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Since the discovery of neutrino oscillation in atmospheric neutrinos by the
Super-Kamiokande experiment in 1998, study of neutrinos has been one of exciting
fields in high-energy physics. All the mixing angles were measured. Quests for (1)
measurements of the remaining parameters, the lightest neutrino mass, the CP violating
phase(s), and the sign of mass splitting between the mass eigenstates m3 and m1, and
(2) better measurements to determine whether the mixing angle θ23 is less than π /4,
are in progress in a well-controlled manner. Determining the nature of neutrinos, whether
they are Dirac or Majorana particles is also in progress with continuous improvement. On
the other hand, although the ideas of detecting cosmic neutrino background have been
discussed since 1960s, there has not been a serious concerted effort to achieve this goal.
One of the reasons is that it is extremely difficult to detect such low energy neutrinos
from the Big Bang. While there has been tremendous accumulation of information on
Cosmic Microwave Background since its discovery in 1965, there is no direct evidence for
Cosmic Neutrino Background. The importance of detecting Cosmic Neutrino Background
is that, although detailed studies of Big Bang Nucleosynthesis and Cosmic Microwave
Background give information of the early Universe at ∼a few minutes old and ∼300 k
years old, respectively, observation of Cosmic Neutrino Background allows us to study
the early Universe at ∼1 s old. This article reviews progress made in the past 50 years on
detection methods of Cosmic Neutrino Background.

Keywords: big-bang cosmology, cosmic neutrino background, cosmic-rays, neutrino elastic-scattering, neutrino

capture by beta-decaying nuclei

1. INTRODUCTION
According to the Big Bang theory, neutrinos decoupled from
other particles earlier than Cosmic Microwave Background
(CMB). Detecting these neutrinos will give direct information of
the earliest possible epoch of the Universe we can observe after
the Big Bang. This review starts first with a brief summary of
Cosmic Neutrino Background (CνB) according to the Big Bang
theory with the Standard Model of particle physics except that, as
observed, neutrinos are massive rather than massless fundamen-
tal particles. There have been ideas on how to detect CνB since
1960s. These proposed detection methods can be classified into
two types: direct detection and indirect detection method. The
direct detection methods can further be divided into two classes:
measurements of energy/momentum transfer from CνB neu-
trinos to target materials in terms of acceleration of the targets
through torsion unbalance or possibly through calorimetry, and
measurements of energy of outgoing electrons produced by neu-
trino capture by β-decaying nuclei. The indirect method basically
measures the spectrum of ultra-high energy cosmic rays and iden-
tify threshold effects/dips due to interactions between ultra-high
energy neutrinos or other cosmic rays from some sources and
neutrinos from CνB.

2. THE STANDARD BIG BANG COSMOLOGY AND ITS
PREDICTIONS

According to the standard Big Bang cosmology [1–3] the number

density of a relativistic particle of type i of momentum
→
p , the

energy Ei and the internal degree of freedom gi (2 for γ , 1 for ν or
ν̄) at temperature T is given by

ni = gi

(2π)3

∫
fi(

→
p )d3p and ρi = gi

(2π)3

∫
Ei(

→
p )fi(

→
p )d3p, (1)

where fi(
→
p ) = 1/[exp((Ei − μi)/T) ± 1)] with chemical poten-

tial μi (+ for fermion and − for boson). From Equation (1) for
a relativistic boson of type i its number density is ζ (3)giT3/π2

and for a relativistic fermion (3/4)ζ (3)giT3/π2 where ζ is the
Riemann zeta function. Also the energy density is (π2/30)giT4

for a boson and (7/8)(π2/30)giT4 for a fermion [3].
The time dependence of the scale factor a(t) of the Universe,

when radiation is dominant, is expressed by a(t) ∼ t1/2. By def-
inition the Hubble parameter is the ratio ȧ/a and thus H =
ȧ/a = 1/2t. From the Friedman equation for radiation-dominant
epoch, the Hubble parameter is

