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Quantum characteristics of a charged particle traveling under the influence of an external
time-dependent magnetic field in ionized plasma are investigated using the invariant
operator method. The Hamiltonian that gives the radial part of the classical equation of
motion for the charged particle is dependent on time. The corresponding invariant operator
that satisfies Liouville-von Neumann equation is constructed using fundamental relations.
The exact radial wave functions are derived by taking advantage of the eigenstates of
the invariant operator. Quantum properties of the system is studied using these wave
functions. Especially, the time behavior of the radial component of the quantized energy
is addressed in detail.
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1. INTRODUCTION
On account of the importance of plasma and plasma physics on
materials science and nuclear fusion, the dynamical characteris-
tics of plasma have been increasingly studied until now. Not only
plasma reveal diverse properties during their process but also the
features taken place in the plasma are so complex that it is very
hard to control their behaviors and reactions. In a static magnetic
field, charged particles go round in circles when their velocity
vector is perpendicular to magnetic field lines. They however go
round in helix in case they have a velocity component parallel
to the lines of B-field as well as perpendicular. If the external
magnetic field varies in time or in space, the motion of ion-
ized particles becomes more random and both its treatment and
analytical analysis require high technology.

The influence of magnetic fields on the motion of a charged
particle involves the essential properties of acceleration and the
transport of highly ionized particles. The analysis of classical and
quantum behaviors of charged particles is important in con-
nection with a well known application of the confinement of
magnetized plasma. Charged particles are accelerated and deceler-
ated as they cross a magnetic lens in a magneto optical trapping of
ionized plasma. Although the charged particles are trapped both
in the high-field region and low-field region, the plasma profile
does not follow the naive magnetic field lines. More precisely,
the radius of circling particle in the high-field region is smaller
than the one that would be obtained by simply tracking the field
line from the low-field radial edge toward the high field region
[1]. Another application of the external magnetic field in ionized
plasma is the use of it in reducing the effect of splash in pulsed
laser deposition technique in plasma surface science [2, 3].

Exact theoretical description for quantum and classical prop-
erties of plasma may play a pivotal role for understanding the

physics of plasma. Lewins studied the motion of a charged particle
in a time-dependent magnetic field considering the conservation
of magnetic moment about the circling center [4]. Stimulated by
this work, we study in this paper quantum features of a charged
particle moving under a time-dependent magnetic field in
plasma. As magnetic field varies with time, the new electric poten-
tial would be created according to the Maxwell’s equation. Hence,
the motion of charged particle is more complex in the situation
characterized by a varying magnetic field than by a static one.

The exact Hamiltonian for the motion of charged particle will
be constructed considering the time dependence of the mag-
netic field. The complete quantum solutions of the system will
be derived with the help of a quadratic invariant operator that
is a potential tool for treating quantum systems that have time-
dependent parameters. The introduction of the invariant opera-
tor is the main idea that enables us to overcome the difficulty in
quantizing the system that is somewhat complicated. According
to reports of Lewis and Riesenfeld [5, 6], a Schrödinger solu-
tion ψ(r, t) of a system that has time-dependent parameters is
given in terms of an eigenstate φ(r, t) of the invariant operator. In
fact, we can obtain ψ(r, t) by multiplying φ(r, t) by an appropri-
ate phase factor. The Schrödinger solution ψ(r, t) plays a major
role in investigating the quantum characteristics of the system.
Quantized energy of the particle will be evaluated in this work
using ψ(r, t) and its time behavior will be analyzed in detail in
some situations that the time dependence of the magnetic field is
chosen differently.

