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The four dopants (Nd, Gd, Dy, and Er) substitutionally occupy the Li+ sites in lithium
tetraborate (Li2B4O7: RE) glasses as determined by analysis of the extended X-ray
absorption fine structure. The dopants are coordinated by 6-8 oxygen at a distance of
2.3 to 2.5 Å, depending on the rare earth. The inverse relationship between the RE-O
coordination distance and rare earth (RE) atomic number is consistent with the expected
lanthanide atomic radial contraction with increased atomic number. Through analysis of the
X-ray absorption near edge structure, the rare earth dopants adopt the RE3+ valence state.
There are indications of strong rare earth 5d hybridization with the trigonal and tetrahedral
formations of BO3 and BO4 based on the determination of the rare earth substitutional
Li+ site occupancy from the X-ray absorption near edge structure data. The local oxygen
disorder around the RE3+ luminescence centers evident in the structural determination
of the various glasses, and the hybridization of the RE3+ dopants with the host may
contribute to the asymmetry evident in the luminescence emission spectral lines. The
luminescence emission spectra are indeed characteristic of the expected f -to-f transitions;
however, there is an observed asymmetry in some emission lines.
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INTRODUCTION
Materials containing boron investigated for solid state neutron
detection [1] include semiconducting boron carbide [1–12],
boron nitride [13–15], boron phosphide [16–19], Mg2B14 [20]
and lithium borates [21–27]. In particular, undoped lithium
tetraborate (Li2B4O7) is capable of being enriched with 6Li up to
95% and 10B up to 97.3% [26], well above the natural abundances
(6Li–7.42%, 10B–19%), thereby increasing thermal neutron cap-
ture [1, 21, 26].

Many rare earth (RE) ions exhibit high luminescence efficiency
in host borate crystals and glasses with various chemical com-
positions [27–46]. Consequently, combining rare earth dopants
with the high thermal neutron capture cross-sections of 6Li and
10B may result in highly efficient neutron scintillators [26, 27, 46,
47]. In lithium tetraborate, this is particularly true as undoped
Li2B4O7 has a wide band gap of ∼9.8 eV, based on measure-
ments of {100} and {110} oriented single crystals [24, 48–51]
and is highly transparent in the visible spectrum. In general, the
borates, including lithium tetraborate (Li2B4O7) single crystals,
are characterized by high optical transmission from far infrared
to vacuum ultraviolet [49, 52].

Obtaining single crystal Li2B4O7 is technologically challeng-
ing; thus, application to large area scintillation detectors will favor
glasses over single crystals due to lower fabrication costs. The very
low crystal growth velocity and high melt viscosity lead to diffi-
culties with dopants, particularly rare earths [53, 54]. Therefore,

from the technological viewpoint, the vitreous Li2B4O7 com-
pounds are more advantageous when compared with their crys-
talline analogs.

Padlyak, Teslyuk and coworkers studied the luminescence
properties of some rare earth doped lithium tetraborate
(Li2B4O7:RE) glasses [39, 41]. They deduced from the optical
characteristics that the rare earths generally occupy the Li+ site
exclusively in the +3 valence state. Compared to other rare earth
doped borates and crystalline counterparts, a broadening of the
spectral lines was observed which was theorized to be a result of
the dopant interaction with a varying O-coordination environ-
ment in the glassy material. Studying this varying O-coordination
structure is not ideal [55] with traditional bulk diffraction mea-
surements (e.g., XRD) due to the lack of long range order. Instead,
a more localized probe such as extended X-ray absorption fine
structure (EXAFS) may be used.

In this research, lithium tetraborate glasses have been sepa-
rately doped with four different rare earth elements: Nd, Gd,
Dy, and Er. The local environment about the dopants was
studied with EXAFS in order to determine the positional dis-
order of the varying O environment, an average coordina-
tion number and bond length, and to assist in validating the
presumption that a varying O-environment is the source of
the spectral line broadening. Further, the experimentally deter-
mined site has been used as a basis for density functional
theory (DFT) calculations to investigate the electronic nature
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behind the spectral line broadening observed in the emission
spectra.