H2 = 8πG

3
ρR = 8πG

3

π2

30
gef f T4 = 2.76

gef f T4

M2
Pl

, (2)

where G is the universal gravitational constant, ρR is the energy
density of radiation, MPl is the Planck mass, and geff is the total
number of effective degrees of freedom of relativistic particles in
thermal equilibrium at temperature T which is given by
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geff =
∑

i = bosons

gi + 7

8

∑
j = fermions

gj. (3)

Combining Equations (2, 3), the relation between the time t and
the temperature T can be found as

t = 0.30
MPl√
geff T2

∼
(

1 MeV

T

)2

sec (4)

When the interaction rate of neutrino 	ν becomes smaller than
the expansion rate of the Universe i.e., H ∼ T2/MPl, neutrinos
decouple from other particles and stop interacting with them
at the decoupling temperature Tν,dec. 	ν is σνvνnν where σν ≈
α2T2/m4

W is the typical neutrino cross section with the fine struc-
ture constant α, W mass mW , vν neutrino velocity ∼ c = 1, and
the neutrino number density nν ∝ T3. 	ν is then ∼ α2T5/m4

W .
When 	/H ∼ α2MPlT3/m4

W = 1, T corresponds to the neutrino
decoupling temperature Tν,dec ∼ (m4

W/α2MPl)1/3 ∼ 4 MeV [3].
More detailed calculations show that Tν,dec = 2–3 MeV for νe and
3.5 MeV for νμ,τ . From Equation (4) the neutrino decoupling
occurs at ∼0.3–1.0 s after the Big Bang. While CMB provides
the information of the Universe at 300,000 years after the Big
Bang, the study of nucleosynthesis gives the information of the
Universe at ∼200–1000 s after the Big Bang [3, 4]. Observation
of CνB, therefore, would provide the information of the earliest
observable Universe.

2.1. COSMIC NEUTRINO BACKGROUND
As described in the previous section neutrinos decouple with elec-
trons, positrons and photons at temperature T ∼ a few MeV and
remain as such until today. Soon after the neutrino decoupling, at
about T = 0.5 MeV, e ± pair annihilate into photons and trans-
fer their entropy to these photons. This transfer of entropy to
photons effectively slows down the rate of decrease in photon
temperature compared with that in neutrino temperature as the
Universe expands [3]. Since the entropy of neutrinos is conserved,
Tν = (4/11)1/3Tγ and, since Tnow

γ = 2.7 K, Tnow
ν = 1.9 K =

1.7 × 10−4 eV. Therefore the number density of neutrinos is given
by nν = (3/22)nγ = 56 cm−3 per flavor. In the standard Big
Bang model it is assumed that nν = nν̄ and neutrinos’ chemical
potentials are zero. However, in this review it is not assumed, in
which case it is convenient to introduce an asymmetry param-
eter for neutrino with flavor α, να : ηα = (nνα − nν̄α )/nγ =
[π2/12ζ (3)](ξα + ξ 3

α/π2)(Tν/Tγ )3 where ξα = μα/T with μα

being the chemical potential of να [5]. A recent study of the pri-
mordial He abundance data and WMAP data finds that the sum
of the asymmetries of all neutrino flavors, taking into account
the effect of neutrino oscillation with the neutrino mixing angle
sin2θ13 = 0.04(0.00), is −0.071( − 0.064) ≤ ην ≤ 0.054(0.072)
(90% C.L.) [6]. At the time of neutrino decoupling (Tν,dec ∼ a
few MeV), since we know that neutrino masses are much less than
a few MeV, all neutrinos are relativistic ( for the status of neu-
trino masses refer to the review by the Particle Data Group) [7].
However, as the current neutrino temperature is 1.9 K (1.7 ×
10−4 eV), some of neutrinos may be non-relativistic, in which
case whether neutrinos are Dirac or Majorana type is important.

