first 191 rows/columns represent the Barstar protein, the next
196 represent the Calmodulin, the next 141 contain results for
the Ferrodexin-2, the following 129 represent the Alpha–Amylase
inhibitor, while the last 495 rows/columns display results for the
Human CDC25B Catalytic Domain.

Figure 3 presents the calculated Wasserstein distances for the
dimension zero intervals. Looking at the figure, we see that the
Wasserstein distances within certain groups are smaller than the
inter-group distances and we actually can separate five group-
ings. In order to give an explicit grouping of the configurations
by applying the k-means algorithm, we need to make sure that
our guess of requesting k = 5 clusters based on the visual inspec-
tion of Figure 3 is indeed a good choice. For this reason, we
calculate clusterings for different cluster numbers, letting k run
from 1–10. For each k value, we randomly select 10 configura-
tions from the ensembles for each protein and we feed the set
of selected configurations to the k-means algorithm. In order to

FIGURE 3 | Wasserstein distances for the distributions representing

the dimension 0 intervals. Each row and column corresponds to a
protein-configuration, the ordering of the rows and the columns are the
same. A darker shade means small distance while lighter shades imply
larger distances. Note the dark blocks on the diagonal, they correspond to
protein-groups which are close to each other.
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decide whether a clustering is good or not, we calculate the mean
distance to the center for each cluster and characterize a clustering
with the sum of these means. In mathematical terms, we define
this sum as:

S(k) =
k∑

i= 1

〈||Zi − ci||〉Z , (2)

where Zi represents the “coordinates” of a protein in the ith clus-
ter with center ci (ci = 〈Zi〉Z) and ||.|| is the euclidean norm.
The coordinates are in fact the Wasserstein distances to all other
proteins, that is, a row in the distance-matrix. We consider a
clustering with k clusters good if the S(k) sum is low.

To avoid problems caused by the probabilistic nature of k-
means, we repeat the clustering many times for different samples,
thus generating an ensemble of clusterings, and present the results
averaged over this ensemble. In other words, the result of the
clusterings are presented in a matrix form where each row and
column corresponds to a protein and the matrix entry at the inter-
section of a given row and a given column is the probability of
finding the two proteins corresponding to the row and the col-
umn in the same cluster, calculated based on the ensemble of the
clusterings.

Figure 4 presents the S(k) curve for the clustering of the
dimension zero data. As it can be seen, the curve predicts that
k = 5 or k = 6 gives us a relatively good clustering. If we look at
the actual clusterings (shown for k = 5 in Figure 5 and for k = 6
in Figure 6) based on which S(k) was calculated, we see that the
clusterings for k = 5 and k = 6 are in fact equivalent. Setting k to
6 allows more flexibility for the clustering, than the k = 5 case,
but it is clear that there are five groups, exactly corresponding to
the different proteins. Thus, this clearly indicates, that the method
is able to find the original groups.

Clustering the entire dataset in five clusters gives the results
presented in Figure 7. We can clearly see the five groups of pro-
teins, four smaller strongly coupled groups (corresponding to the
proteins 1A19, 1CFD, 1FXD, and 1HOE) and one larger group
(corresponding to 1QB0). Members of the last group are not cou-
pled as strongly as the members of the other groups but they
always classify in the same way and do not mix with the other pro-
teins. While there is some mixing in the first two and the fourth
group, the core groups are clearly distinguishable.

Figure 8 presents the Wasserstein distances for the dimension
one intervals. Looking at the figure it is obvious, that the dimen-
sion one intervals indicate two groups. Performing the same
check as in the case of the dimension zero intervals, we see in
Figure 9 that the S(k) measure also indicates that clustering the
dataset into two clusters is a good choice in this case.