MATERIALS AND METHODS
The doped Li2B4O7:Nd, Li2B4O7:Gd, Li2B4O7:Dy, and
Li2B4O7:Er glasses were obtained in the air from corre-
sponding polycrystalline compounds according to standard glass
synthesis. For solid state synthesis of the doped materials, highly
pure carbonate (Li2CO3) and boric acid (H3BO3) were used.
Solid-state synthesis of the doped Li2B4O7:RE compounds was
carried out using a multi-step heating process that follows the
reaction sequence [39, 41]:

Li2CO3 + H3BO3(150◦C, H2O ↑ )
→ Li2CO3 + α − HBO2(250◦C, H2O ↑ ) →
→ Li2CO3 + B2O3(600◦C, CO2 ↑ ) →
→ Li2B4O7 + [Li2CO3 + B2O3] →
→ (800◦C, CO2 ↑ ) →
→ Li2B4O7

The Nd, Gd, Dy, and Er impurities were added as RE2O3 (RE=
Nd, Gd, Dy, and Er) in amounts of 0.5 and 1.0 mol. %. Large
doped glasses were obtained by fast cooling of the correspond-
ing melt that was heated more than 100 K higher than the melting
temperature for excluding the crystallization processes. Samples
were cut for optical measurements and polished to a size of
approximately 5 × 3 × 2 mm3.

Optical absorption spectra were recorded at room tempera-
ture with a Varian spectrophotometer (model 5E UV–VIS–NIR).
Emission and luminescence excitation spectra were acquired with
a Dongwoo (model DM711) scanning system consisting of an
excitation monochromator with 150 mm focal length and emis-
sion monochromator having 750 mm focal length equipped with
a photomultiplier and an InGaAs detector.

The Li2B4O7:RE extended X-ray absorption fine struc-
ture (EXAFS) spectra were measured using a double crystal
monochromator of Lemonnier type [56] at the DCM and WDCM
beamlines located at the Center for Advanced Microstructures
and Devices (CAMD) [57–59]. Due to the thickness of the glass
samples and low dopant concentrations (nominally 1%), the
absorption spectra were measured in fluorescence mode and
the spectra analyzed without self-absorption corrections. For all
samples, the L3 (2p3/2) edge fluorescence was measured corre-
sponding to the M5-L3 (3d5/2–2p3/2) transition and was found
to be in reasonable agreement with expectations [60].

The EXAFS spectra were analyzed in two different ways. First,
the spectra were analyzed using standard procedures with the
IFEFFIT tool suite and FEFF 6 [61–65]. This consisted of iso-
lating the EXAFS signal, converting to k-space, then using the
Fourier transform to determine the average coordination num-
ber and element-type around the rare earth dopants, as detailed
elsewhere for other doped Li2B4O7 crystals [66] and glasses [67].
The second method of analysis employed the use of a Latin
hyper-cube sampling (LHS) routine and the scattering code FEFF
9 for phase shifts and backscattering amplitudes. This code was
developed as a bridge between a Monte Carlo modeling approach

FIGURE 1 | The undoped lithium tetraborate unit cell. The 104-atom-unit
cell consists of bridging BO3 and BO4 complexes [63, 64], with Li+ ions
distributed throughout.

and traditional EXAFS fitting and is a more recent development.
The power of this latter approach lies in the ability to cover a
very large parameter space in modeling the experimental data
and locating false minima in the fits to the data. The results
of both analysis methods are generally in agreement, although
the Latin hyper cube (LHS) approach is computationally
faster.

Despite the glassy nature of the samples that may result in
positional disorder around the RE dopant, the model used for
fitting the EXAFS was based on the known crystal structure
(Figure 1) of Li2B4O7 [49, 55, 68–69]. This was an appropriate
starting point for analyzing EXAFS spectra that will on average
reflect the coordinating environment, including an average dis-
tance to the first shell and an average coordination number. As
it is hypothesized that the rare earth dopants will substitution-
ally dope for the Li+ atoms, starting with the crystalline model
and then adjusting the O environment to reflect the average coor-
dinating environment makes the most sense. Furthermore, due
to the low Z nature of the glassy matrix, it is expected that the
photoelectric backscattering signal will be very weak beyond the
first shell, unless there is significant dopant clustering in the
material, which would result in a detectable RE-RE scattering
shell.