From a recent analysis by the Planck collaboration using the
CMB and Baryon Acoustic Oscillation (BAO) data, the effective
number of relativistic active neutrinos at the time of decoupling
of the CMB Neff is found to be 3.30+0.51

−0.51, consistent with the
existence of three active neutrinos [8]. However, according to the
analysis using the Planck, WMAP and BICEP2 data by Giusarma
et al., Neff is found to be 4.00 ± 0.41 [9].

2.2. CLUSTERING OF CνB
As we know that neutrino has mass, it is possible that CνB can
be trapped in gravitational potential well of some structures
in the Universe such as large galaxies and clusters of galax-
ies when CνB has velocity smaller than the escape velocity.
For a large galaxy like Milky Way or a large cluster of galax-
ies the escape velocities are ∼600 or ∼2000 km/s, respectively.
From the Maxwell–Boltzmann distribution, the average velocity
of non-relativistic neutrino of mass mν at temperature Tν , <

|βν | > = √
8kTν/(πmν) = √

4.3 × 10−4eV/mν . Therefore <

|vν | >= 19, 600(6200) km/s for mν = 0.1(1.0) eV [10]. It seems
that only a small fraction of neutrinos can be gravitationally
trapped in a large cluster of galaxies. However, detailed simulation
that takes into account either the current static mass distribu-
tion of the Milky Way (MWnow) or an estimated halo mass
distribution before the formation of Milky Way through baryonic
compression (NFWhalo) reveals that there may be local neutrino
overdensity effect at the position of our solar system [11]. The
simulation consists of several types of weakly interacting, self-
gravitating particles (cold dark matter and neutrinos) modeled
as a multi-component collisionless gas with the Vlasov equa-
tion and uses the density profile of cold dark matter (CDM)
proposed by Navarro, Frank and White (NFWhalo) [12]. The
neutrino overdensity nν/ < nν >, where < nν > is the average
neutrino density predicted by the standard Big Bang model, is
with the NFWhalo model, 12 and 1.4 for mν = 0.6 and 0.15 eV,
respectively, and with the MWnow model, 20 and 1.6 for mν =
0.6 eV and 0.15 eV, respectively. In the both cases (NFWhalo and
MWnow) when mν < 0.1 eV, there is no overdensity. Overdensity
values 20 and 1.4 correspond to values for the neutrino asymme-
try parameter ην , 2.7 and 0.19, respectively [11].

3. CνB DETECTION METHODS
Several methods to detect CνB have been proposed and these pro-
posed methods can be divided into three categories: (1) direct
detection of coherent CνB elastic scattering with target nuclei
through momentum transfer, (2) direct detection by neutrino
capture by β-decaying nuclei, and (3) indirect method by find-
ing spectral distortion through CνB interaction with ultra-high
energy neutrinos or protons/nuclei from unknown sources.

3.1. COHERENT NEUTRINO ELASTIC SCATTERING
In this category, there are two possible methods: use of order GF

effect and of G2
F effect where GF is the Fermi constant.

3.1.1. Order GF effect
Coherent elastic scattering occurs when the de Broglie wavelength
of CνB h/pν ∼ h/4Tν ∼ 2.4 mm for relativistic and unclustered
neutrinos, or 1.2 mm · 1 eV/mν(eV) for clustered non-relativistic
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neutrinos is much larger than inter-atomic spacing of the tar-
get material. When a neutrino with momentum p goes through
coherent elastic scattering on the target and emerging with
momentum p′, a concept of neutrino optics can be introduced
with an index of refraction n = p′/p and n − 1 ∼ GF [5]. Uses
of neutrino optics were proposed to detect CνB either through
refraction [13] or through total reflection [14] as an order GF

effect. However, it was pointed out that the force induced by
a linear momentum or energy exchange by neutrinos is can-
celed out to order GF when the target is in a uniform neutrino
density [15, 16].