2. HAMILTONIAN DYNAMICS
Let us consider non-relativistic motion of a charged particle in
ionized plasma controlled by a magnetic field. The magnetic force
acting on a particle that has charge q under the static magnetic
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field is given by F = qv × B, where v = dr/dt is the velocity of
the particle. However, if the magnetic field varies with time, it
produces a new electric field according to the Maxwell’s equation:

∇ × Eproduced(t) = −∂B(t)

∂t
. (1)

Then, the overall force exerting on the charged particle is

F = q[Eproduced(t) + v × B(t)]. (2)

This gives the following Newtonian equation of motion for the
particle

d2r

dt2
= q

m

[
1

2
r × dB(t)

dt
+ dr

dt
× B(t)

]
, (3)

where m is the mass of the particle. Lewins showed that the radial
part of the above equation in cylindrical coordinate described by
a set of variables (r, θ, z) becomes [see Equation (22) of Lewins 4]

d2r

dt2
+ ω2(t)r = r4

0K2

r3
, (4)

where r0 = r(0), ω(t) is a time-dependent frequency of the form

ω(t) = |q||B(t)|/(2 m). (5)

and K is a constant expressed as K = dθ
dt

∣∣∣
t=0

− ω(0). We can see

that angular momentum of the particle is conserved in variable
magnetic fields as well as in the static limit [7]. Several interesting
phenomena that take place by the presence of magnetic field in
an ionized plasma include plume confinement, particle accelera-
tion and deceleration, dissipation of kinetic energy into thermal
energy, Debris mitigation, and instability of plasma [8–10].

The difficulty in the study of the quantum motion of charged
particles in a “time-dependent” magnetic field is insisted many
times in the literature [4, 11–13] because of the production of
electric field. We, in this work, may need to deal the problem of
a time-dependent Hamiltonian system (TDHS) which is not easy
to handle. There are several mathematical techniques available for
rigorous quantum treatment of TDHSs, such as invariant opera-
tor method [5, 6], reduction method [14], propagator method
[15], and canonical transformation method [16]. Among them,
we will use invariant operator method as mentioned in the
introductory part.

The Hamiltonian that yields the equation of motion given in
Equation (4) can be written as

Ĥ(r̂, p̂, t) = ĤHO(r̂, p̂, t) + 1

2
mr4

0K2 1

r̂2
, (6)

where p̂ = −ih̄∂/∂r and ĤHO is the Hamiltonian of the har-
monic oscillator with the time-dependent frequency ω(t), that is
represented as

ĤHO(r̂, p̂, t) = p̂2

2m
+ 1

2
mω2(t)r̂2. (7)

Even if a general harmonic oscillator in one dimension is
defined through entire region for r, ( − ∞,∞), Equation (7) is

meaningful only in the positive r. In the next section, we will
solve Schrödinger equation of the system that is described by
the Hamiltonian (6) and quantum features of the system will be
studied.

3. THEORY AND RESULTS
3.1. INVARIANT OPERATOR AND QUANTUM SOLUTIONS
The Hamiltonian given in the last section is explicitly dependent
on time as the magnetic field varies. Hence the system is a kind
of TDHSs that have attracted wide interest in the physical soci-
ety [5, 6, 17–26]. To derive quantum solutions of a TDHS, it
is convenient to introduce an invariant operator [5, 6] because
the quantum properties of such system can be investigated via
the eigenstates of the invariant operator. From the Liouville-von
Neumann equation dÎ/dt = ∂ Î/∂t + [Î, Ĥ]/(ih̄) = 0, it is possi-
ble to derive a quadratic invariant operator Î. Thus, considering
Equation (6), we have the invariant operator as

Î = ÎHO + mK2r4
0χ(t)χ∗(t)

1

r̂2
, (8)

where χ(t) is a complex classical solution of the following differ-
ential equation

χ̈(t) + ω2(t)χ(t) = 0, (9)

and ÎHO is the invariant operator of the system described by
ĤHO [24]:

ÎHO = χ∗(t)χ(t)

m
p̂2 − χ̇∗(t)χ(t)r̂p̂

−χ∗(t)χ̇(t)p̂r̂ + mχ̇∗(t)χ̇(t)r̂2. (10)

One can check, by direct differentiation of Equation (8) with
respect to time, that Î does not vary with time.