OPTICAL ABSORPTION AND LUMINESCENCE
High-quality scintillation is dependent upon significant quantum
efficiency while retaining optical transparency [27, 43–47]. For
energies less than 3.3 eV (wave lengths longer than 375 nm) the
absorption is low [26, 27, 49, 70, 71] and the optical absorption
spectra of the investigated glasses are dominated by absorption
bands of the Nd3+, Gd3+, Dy3+, and Er3+ centers and can be
generally assigned to the appropriate electronic f to f transitions,
as illustrated for the doped Li2B4O7:Nd glass in Figure 2.

Although the luminescence emission spectra are characteris-
tic of the f to f transitions of the +3 rare earth ions, the effect
of the host matrix plays a role. In the case of the Nd3+ centers,
where four characteristic f to f transition bands due to the 4F3/2

→ 4I9/2, 4F3/2 → 4I11/2, 4F3/2 → 4I13/2, and the 4F3/2 → 4I15/2
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dipole transitions (some shown in Figure 3) combine to provide
a net quantum efficiency of 24%, inhomogeneous broadening of
spectral lines does occur [72, 73]. We know that the rare earth
states will couple to the host matrix, as clearly demonstrated for
rare earth doped GaN [74]. As with prior studies [41], the rare
earth ions are placed in the Li+ site but there is positional dis-
order of the RE3+ luminescence centers in the Li+ sites of the
Li2B4O7 lattice and this is characterized by slightly different spec-
troscopic parameters compared to other rare earth doped borates
and crystalline counterparts. EXAFS studies of the L3 edge indi-
cate that the local structure (first coordination shell) around the
rare earth ions in glassy lithium tetraborate samples is closely sim-
ilar. This similar result was observed in the EXAFS study of rare
earth impurities on crystal and glass samples of the CaO–Ga2O3–
GeO2 system [75]. The structural studies must be understood in
this context.

FIGURE 2 | The optical absorption spectrum of Nd3+ centers in

Li2B4O7:Nd glass.

FIGURE 3 | The luminescence emission spectrum of Nd3+ in

Li2B4O7:Nd glass.

EXTENDED X-RAY ABSORPTION FINE STRUCTURE
In Figure 4, the normalized experimental XAFS signal is plot-
ted for Li2B4O7:Nd. All the rare earth doped samples of this
study, Li2B4O7:Nd, Li2B4O7:Gd, Li2B4O7:Dy, and Li2B4O7:Er,
have very similar XAFS spectra (Figure 4 inset), including the
presence of the sharp white line: a strong feature just above the
absorption edge. The measured L3 edge for the Li2B4O7:Nd was
determined to be 6212 eV by identifying the inflection point on
the rising photoelectric edge, or about 4 eV greater than the
expected 6208 eV [60]. This shift in the dopant core level absorp-
tion edge is typical of lithium tetraborate and in some cases has
been attributed to the large band gap of this oxide, even when
doped [66] (although such a shift is commonly related to the
charge on the absorbing element – a rare earth in this case). This
shift in the L3 absorption edge is similar for all the data obtained
for all four of the rare earth doped Li2B4O7 glass samples.

In Figure 5, the experimental EXAFS spectra have been
extracted from the data in Figure 4, taken above the rare earth
dopant L3 edge, have been replotted as a function of wave vector
k for the Li2B4O7:Nd, Li2B4O7:Gd, Li2B4O7:Dy, and Li2B4O7:Er
glass samples. In all cases, the EXAFS is evident up to approx-
imately 6 Å−1 and is similar for the rare earth doped lithium
tetraborate samples studied, with only small shifts. The signal-to-
noise in the EXAFS spectra deteriorate with wave vectors greater
than about 7.5 Å−1 as is expected for glassy samples when the
host matrix about the dopant consists primarily of low Z mate-
rial [55, 67]. The energy range available for the various EXAFS
spectra is limited by the presence of the L2 edge; hence, higher Z
elements have a wider EXAFS energy range.

The rare earth doped lithium tetraborates are very similar in
structure, as is evident from the EXAFS spectra in Figure 5. The

FIGURE 4 | X-ray absorption fine structure spectrum of Li2B4O7:Nd.