The only GF effect viable for detection of CνB is the
method proposed by Stodolsky that uses an energy split of
the two spin states of non-relativistic electrons in the target
immersed in CνB for which polarized electrons in the target
are needed [17]. However, this energy split is proportional to
nν − nν̄ [10, 16]. Following Duda et al. here only their result
in an optimistic case of a very large asymmetry favouring ν

with nν − nν̄ ≈ nν is presented. Note that for overdensity of
20 (mν = 0.6 eV) and of 1.4 (mν = 0.15 eV) as estimated by
Ringwald et al., nν − nν̄ = 0.95nν and 0.28nν , respectively. In
this approximation the authors find the energy splits for relativis-
tic (R)/non-relativistic (NR), clustering (C)/non-clustering (NC)
and Dirac (D)/Majorana (M) neutrinos: (�E)D

R = (�E)M
R =

2
√

2gAGF|βEarth|nν , where |βEarth| =< |βν | > is the velocity of
the Earth relative to CνB normalized to the speed of light in
vacuum c, and gA is 1/2 for νe and −1/2 for νμ,τ . According
to Ringwald et al. < βν >= 1.4 × 10−3 and 2.2 × 10−3 for over-
density of 20 and 1.4, respectively. For non-clustered (NC)
non-relativistic neutrinos (NR), (�E)M

NC,NR = 2(�E)D
NC,NR 	

1.7
√

mν/(1.7 × 10−4ξ eV)(�E)D
R , and for clustered (C) neutrino

non-relativistic (NR) neutrinos (�E)D
C,NR = √

2gAGF|βEarth|nν

and (�E)M
C,NR 	 0. In the case of Dirac relativistic neutrinos

the difference in energy �E between the two helicity states of
an electron in the direction of CνB induces a torque of mag-
nitude �E/π . For a target of mass number A, mass M, and
linear dimension R with its moment of inertia I = MR2/γ

(γ is a geometric factor), the acceleration due to CνB is a =
10−27f (γ /10)(100/A)(1 cm/R)(βEarth/10−3) cm/s2 where f is
neutrino overdensity nν/ < nν > [10]. The current measurable
acceleration using Cavendish type torsion balance mechanism
is ∼ 10−13cm/s2 [18]. With possible improvements with the
current technology a sensitivity down to 10−23 cm/s2 may be
achieved [11, 18, 19]. With an optimistic neutrino overdensity of
10, γ = 10, A = 100, and R = 1 cm, the expected acceleration is
10−26 cm/s2 to be compared with the most optimistic sensitiv-
ity to the smallest detectable acceleration of 10−23 cm/s2. Even in
this optimistic situation, the target mass and size would need to
be increased by a factor of 1000.

3.1.2. Order G 2
F

effect
When the Earth moves through the sea of CνB neutri-
nos, a target on Earth experiences, by elastic scattering,
momentum transfer from neutrinos. In the Earth’s rest frame
(the laboratory frame) the momentum transfer per scatter-
ing is: < �p >R≈ βEarth(Eν/c) for relativistic neutrinos, <

�p >NC,NR= βEarth(4Tν/c) =< �p >R for non-clustering (NC)

non-relativistic (NR) neutrinos, and < �p >C,NR≈ βEarthcmν

for clustered (C) non-relativistic (NR) neutrinos. The acceler-
ation by CνB is given by a = �ν(NAv/A)σν−A < �p > where
�ν is the CνB flux, A is the mass number of the target, NAv

is the Avogadro number, and σν−A is the neutrino-nucleus
cross section. σν−A = G2

Fm2
ν/π ≈ 10−56(mν/eV)2 cm2 for NR

neutrinos and = G2
FE2

ν/π ≈ 5 × 10−63(Tν/1.9 K) cm2 for R
neutrinos. When the target satisfies the aforementioned con-
dition for coherent elastic scattering, the cross section gets a
coherent enhancement factor A2. Then the acceleration is: a =
(NAv/A)nν(G2