Since the eigenstates of the invariant operator play a crucial
role in the development of the quantum theory of TDHS, it is
necessary to compute them from fundamental relations. Let us
write the eigenvalue equation of the invariant operator as

Îφ(r, t) = λφ(r, t). (11)

We will derive the eigenstates φ(r, t) by evaluating this equation.
The substitution of Equation (8) with Equation (10) into the
above equation yields

[
∂2

∂r2
+ mβ(t)

ih̄
r
∂

∂r
− m2χ̇∗χ̇
χ∗χ h̄2

r2

−m2K2r4
0

h̄2

1

r2
+
(t)

]
φ = 0, (12)

where β(t) and
(t) are time functions of the form

β(t) = χ̇∗(t)

χ∗(t)
+ χ̇(t)

χ(t)
, (13)


(t) = mλ

χ∗(t)χ(t)h̄2
+ mχ̇(t)

iχ(t)h̄
. (14)
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Notice that β(t) is always real. In case of χ(t) = c(t)eiy(t) where
c(t) and y(t) are time-dependent real values, we have β(t) =
2ċ(t)/c(t). On the other hand, for χ(t) = c1eiy(t) + c2e−iy(t)

where c1 and c2 are real constants, β(t) becomes

β(t) = − 4c1c2ẏ(t) sin[2y(t)]
c2

1 + c2
2 + 2c1c2 cos[2y(t)] , (15)

which is a more complicated expression. By putting r = √
ρ from

Equation (12), we can rewrite the eigenvalue equation in the form

∂2φ(ρ, t)

∂ρ2
+ 1

2

(
mβ

ih̄
+ 1

ρ

)
∂φ(ρ, t)

∂ρ

+
(



4

1

ρ
− m2K2r4

0

4h̄2

1

ρ2
− m2χ̇∗χ̇

4χ∗χ h̄2

)
φ(ρ, t) = 0. (16)

Now we let

φ(ρ, t) = ρse−γ (t)ρF(ρ, t), (17)

where a constant s and a time function γ (t) is given by

s = 1

4

[
1 +

(
1 + 4m2K2r4

0

h̄2

)1/2]
, (18)

γ (t) = m

2h̄

[
β(t)

2i
+

(
χ̇∗(t)χ̇(t)

χ∗(t)χ(t)
− β2(t)

4

)1/2
]
. (19)

Then, the substitution of Equation (17) in Equation (16) leads to

ρ
∂2F(ρ, t)

∂ρ2
+

[
2s + 1

2
+

(
mβ

2ih̄
− 2γ

)
ρ

]
∂F(ρ, t)

∂ρ

+
(

mβs

2ih̄
− 2γ s − γ

2
+ 


4

)
F(ρ, t) = 0. (20)

We easily derive the solution of this equation to be

F(ρ, t) = 1F1

(
s −

(

(t)

4
− γ (t)

2

)(
2γ (t) − mβ(t)

2ih̄

)−1

,

2s + 1

2
;
(

2γ (t) − mβ(t)

2ih̄

)
ρ

)
, (21)

where 1F1 is the hypergeometric series. Thus, we completely
identified the solution φ(r, t) in Equation (12). After some rear-
rangements, the full expression of the normalized eigenstates
becomes

φn(r, t) =
[

2(n + 1)

(n + ν + 1)

(
m�

2h̄χ(t)χ∗(t)

)ν+1]1/2

rν+1/2

× exp

(
imχ̇(t)

2h̄χ(t)
r2

)
1F1

(
− n, ν + 1; m�

2h̄χ(t)χ∗(t)
r2

)
, (22)

where

n = λ

2h̄�
− ν

2
− 1

4
, (23)

ν = 1

2

(
1 + 4m2K2r4

0

h̄2

)1/2

, (24)

� = i[χ(t)χ̇∗(t) − χ∗(t)χ̇(t)]. (25)

Here, it can be easily shown that n should be quantized numbers
(n = 0, 1, 2, · · · ) from the condition that the physically allowed
eigenstates cannot be divergent as r grows [27]. While it is man-
ifest that ν is independent of time, we can easily verify that the
Wronskian � is also a time-constant real value. For convenience,
we choose χ(t) in a way that � to be positive. This can be always
done without loss of generality.