The absorption coefficient was measured for the L3 edge from 100 eV
below the edge to approximately 500 eV above the edge. In addition to the
X-ray absorption fine structure, a vertical line is shown at 6208 eV, which is
at a smaller value than the experimental edge found to be 6212 eV. In the
inset, the X-ray absorption fine structure spectra for all four samples (Nd,
Gd, Dy, and Er) are plotted, shifted by their absorption edge energies so
that they are centered at 0 eV to compare them directly.
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FIGURE 5 | The k2 weighted extended X-ray absorption fine structure

taken above the L3 rare earth dopant edge for Li2B4O7:Nd,

Li2B4O7:Gd, Li2B4O7:Dy and Li2B4O7:Er.

similarity in the EXAFS features for all the samples is an indi-
cation that the rare earths dope the Li2B4O7 lattice in a similar
fashion. This is expected, as nearly all lanthanides adopt the +3
valence state [27–47]. In spite of the similarities of the spec-
tra obtained for the Li2B4O7:Nd, Li2B4O7:Gd, Li2B4O7:Dy, and
Li2B4O7:Er glass samples, there are small shifts in wave vector
placement of the EXAFS oscillations with increasing atomic num-
ber. This characteristic shift in the EXAFS features corresponds
to smaller bond lengths with increasing atomic number (lan-
thanide contraction); larger wave vector components correspond
to smaller bond lengths in the Fourier transformation to R-space.

The reliability of the structural information from our EXAFS
data is limited in scope to the first coordination shell due to
the signal-to-noise deterioration. Furthermore, the structural
information is an indication of the average environment due to
the glassy nature of the lithium tetraborate host. The Fourier
transformed EXAFS spectrum for Li2B4O7:Nd is plotted in
Figure 6. The Fourier transformed EXAFS is typical for all the
rare earth doped glass samples studied: Li2B4O7:Nd, Li2B4O7:Gd,
Li2B4O7:Dy, and Li2B4O7:Er. The out-of-phase real and imag-
inary components of the R-space signal (plotted in Figure 6)
demonstrate the high level of confidence that may be placed in
the Fourier transform.

In the inset of Figure 6, the imaginary component for the
Fourier transforms of the data of Figure 5 are plotted for all the
doped samples. Traditionally, peaks in the imaginary spectra for
EXAFS transforms have been correlated to physical distance in
the radial distributions. Figure 7 is provided to show the quality
of the EXAFS fit results and is indicative of the RE located substi-
tutionally in a Li+ site. Although all the fits are not exact, this and
the extracted coordination numbers are an indication of multiple
interactions being measured coherently. If each interaction was
known exactly, then a multiple-FEFF calculation could be made
and different weights applied to each in order to determine an
exact fit. Figure 7, nonetheless, demonstrates that the fits, despite

FIGURE 6 | The Fourier transformed extended X-ray absorption fine

structure signal (solid) for Li2B4O7:Nd plotted in Figure 5. The real (long
dash) and imaginary (small dash) components are plotted to show Fourier
transform contributions. In the inset, the Fourier transform imaginary
components for Nd, Gd, Dy, and Er are shown. There is a trend from left to
right in the inset, with the left most (small dash) line resulting from the Er
doped sample and then as the atomic number decreases the peak position
moves to longer bond length (Er → Dy → Gd → Nd) with Nd as the right
most (solid) line.

deficiencies, are acceptable for all of the studied doped glass sam-
ples. The bond length contraction is noticeable with increasing Z,
matching with the inset of Figure 6. The fit quality may be deter-
mined from the fitting parameters given in Table 1 for both the
standard fitting method and using the LHS routine. For this result
of the rare earth dopant substituting in a Li+ site, the greater
charge of the RE3+ dopant may be easily compensated by anion
vacancies, (VLi)− and (VB)3−, elsewhere in the glassy matrix.

Due to the size and oxygen coordination number of the rare
earths, placement of a rare earth dopant in the B complexes can
almost immediately be excluded. A rare earth substitution for the
B atom sites would result in a very large distortion of the lithium
tetraborate lattice that does not fit with our experimental EXAFS
data. Table 1 supports our position as to why a rare earth in a B
substitution site can be neglected. To have a rare earth substitute
for B in either the BO3 or BO4 clusters would result in coordi-
nation numbers of 3 and 4, less than the observed 7–10 oxygen
coordination obtained from the EXAFS data. The RE-O bond
length is reduced if placed in a boron site, even in the best fit to the
EXAFS data. In the case for Nd, the Nd-O bond length is 1.92 Å
for a boron site, still significantly less than the 2.7 Å observed, but
this fit (Table 1) to the EXAFS data requires an unphysical shift
in the adsorption edge, as discussed below in the context of our
near edge X-ray absorption experimental data. It is noteworthy
that for Nd substituting for boron in the BO3 structure, the fit
to the EXAFS data would still require a expansion of the bond-
ing distance from the B-O approximately 1.3–1.9 Å, which would
greatly distort the interlocking BO3-BO4 portions of the unit cell.
In general, substituting a rare earth element such as Nd with a
radius of roughly 1.123 Å with a coordination number of 6 into
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a site where the B3+ radius is, on average, 0.15–0.25 Å for oxy-
gen coordination numbers of 3 and 4 respectively, is unphysical.
Substituting a rare earth element, such as Nd, in a manner that
would in a way that would result in a bond length of 1.273 to
1.373 Å, so as to achieve less distortion of the interlocking BO3-
BO4 portions of the unit cell, is possible only if we ignore the
obvious problem of coordination number mismatch and the very
large resulting charge distributions, as partly elaborated by theory
below.