F/π)A2F where F = (4Tν)3βEarth for R neutrinos,
F = m2

ν(4Tν)βEarth for NC-NR neutrinos, and F = m3
νv2

ν for
C-NR neutrinos [10]. This result includes the nuclear coher-
ent enhancement factor A2 but does not include another pos-
sible coherent enhancement factor Nc due to the larger de
Broglie wavelength of CνB than the target size where Nc =
(NAv/A)ρ(λν)3 with ρ being the density of the target [11, 20, 21].
With this enhancement, Duda et al. found that the acceleration
due to CνB a = 2 × 10−34f ρ(g cm3) cm/s2 for R Dirac/Majorana
neutrinos, 3 × 10−28f (mν(eV))2(Tν/1.9 K)−2ρ(g cm3) cm/s2 for
NC-NR Dirac neutrinos, and 10−27f ρ(g cm3) cm/s2 for C-NR
Dirac neutrinos. Note that for NR Majorana neutrinos, the cor-
responding cross sections are reduced by β2

ν ≈ 10−6. Even with
an optimistic scenario of f ρ ∼ 100, a ≈ 10−25 cm/s2 is too small
compared with the aforementioned smallest detectable accelera-
tion of 10−23 cm/s2.

3.1.3. Experimental status of coherent elastic neutrino nucleus
scattering (CENNS)

As described above, the methods proposed in this category relies
on the big enhancement factor due to CENNS. Although CENNS
has been known since the paper by D. Freedman [22], no obser-
vation of this reaction has been made. Recently CENNS attracted
close attention and several proposals have been made. Wong et al.
and Barbeau et al. propose to use antineutrinos from nuclear
reactors [23, 24]. The proposal by Akimov et al. plans to use neu-
trinos from Stopped-pion Spallation Neutron Source (SSNS) at
Oakridge National Laboratory, while Brice et al. propose to utilise
neutrinos at the Fermilab Booster Neutrino Beam (BNB) [25, 26].

3.2. NEUTRINO CAPTURE BY CνB-DECAYING NUCLEI
The first suggestion to use neutrino capture by β-decaying nuclei
(NCB) was by Weinberg in 1962 to detect CνB [27]. Electron
(anti)neutrino capture by a nucleus N that naturally undergoes
beta (positron) decay to the daughter nucleus N ′ as νe/ν̄e +
N → N ′ + e+/e− has no energy threshold on the incident
(anti)neutrino energy. In β-decay in which the energy conserva-
tion requires M(N) − M(N ′) = Qβ > 0 where M(N) and M(N ′)
are the masses of nucleus of N and N ′, respectively, and Qβ is the
kinetic energy of electron/positron. For massive neutrino of mass
mν , the electron kinetic energy in NCB is Ee = Qβ + Eν ≥ Qβ +
mν , while, neglecting the nucleus recoil energy, Ee ≤ Qβ − mν for
electrons from β-decay. Thus there is a gap of 2mν around Qβ

in electron kinetic energy between β-decay and neutrino capture
event. Cocco et al. find that the NCB cross section times neutrino
velocity can be written as σNCBvν = 2π2ln2/(At1/2) where A is a
function of Eν only, when the target nucleus characterized by Qβ
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and Z is given, and t1/2 is the half-life of the target nucleus [28].
As β-decay events are the major background source to the NCB,
larger ratio of the NCB to β-decay events ∼ σNCB(vν/c)t1/2 is
preferable. Among β-decaying nuclei isotopes 3H and 187Re have
the large ratios 3.0 × 105 and 5.9 × 107, respectively. However,
the fact that σNCB(vν/c) for 3H and 187Re are 7.8×10−45 cm2 and
4.3×10−52 cm2, respectively, 3H seems the best choice. Although
there is a gap of 2mν in the electron kinetic energy between the
endpoint of the β-decay and the NCB events, the success of this
method depends on the energy resolution whose effect may fill
this gap. Cocco et al. estimate the signal (NCB) to the back-
ground (β-decay) event ratio R in the outgoing electron kinetic
energy region W0 − � < Ee < W0 where � is the energy reso-
lution and W0 is the endpoint energy. They find that for R = 3
and mν = 0.7(0.3) eV the energy resolution should be better than
0.2 (0.1) eV. The event rate per mole per year is calculated to be
2.85 × 10−2[σNCB(vν/c)/10−45]cm2 yr−1 mol−1. With 100 g of
3H as the target, the event rate per year is, for mν = 0.6 eV, 7.5,
90, and 150 events using the standard Fermi-Dirac (FD) distribu-
tion, Navarro-Frank-White profile (NFWhalo), and the present
day mass distribution of the Milky Way (MWnow), respectively.
For mν = 0.3 (0.15) eV, the rate is 7.5 (7.5), 23 (10), and 23 (12),
respectively, with FD, NFWhalo and MWnow distribution [11].