We see from Equation (23) that the eigenvalues are given by

λn = h̄�(2n + ν + 1/2). (26)

According to the invariant operator theory of Lewis-Riesenfeld
[5, 6], the wave functions ψn(r, t) that satisfy Schrödinger equa-
tion are represented in terms of the eigenstates of the invari-
ant operator. Hence, we can write the Schrödinger solutions in
the form

ψn(r, t) = φn(r, t) exp[iϕn(t)], (27)

where ϕn(t) are some time-dependent phases. By inserting the
above equation together with Equation (6) into Schrödinger
equation, we obtain the analytical forms of ϕn(t) such that

ϕn(t) = −(2n + ν + 1)
�

2

∫ t

0

dt′

χ(t′)χ∗(t′)
+ ϕn(0). (28)

Thus, the complete radial wave functions of the system are iden-
tified. These wave functions are very useful for investigating
quantum characteristics of the system. Recall that the expectation
values of quantum observables are obtained via the use of wave
functions.

3.2. SPECTRUM OF QUANTIZED ENERGY
We apply the quantization scheme developed previously to par-
ticular cases for better understanding of quantum features of the
system. As an appropriate quantum observable that is worth to be
investigated here, let us consider the radial part of the quantum
energy. As is well known, the expectation values of the quantum
energy are obtained from

En = 〈ψn(t)|Ĥ(r̂, p̂, t)|ψn(t)〉. (29)

With the use of Equation (6) and the wave functions in Equation
(27), we readily have

En = 1

4
h̄

(
�

χ(t)χ∗(t)
+ χ(t)χ∗(t)

�
[β2(t) + 4ω2(t)]

)

× (2n + ν + 1). (30)
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This is the general expression of nth order quantum energy. The
time evolution of quantum energy is determined by the type of
B(t).

As an example, we choose a magnetic field that decreases with
time in a fashion that

B(t) = B0
1

(1 + kt)2
, (31)

where B0 is the initial field and k is a positive constant which
is relatively small (0 < k 	 1). If we put χ(t) as χ(t) = χ0(1 +
kt)z(t) where χ0 is a real constant, we can confirm via the use of
Equations (5), (9), and (31) that the differential equation that z(t)
should obey is given by

d2z(t)

dt2
+ 2k

1 + kt

dz(t)

dt
+ q2B2

0

4m2(1 + kt)4
z(t) = 0. (32)

From a direct evaluation, we see that the solution for z(t) is an
exponential function of the form z(t) = e−iqB0/[2mk(1+kt)]. Hence,
a complex solution of Equation (9) is given by

χ(t) = χ0(1 + kt) exp

(
− i

qB0

2mk

1

1 + kt

)
. (33)

In this case, Equation (30) becomes

En = h̄

[
mk2

qB0
+ qB0

2m(1 + kt)2

]
(2n + ν + 1). (34)

While the first term is constant, the second term decreases with
time. We see from the above equation that quantum energy is
independent of χ0. In general, the choice of any value for χ0 does
not affect to the time behavior of a quantum system [15]. The
time evolution of En for this case is plotted in Figure 1 with var-
ious values of k. As the magnetic field gradually disappears with
time according to Equation (31), En also decay. Figure 1 shows
that En decrease more rapidly for large k. If we consider the fact
that k determines the rate of the decrease of applied magnetic
field, this consequence is natural and corresponds to the classical
analysis.