X-RAY ABSORPTION NEAR EDGE STRUCTURE
In Figure 8, the experimental X-ray absorption near edge struc-
ture (XANES) region for Li2B4O7:Nd has been plotted in more
detail than in Figure 4. The solid black line is the experimental

FIGURE 7 | Plotted are the R-space Fourier transformed extended X-ray

absorption fine structure signals for Li2B4O7:Nd, Li2B4O7:Gd,

Li2B4O7:Dy and Li2B4O7:Er. The vertical dotted lines indicate the fitting
window used for the backward Fourier transform range (1.3–4 Å). The
primary peak is the first coordination shell, comprised of O atoms.

data and the dotted red line is the theoretical calculation using
FEFF 9.05 and full metal scattering with a cluster size of 5.1 Å
and a small convergence factor of 0.05. The Hedin-Lundqvist to
ground state exchange correlation was used.

Peak fitting to the XANES data was accomplished by using an
arctangent function to represent the bare atom absorption back-
ground and two Voigt functions to fit the peaks. The results are
listed in Table 2. Two broad peaks are identified in the XANES
spectra; one at approximately 4.00 eV beyond the experimen-
tally determined core binding energy (6212 eV) and the other
at approximately 37.57 eV above the core L3 edge. A similar
peak structure is observed in a rare earth oxygen environment in
Joseph et al. [76], where the broad peak at around 35 eV has been
associated with nearest neighbor scattering. The other rare earth

FIGURE 8 | Plotted is the experimental data (solid black line) for

Li2B4O7:Nd in the nominal X-ray absorption near edge structure

region. FEFF 9.05 has been used to calculate a theoretical X-ray absorption
near edge structure spectrum (red dotted line) using full multiple scattering.
The theory has been shifted to higher binding energy by 2.8 eV (reflective of
the +3 charge of the Nd dopant).

Table 1 | Tabulated are the final fit parameters for the four rare earths analyzed including coordination number N, extracted photoelectric edge

shift Eo, the first shell bond length R(Å) and σ2 which is the mean squared displacement in the rare earth to oxygen bond length, often

referred to as the EXAFS Debye-Waller factor.

Coord. Shell N (atoms) Eo (eV) R (Å) σ2 (Å) Procedure

Nd-O 8.32 ± 0.58 3.14 ± 1.90 2.47 ± 0.03 0.014 ± 0.007 Standard

8.61 ± 0.01 0.42 ± 0.20 2.48 ± 0.03 0.010 ± 0.001 LHS

Gd-O 7.26 ± 0.56 −1.98 ± 2.06 2.37 ± 0.03 0.011 ± 0.002 Standard

8.03 ± 0.26 −2.55 ± 0.62 2.36 ± 0.01 0.009 ± 0.001 LHS

Dy-O 7.56 ± 0.66 1.24 ± 1.98 2.34 ± 0.03 0.012 ± 0.002 Standard

7.90 ± 0.12 0.25 ± 0.19 2.35 ± 0.00 0.010 ± 0.001 LHS

Er-O 7.00 ± 0.42 2.54 ± 1.40 2.32 ± 0.02 0.009 ± 0.003 Standard

7.94 ± 0.04 0.96 ± 0.17 2.31 ± 0.00 0.008 ± 0.000 LHS

Nd-O (BO3 model) 3 30.9 ± 0.05 1.92 ± 0.03 0.003 ± 0.005 Standard

The analysis procedures used are indicated: application of the FEFF 6 scattering codes [56–61] (standard) or the Latin hyper cube sampling (LHS) approach. Errors

in the “Standard” are from diagonals of the correlation matrix used in the non-linear regression routine. Errors in the LHS approach are the standard deviations.
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Table 2 | Tabulated are the results for fitting the XANES region of the

doped samples with an arctangent function and two Voigt functions.