A calculation by Faessler et al. [29] finds that the NCB rate
per year for the 3H target (50 μg) to be used for the KATRIN
experiment [30] is 4.2×10−6nν/ < nν > which is consistent with
the result by Cocco et al. above for the FD distribution with
nν/ < nν >= 1. A similar calculation for 760 g of 187Re to be
used for the MARE calorimetric experiment [31] finds the event
rate per year 6.7×10−8nν/ < nν >, which is too small for a likely
value for nν/ < nν >.

According to Lazauskas et al. [32], the event rate per year per
Mcu (mega-curries = 3.7 × 1016 decays ∼ 2.1 × 1025 3H atoms)
for approximately 100 g of 3H is 6.5 × nν/ < nν > yr−1 Mcu−1,
which is also consistent with the result by Cocco et al. As for the
required energy resolution to have a reasonable signal to noise
ratio of unity, they conclude that the resolution should be a fac-
tor of two or more smaller than the neutrino mass mν , which is
similar to the conclusion by Cocco et al.

Note that the KATRIN experiment’s goal for the energy reso-
lution is 0.93 eV and the mass of the 3H source is only 50 μg [30]
and to increase the mass of the 3H source or to improve the energy
resolution it is necessary to seek a new way to perform this type
of experiment. Toward this goal of improvement the Project 8
experiment has started [33]. This experiment utilizes detection of
cyclotron radiation from β-decay electron to achieve an improve-
ment in the energy resolution. Another proposal to improve
the neutrino mass resolution is to use cold atomic tritium
rather than molecular tritium used for the KATRIN experiment
to detect both the electron and 3He in the final state of β-
decay [34]. Finally the PTOLEMY experiment (Princeton Tritium
Observatory for Light-Early Universe Massive-neutrino Yield) is
most ambitious [35]. It is based on relic neutrino capture on tri-
tium. It uses, in addition to MAC-E Filter (Magnetic Adiabatic
Collimation combined with an Electrostatic Filter) adopted in
the KATRIN experiment, a large surface-deposition tritium tar-
get, cryogenic calorimeter, RF tracking similar to the Project 8

experiment, and time-of-flight systems to achieve the required
background suppression and enough event rate. PTOLEMY plans
to use 100-g of atomic tritium as the target which can provide
enough event rate.

3.3. COSMIC RAYS—CνB SCATTERING
It is argued that the Universe is opaque to electrons, nucle-
ons and photons at energies higher than 1023 eV [36]. A more
careful consideration finds that the interaction between cosmic
ray proton and CMB photon p + γCMB → π + N imposes an
energy threshold known as Greisen-Zatsepin-Kuzmin (GZK) cut-
off EGZK ≈ 5 × 1019 eV, beyond which cosmic ray protons do not
survive [37, 38]. However, Weiler argues that the only particle
that can survive the GKZ cutoff is neutrinos and interactions of
ultra-high energy cosmic ray neutrinos with CνB through the
Z resonance ν + ν̄ → Z → p + any introduces a dip at certain
energy in ultra-high energy neutrino flux. If these neutrinos come
from sources with the redshift z = 3.5, this dip occurs at 9 ×
1019 eV. Depending on the three neutrino masses and the value
of redshift parameter z of the sources of these ultra-high energy
neutrinos, there may be possibly three dips in energy spectrum
of cosmic ray neutrinos if these sources exist. The existence of
these neutrino sources can produce cosmic rays beyond the GZK
cutoff through the Z resonance (Z-burst). However, although the
AGASA experiment claimed that they detected cosmic ray events
above the GZK cutoff [39], neither the HiRes Experiment [40]
nor the Auger experiment [41] confirmed such events.