Now, as an another example, let us see the case that the time
dependence of the external magnetic field is given by

B(t) = B0ekt . (35)

In this case, the magnetic field (exponentially) increases with time
whereas the field in the previous case decreases. It is easy to show
from a little evaluation that Equation (9) has the form

τ 2 d2χ(t)

dτ 2
+ τ

dχ(t)

dτ
+ τ 2χ(t) = 0, (36)

where τ = qB0ekt/(2mk). A complex solution for this equation is
given by

χ(t) = χ0

[
J0

(
qB0ekt

2mk

)
+ iN0

(
qB0ekt

2mk

)]
, (37)

FIGURE 1 | Time evolution of the radial energy expectation values

divided by (2n + ν + 1) with the choice of B(t) as Equation (31). The
values we used are h̄ = 1, m = 1, q = 1, and B0 = 1. All these values are
taken to be dimensionless for convenience.

FIGURE 2 | Time evolution of the radial energy expectation values

divided by (2n + ν + 1) with the choice of B(t) as Equation (35). The
values we used are h̄ = 1, m = 1, q = 1, and B0 = 1. All these values are
taken to be dimensionless for convenience.

where J0 and N0 are zeroth order Bessel functions. We see from
Figure 2 that the corresponding energy increases with time due
to the amplification of the field, as expected. The ratio of energy
increase becomes large with time due to the exponential incre-
ment of the field.

4. CONCLUSION
Quantum motion of a charged particle in an ionized plasma
controlled by a time-dependent external magnetic field is stud-
ied using the invariant operator method that is available for
TDHSs. If we consider that the time-varying magnetic field pro-
duces an electric field that plays the role of an another source
of force acting on the moving particle that has some charge, the
problem becomes more or less complicated. The radial part of
equation of motion for the particle is represented in terms of
a time-dependent angular frequency ω(t) as shown in Equation
(4). Hence, the corresponding Hamiltonian given in Equation (6)
with Equation (7) is a kind of TDHSs.
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To see quantum features of the system, the invariant opera-
tor is constructed through the method of Lewis-Riesenfeld [see
Equation (8)]. This enabled us to manage the system in more
or less simple way by avoiding the direct consideration of the
time-dependent problem by means of a constant of motion
that is a quadratic form. The normalized radial wave functions
derived from the use of the invariant operator are represented
as Equation (27) with Equations (22) and (28). An interesting
mathematical feature in this case is that the quantum solu-
tions are expressed in terms of the complex classical solutions of
Equation (9).

Considering the expression of the phases given in Equation
(28), we can also define another invariant operator in the form

Î = Î + h̄�/2 which seems a little improved than Î. It is easy

to show that the eigenvalue equation of Î results in Îφ(r, t) =
�nφ(r, t) with

�n = λn + 1

2
h̄� = h̄�(2n + ν + 1). (38)

Although we have used Î in order to study quantum features of

the system, Î may be more consistent invariant operator since
its eigenvalues are represented in terms of (2n + ν + 1) which
appear in the phases of the wave functions [Equation (28)]. In
what follows, it is possible to derive exact quantum states by using

either Î or Î .
The nth order expectation value of the Hamiltonian is

computed by taking advantage of the wave function, as rep-
resented in Equation (30). This is the radial part of quan-
tized energy for the particle. To promote the understanding
of our development, we considered particular cases character-
ized by time-dependent magnetic fields appeared in Equations
(31) and (35). We confirm from Figure 1 that En for the
first example decrease with time as the magnetic field gradu-
ally vanishes, whereas, from Figure 2, the energy for the sec-
ond example increases with time as the field grows. These
consequences are consistent with the corresponding classical
analyses.

All of the results in this work are obtained by treating electro-
magnetic field as classical backgrounds without incorporating
the full quantized Yang-Mill theory. We believe that our theory
is valid with high precision so long as we are interested in
only the phenomenological quantum behavior of the charged
particle, provided that the complex classical solutions χ and χ∗
of Equation (9) are found for given types of the time dependence
of B(t).
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