Dopant Peak 1–Eo Peak 2–Eo Peak 1/Nd Peak 2/Nd Reduced

(eV) (eV) yield ratio yield ratio chi2

Nd 2.22 (6.71) 35.93 (15.24) 1.00 1.00 1.64

Gd 1.76 (6.65) 37.46 (16.54) 1.08 1.07 2.13

Dy 1.86 (6.97) 36.75 (14.95) 0.98 0.98 1.91

Er 2.19 (7.16) 39.00 (14.87) 1.07 0.93 1.42

Average 2.00 37.57 1.04 0.99

The “error” given in parenthesis in the Peak 1 and Peak 2 shifts from the

inflection point (Eo), are the full width half maximums FWHM.

doped glass samples Li2B4O7:Gd, Li2B4O7:Dy, and Li2B4O7:Er
provide similar results in spite of the differences in the place-
ment of the L3 edge. Additionally, using the Nd doped sample
as a reference, the total yields of each of the respective peaks
were compared to one another and indicate similar absorption.
If the total area/yield is associated with an unoccupied density of
states, then there is no detectable (at least in these sample condi-
tions) difference between the doped samples. In fact, compared
to the yield, the first peak has an average ratio of 1.04 and the
second 0.99, hovering just around 1 and indicating that the elec-
tronic density of states are nearly the same for all of the rare earth
doped glass samples. This conclusion is consistent with strong
hybridization of the unoccupied rare earth 5d states with the host
Li2B4O7 and thus consistent with our model electronic structure
calculations discussed below.

For rare earth materials where the rare earth atom is in the +3
valence state, the XANES spectra have a single peak white line,
whereas for RE elements that adopt the +4 valence state (e.g., Ce
and Pr), the XANES spectra typically have a double peaked white
line which occurs due to additional interactions with the ligand
environment [77]. In this case, as has been discussed at length in
other rare earth dopant systems literature [74, 76–82], the p → s
and p → d transitions should be stronger than p → f, although the
latter is not strictly forbidden if there is strong 4f state hybridiza-
tion with the unoccupied band structure [74, 81–83]. In this case,
the large white line peak may be associated with 2p → 5d tran-
sitions, typical of the +3 rare earth ion and similar to the Eu in
doped borate glasses as in Shimizugawa et al. [78]. Placement of
a rare earth (e.g., Nd) in a boron site, in the most realistic fit to
the EXAFS data (as noted above), presents a huge problem for the
XANES data. Such a placement of the rare earth would require an
absorption edge shift of about 30 eV instead of the roughly 0 to
3 eV for substitution into a lithium site (Table 1), and it is the lat-
ter that is close to the 4 eV absorption edge shift observed, as seen
in Figure 4.

DENSITY FUNCTIONAL THEORY STUDIES OF RE DOPED
LITHIUM TETRABORATE
To better ascertain the role the host matrix does play in the f to
f transitions of the +3 rare earth ions in doped lithium tetrab-
orate, we modeled the electron structure of Li2B4O7 doped with
Nd, Gd, Dy, Er and Yb. Our calculations are carried out within

density function theory (DFT) as implemented in the CASTEP
software [84]. The plane wave basis set with an energy cutoff
around 360 eV, an ultra-soft pseudopotential, and the local den-
sity approximation for the generalized gradient approximation
(GGA) and Perdew-Burke-Ernzerhof (PBE) exchange and corre-
lation functional are employed [85]. The DFT+U method was
used for the corrections of on-site Coulomb interactions with
U = 6 eV. These computational conditions were previously found
to be successful with rare earth doped GaN studies [74]. In addi-
tion, we utilize the ensemble density functional theory (EDFT)
[86, 87] scheme in CASTEP to overcome the convergence prob-
lem inherited in the RE system. In the Da Silva et al. [88],
density functional theory calculations for CeO2 and Ce2O3 found
that Perdew-Burke-Ernzerhof plus a scalar Hubbard U approach
(PBE+U) worked reasonably well, with results similar to the
Heyd-Scuseria-Ernzerhof hybrid functional (HSE). For example,
PBE+U and HSE predict CeO2 to be an insulator with the band
gaps 5.3 and 7.0 eV respectively compared to the experimental
value of 6.0 eV. The calculated the energy difference between the
lowest 4f state and the vacant conduction band (Eg−f) of Ce2O3