As for detailed theoretical analyses on the CνB spectroscopy
using ultra-high energy cosmic rays, refer to the papers by
Barenboim et al. [42] and by D’Olivo et al. [43]. A detailed the-
oretical analysis on the Z-burst can be found, for example, in the
paper by Fargion et al. [44].

Another interaction of cosmic rays with CνB to detect CνB was
proposed by Wigman [45]. He proposes to explain, in terms
of inverse β-decay interactions such as p + ν̄e → n + e+, the
changes in the power index of cosmic rays spectrum around
1015.3 eV (the first knee) observed by the CASA-BLANCA exper-
iment [46] from n = 2.72 ± 0.02 to n = 2.95 ± 0.02, and also
at the second knee around 1017.5 eV from n = 3.01 ± 0.06 to
n = 3.27 ± 0.02 observed by the Fly’s Eye experiment [47]. In
the interaction p + ν̄e → n + e+ where ν̄e is CνB, the center

of mass energy ECM ≈
√

m2
p + 2Epmν should be greater than

the sum of proton and neutron masses mp + mn. This leads
to the threshold proton energy for the interaction at 1.695 ×
1015/(mν/(1 eV)) eV. If the energy of the knee is, combining sev-
eral experimental data, at (3 ± 1) × 1015 eV and the cause of
the first knee is the inverse β-decay interaction by proton, it is
consistent with the neutrino mass mνe = 0.5 ± 0.2 eV/c2.

Although evidence of high energy cosmic ray neutrinos has
finally emerged as the IceCube experiment shows [48], there is
only one experimental result that suggests that there are cosmic
rays beyond the GZK cutoff, which has not been confirmed by
the HiRes and Auger experiment. Various mechanisms in addi-
tion to the inverse β-decay theory have been proposed to explain
the existence of the knees in cosmic ray spectrum [49]. However,
it is not clear which explanation is the correct model for the
knees.
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4. FUTURE PROSPECT AND CONCLUSION
In a half-century history of studies on detection of CνB, inter-
esting proposals have been presented. However, with the current
available technology, none of the proposed methods that are
described in this review are close to be reality, except for the
promising Project 8 and PTOLEMY experiment, unless local
neutrino overdensity is much larger than expected. For the
method to measure the acceleration due to momentum transfer
by CνB using torsion balance, the sensitivity of detector needs to
be improved by a factor of 1000, even under optimistic circum-
stances. In addition the contribution from fake signal from vari-
ous background sources should be carefully evaluated. Detecting
CνB by analyzing cosmic ray spectrum as dips beyond the GZK
cutoff needs a much larger cosmic ray detector, even if Nature is
kind enough to provide ultra-high energy neutrino sources. The
existence of the knee-like structures may be explained by other
mechanisms than the inverse β-decay. Among β-decaying nuclei
as the target, tritium 3H seems to provide the best chance for
an NCB experiment to eventually detect CνB if the ideas of the
Project 8 and PTOLEMY experiment work to bring better energy
resolution and if ∼100-g of 3H source, especially, of atomic tri-
tium can be manufactured. However, this method cannot detect
νμ,τ s.

Note added After the submission of this manuscript, a paper
by Safdi et al. appeared [50]. This paper describes annual mod-
ulation of CνB local density caused by gravitational focusing by
the Sun. This modulation can serve as a diagnostic for the sig-
nal due to CνB for an experiment based on neutrino capture by
β-decaying nuclei.
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