Performing the clustering for k = 2 we get the results shown in
Figure 10, which clearly gives two clusters, putting the first four
groups of proteins (1A19, 1CFD, 1FXD, 1HOE) in the same class
while the last group (1QB0) forms a different class. The explana-
tion behind this result is that while the proteins corresponding to
the first four groups are comparable in size (containing 89, 72,
58, and 74 residues, respectively), the last protein is much larger
(177 residues). In fact the mixing of the first two and the fourth
group we see in Figure 7 is probably also a size-related effect as

FIGURE 4 | The S(k) curve for the clustering of the dimension 0 data,

calculated based on Equation (2).

FIGURE 5 | Probability of the event when two proteins are assigned to

the same class when k = 5 classes are requested. The probability is
calculated for each pair of proteins from different sub-samples of the
ensemble. The proteins for a given position in a row/column were selected
randomly from the ensemble with the constraint that they always belong to
the same group. Probabilities are calculated by repeating the clustering
multiple times and counting how many times the pairs were co-classified.

these groups are very close to each other in size, while the third
group is a bit smaller. Nevertheless, it is now clear that by look-
ing at the dimension one intervals, we in fact classify the proteins
with respect to their sizes but we avoid calculating the geometric
similarity which is a computationally very expensive procedure,
as one needs to calculate the best overlaps among the structures.

For comparison, Figure 11 gives the result for clustering the
dimension one intervals into five clusters. As it can be seen,
no additional clusters were found, just the probabilities for two
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FIGURE 6 | Probability of the event when two proteins are assigned to

the same class when k = 6 classes are requested. The probability is
calculated for each pair of proteins from different sub-samples of the
ensemble. The proteins for a given position in a row/column were selected
randomly from the ensemble with the constraint that they always belong to
the same group. Probabilities are calculated by repeating the clustering
multiple times and counting how many times the pairs were co-classified.

FIGURE 7 | Probability of the event when two proteins are assigned to

the same class when k = 5 classes are requested for the dimension 0

data. The probability is calculated for each pair of proteins by repeating the
clustering multiple times and counting how many times the pairs were
co-classified.

proteins being in the same cluster decreased as the result of the
non-optimal random sub-grouping of the samples.

Last, Figure 12 illustrates the Wasserstein distances for the
dimension two intervals. Similarly to the distances for the dimen-
sion one intervals, we can distinguish two blocks, the first four
groups in the first block and the last group of configurations in
a separate block. However, groups two and three (1CFD, 1FXD)
seem to have relatively reduced distances to group five (1QB0)

FIGURE 8 | Wasserstein distances for the distributions representing

the dimension 1 intervals. Each row and column corresponds to a
protein-configuration, the ordering of the rows and the columns are the
same. A darker shade means small distance while lighter shades imply
larger distances. Note the dark blocks on the diagonal, they correspond to
protein-groups which are close to each other.

FIGURE 9 | The S(k) curve for the clustering of the dimension 1 data,

calculated based on Equation (2).

perturbing a bit the block-structure. If we look at the corre-
sponding S(k) curve (Figure 13), we see that it indicates a single
cluster as the best solution, probably because of the coupling of
the groups two and three to the fifth group. Still, the jump of
S(k) from k = 1 to k = 2 is less steep than the other increments,
therefore we can consider a two-cluster structure. Performing the
clusterings for k = 2 yields results presented in Figure 14. Indeed,
we find the two clusters which correspond to the clusters found
in Figure 10. However, if we try to find more clusters, as pre-
sented in Figure 15, we see that there is an underlying structure
of the clusters, which contains three clusters, groups one and four
(1A19, 1HOE) corresponding to one cluster, groups two and three
(1CFD, 1FXD) to a second one while the fifth group (1QB0)
is again separated from the rest forming its own cluster. This
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FIGURE 10 | Probability of the event when two proteins are assigned

to the same class when k = 2 classes are requested for the dimension

1 data. The probability is calculated for each pair of proteins by repeating
the clustering multiple times and counting how many times the pairs were
co-classified.

FIGURE 11 | Probability of the event when two proteins are assigned

to the same class when k = 5 classes are requested for the dimension

1 data. The probability is calculated for each pair of proteins by repeating
the clustering multiple times and counting how many times the pairs were
co-classified.

suggests a clustering which is influenced by the geometric size and
other topological factors.