were found to be 2.6 eV (PBE+U) and 2.5 eV (HSE) compared
to the experimental value of 2.4 eV [88]. Our approach is very
much the same as that PBE+U approach in the work of Da Silva
and coworkers [88] except we used U = 6.0 eV for the 4f states
of Nd, Gd, Dy, Er, and Yb, instead of the U = 4.5 eV for the
Ce 4f used in Da Silva et al. [88]. The band gap for undoped
lithium tetraborate has been estimated [89], by the above DFT
approach, to be 6.48 eV, much less than the experimental value of
9.8 eV found in combined photoemission and inverse photoemis-
sion [48, 49, 89]. This is not surprising as the band gaps found in
density functional theory of Li2B4O7 are generally observed to the
underestimates of values obtained from combined photoemission
and inverse photoemission experiments [48, 49, 89].

We built a cubic cell of Li16B32O56, as shown in Figure 9. Based
on our EXAFS results that place the RE dopant in a Li+ site, one
Li+ atom is then substituted by a Nd, Gd, Dy, Er, or Yb atom,
representing 6.25% atomic doping which is much higher than the
experimental level, but computationally tractable. Monkhorst-
Pack [90] 2 × 2 × 2, k-points grids were adopted for Brilliouin
zone sampling. Geometry optimizations were performed for the
coordinates of the atoms and the lattice parameters until the
maximum force on the atoms was less than 0.01 eV/Å, confirm-
ing slight strain in the lattice in the vicinity of the rare earth
dopant and dependent on the choice of the rare earth dopant.
There is strong evidence of rare earth state hybridizations with
the lithium tetraborate host, while the boron and oxygen are con-
nected by valence bonds, but Li and borate are connected through
ionic bonding, as is common in density functional calculations of
lithium tetraborate [49–51] and is evident in the overlap of the
partial density of states as plotted in Figure 10. This indicates that
the Li+ site is also the most reasonable choice for substitutional
rare earth dopants, because the borate B4O7 are mostly tied by
strong covalent bonds, so a rare earth dopant is very unlikely to
replace either B or O. The Li+, on the other hand, is bonded to
the borate primary through ionic bonds, which is evident from
the partial densities of states of Li2B4O7. Thus we feel that it is
legitimate to substitute some of the Li+ by the rare earth atoms.
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FIGURE 9 | The schematic of the structural geometry for Li15B32O56RE

(RE = Nd, Gd, Dy, Er, or Yb). Oxygen (red), boron (gray), lithium (blue), and
rare earth (green) are indicated.

In previous work [89], we noted that the Mulliken bond pop-
ulation, which is a measure of overlap charges in the chemical
bonds [91, 92] of B-O bond is about 0.58 to 0.82, whereas Li-O
bond is less than <0.06. From this one can deduce that the B-O
bond is in nature strongly covalent, and Li-O is most likely ionic.
The bond lengths of the B-O and Li-O are 1.36–1.51 Å and 1.97–
2.46 Å, respectively, the latter being a much better fit to the EXAFS
data discussed above, for substitutional rare earth doping.

In Li2B4O7:Nd (Figure 10A) and Li2B4O7:Dy (Figure 10B),
we observe that nearly all the unoccupied 4f levels hybridize with
the lithium tetraborate conduction bands. This could explain
the similarity of the edge shift uncovered by the Latin hyper
cube sampling (LHS) analysis summarized in Table 1 between
Nd and Dy doped samples. We find that in Er the 4f levels, par-
ticularly the spin down component situated at EF do not mix
with the host lithium tetraborate, whereas at 2–4 eV above EF,
the f state population is very low (Figure 10C). For Li2B4O7:Yb
(Figure 10D), there are few unoccupied 4f states, which leads to
little depletion of the Yb 4f 14 occupancy, unlike GaN:Yb [74].
For Nd (Figure 10A), Dy (Figure 10B), Er (Figure 10C), and Yb
(Figure 10D) there is a significant 4f partial density of states that
shows up within the lithium tetraborate band gap, but this is
not observed for Li2B4O7:Gd. We find that the occupied Gd 4f
states are embedded deep at the bottom of the valence band of
the Li2B4O7:Gd valence band. The differences in the Gd elec-
tronic 4f state are also reflected in Table 1 from the experimental
edge shift E0 being very different from the other doped sam-
ples. Overall we interpret the rare earth 4f state placement and
the clear rare earth 4f hybridization to the lithium tetraborate

lattice as contributing to the f to f transition spectral broaden-
ing, similar to our expectations for Er doped GaN due to the
strong hybridization of the GaN matrix with the imbedded Er
4f states [74]. Such 4f states, as calculated here, do give rise
to states within the band gap, not only as plotted in Figure 10,
but are seen as sharp absorption lines in the transmission spec-
tra at wave lengths greater than 375 nm, as well as reflected in
the luminescence spectra of rare earth doped lithium tetraborates
[27, 72, 73].

The correlation U has been applied, as noted, to the rare
earth 4f orbitals only, the remaining various orbital subset of
orbitals may in some cases have applicable correlation energies
as well. There is no a priori exclusion of multiple correlation
energies, nor of wave vector dependence of the various pos-
sible correlation energies and such complications might well
exist. This could lead to an incomplete (or insufficient) descrip-
tion of orbital hybridization effects including the luminescent
and optical properties. In general, the increased hybridization
will decrease excited state lifetimes and increase luminescent
spectral feature widths, including the f to f transition spectral
features. The contributions to f to f transition spectral broaden-
ing, nonetheless, arising from the strong rare earth hybridization
with the lithium tetraborate lattice, are significant even with-
out considering the variations in oxygen coordination, although
Li2B4O7:Yb (Figure 10D) may be the exception. The variations in
oxygen coordination evident from the EXAFS, and expected for a
glassy lithium tetraborate, will be even more significant because
of the strong rare earth hybridization with the lithium tetraborate
lattice, affecting the f to f transition spectral broadening to a great
degree.

CONCLUSION
Previous studies of rare earth doped lithium tetraborate glasses
revealed asymmetry in the RE 4f spectral emission lines. In
order to determine the source of the spectral line distortion, X-
ray absorption fine structure studies were conducted in order to
extract the local environment surrounding the rare earth dopants.
The near edge absorption spectra data analysis indicates that
for all of the rare earth doped samples studied (Li2B4O7:Nd,
Li2B4O7:Gd, Li2B4O7:Dy, and Li2B4O7:Er), the dopant substi-
tutes into the Li+ ion sites as RE3+. The empirically determined
site was then used to perform a density functional theory calcula-
tion and determine the electronic source of the asymmetry in the
spectral emission lines.

As a result of the doping, there is a slight expansion of the
coordination shells (O and B atoms) that surrounded the origi-
nal Li+ atom from approximately 2.0 Å to approximately 2.5 Å,
the exact value depending upon the size of the rare earth. The
results for rare earth doped borates compare well with expected
bonding distances when compared with rare earth coordination
number and atomic radii from Shannon [93], the radial dis-
tributions functions obtained from X-ray diffraction [55] and
consistent with prior EXAFS studies [66, 67]. The first coordi-
nation shell’s distance and coordination number (in the range
of 6–8) (amplitude reduction factor fixed at 0.85) compares well
with the expectations for a rare earth oxygen coordination envi-
ronment and occupation of the Li+ site. Since these are an
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FIGURE 10 | The band structure and density of states of Li15B32O56Nd

(A), Li15B32O56Dy (B), Li15B32O56Er (C), Li15B32O56Yb (D). In band structure
plots vs. wave vector, spin up is black and spin down is red, while in the

density of states plots the rare earth d state densities are blue, f state
densities are red and boron p state density is green while the total density of
states envelope is black. The density of states are plotted spin resolved.

average coordination number and coordination distance in the
glass samples, it is expected that there are hypo- and hyper-
environments throughout the glass that average out.

A qualitative XANES analysis confirms a +3 valence state
and is consistent with our theoretical expectations. The result-
ing density functional theory calculations indicate there is strong
hybridization with the unoccupied 4f orbitals with the host
lithium tetraborate matrix. This hybridization is a likely the
source of the spectral emission line distortion observed when the
glass oxygen positional disorder is also taken into account.
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