4. DISCUSSION AND CONCLUSIONS
We described a framework for analyzing and grouping molecules
from a purely mathematical point of view. However, based on
our arguments and the presented example, it is clear that this
simple topological analysis has a much deeper meaning: it con-
siders the topology and the geometry of the molecules within the
same mathematical framework. Speaking about comparing pro-
teins, in contrast to the currently available heuristic methods, our

FIGURE 12 | Wasserstein distances for the distributions representing

the dimension 2 intervals. Each row and column corresponds to a
protein-configuration, the ordering of the rows and the columns are the
same. A darker shade means small distance while lighter shades implies
larger distances. Not the dark blocks on the diagonal, they correspond to
protein-groups which are close to each other.

FIGURE 13 | The S(k) curve for the clustering of the dimension 2 data,

calculated based on equation (2).

approach follows a nice and clear mathematical logic. It has a solid
foundation, partially stemming from the field of computational
topology and graph theory and partially based on methods of
image processing, the Wasserstein distance being a standard tool
in this field. It has been proven in the literature that the distance
is a real metric, thus applying a k-means algorithm to find the
different, topologically related groups in a given set of proteins is
straightforward.

Using the framework for comparison, the method can be sum-
marized in a few simple steps: First we analyze the structures and
check for the presence of topological features like components,
holes and voids, using a technique developed in computational
topology for arbitrary point-clouds. Then we assess the similarity
by statistically comparing the presence or absence of these features
in the different molecules.
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FIGURE 14 | Probability of the event when two proteins are assigned

to the same class when k = 2 classes are requested for the dimension

2 data. The probability is calculated for each pair of proteins by repeating
the clustering multiple times and counting how many times the pairs were
co-classified.

FIGURE 15 | Probability of the event when two proteins are assigned

to the same class when k = 5 classes are requested for the dimension

2 data. The probability is calculated for each pair of proteins by repeating
the clustering multiple times and counting how many times the pairs were
co-classified.

We presented a test-case, where these groupings are a priori
known, being different foldings of some proteins. However, this
knowledge did not constitute an input to our analysis and it was
used only for validating the results. Our method was able to reveal
the different ensembles with a high precision even though no
chemical information was considered. The analysis was simply
performed on the position of atoms. As it was demonstrated, a
grouping which implies the geometry and size of the proteins is
implicitly possible, without having to calculate best alignments.

We mention that the method can be tuned for different scopes
by choosing the lower and the upper bounds of the lc cutoff.

For instance, we chose the largest edge in the triangulation as
the biggest value for lc. This leads to a coarse-graining proce-
dure in which, when reaching larger scales, the geometry of the
molecule is also encoded. If one uses the largest bond-length as
the biggest cutoff, one, in fact, will compare molecular topologies
and completely discard the information hidden in the folding of
the molecule. Another possibility is to consider chemical infor-
mation by applying the idea of fragment-based similarity [27] and
represent a molecule in a high-dimensional space, where each axis
corresponds to a pair of atom types, e.g., carbon–carbon, carbon–
oxygen, carbon–hydrogen, oxygen–nitrogen, oxygen–oxygen, etc.
Then, distances between any two atoms in a molecule along the
backbone of the molecule can be represented as a point on the
corresponding axis. Distances can be expressed in number of
bonds, for instance. Selecting many different fragments of the
molecule and representing the fragments in this space, we can
build a point-set which is a chemical fingerprint of the molecule.
Then we can calculate the barcodes of this point-set and apply our
approach in a straightforward manner.

We believe that the presented framework can constitute the
basis of a new approach or be a part of a methodology which is
able to deal with flexibility of chemical structures in terms of sim-
ilarity and dissimilarity. As there is no unique and well-defined
way to classify proteins, we are convinced that such approaches
are needed to open up different perspectives for researchers
working in the field.
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