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A linear increase in the concentration of “inert” macromolecules with time is incorporated
into simple excluded volume models for protein condensation or fibrillation. Such models
predict a long latent period during which no significant amount of protein aggregates,
followed by a steep increase in the total amount of aggregate. The elapsed time at
which these models predict half-conversion of model protein to aggregate varies by
less than a factor of two when the intrinsic rate constant for condensation or fibril
growth of the protein is varied over many orders of magnitude. It is suggested that this
concept can explain why the symptoms of neurodegenerative diseases associated with
the aggregation of very different proteins and peptides appear at approximately the same
advanced age in humans.
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INTRODUCTION
Several neurodegenerative diseases, most prominent among them
Alzheimer’s Dementia and Parkinsonism, are extremely rare in
individuals under the age of about sixty, but the incidence rises
sharply above that age, reaching 10–25% at the age of eighty [1, 2].
The root cause of age-related incidence has been the subject of
much conjecture (Google “aging and neurodegeneration”) but
no solid consensus has been formed. The purpose of this com-
munication is to suggest a common mechanism underlying the
age-related onset of a variety of neurodegenerative diseases based
upon the effect of excluded volume on the kinetics of protein
aggregation.

The model to be developed here is based upon the notion that
most if not all proteins are subject to a gradual process of degra-
dation leading to a loss of solubility and consequent biological
function. Under laboratory conditions thought to reflect physi-
ological conditions, degradation may be imperceptibly slow on
the time scale of an ordinary experiment. However, it is a com-
mon experience that proteins in purified solutions left at room
temperature for extended periods will begin to precipitate, and
that addition of small amounts of destabilizing agents can signifi-
cantly accelerate the loss of function or formation of various types
of aggregates.

It was shown long ago that the addition of a moderately
high concentration of functionally unrelated polymers or pro-
teins can significantly reduce the solubility of a variety of
trace proteins [3–5], and quantitative models based upon the
concept of excluded volume were shown to account semi-
quantitatively for the observed dependence of solubility on the
concentration of added polymer or protein were introduced
[3, 4, 6, 7].

More recently, studies carried out in several laboratories [8–
12] revealed that the addition of significant concentrations of
functionally unrelated polymers or proteins can greatly acceler-
ate the formation of fibrillar protein aggregates. A simple model
based upon excluded volume theory was shown to quantita-
tively account for the dependence of the kinetics of amyloid fiber
formation upon the concentration of added polymer [10].

At the same time, gerontological studies have revealed a grad-
ual reduction in the water content of aging tissue, including brain
tissue [13–16], which is equivalent to an increase in the total
macromolecular concentration in the aqueous compartments of
these tissues.

In the following section we review simple models for the
effect of excluded volume (“crowding”) upon the kinetics of
solubility loss and fiber formation. Next we introduce a time-
dependent increase in the concentration of an additional inert
volume-excluding substance (termed “crowder”), and show that
this leads to a highly cooperative appearance of aggregate. The
models developed here provide a possible explanation of why
aggregates of different proteins with widely disparate intrinsic
stabilities may accumulate on a comparable time scale in aging
individuals.

MODELS
The models to be summarized below are based upon highly sim-
plified hard particle representations of molecular size and shape,
which have been found useful for semi-quantitative estimation
of the effect of crowding upon the free energies, equilibrium,
and rate-constants of reactions in crowded solutions [17–19]. A
complementary description of the crowding effect termed “deple-
tion attraction” has been presented [20] but so far has not been

www.frontiersin.org August 2014 | Volume 2 | Article 48 | 1

PHYSICS

http://www.frontiersin.org/Physics/editorialboard
http://www.frontiersin.org/Physics/editorialboard
http://www.frontiersin.org/Physics/editorialboard
http://www.frontiersin.org/Physics/about
http://www.frontiersin.org/Physics
http://www.frontiersin.org/journal/10.3389/fphy.2014.00048/abstract
http://community.frontiersin.org/people/u/141808
mailto:minton@helix.nih.gov
http://www.frontiersin.org
http://www.frontiersin.org/Biophysics/archive


Minton Time-dependent macromolecular crowding

utilized to quantify the effect of crowding on chemical equilibria
and kinetics.

CONDENSATION
The reaction to be modeled is P (solution) � P (aggregate).
P in solution is assumed to be monomeric, and the aggregate
is assumed to be thermodynamically equivalent to a condensed
phase. The thermodynamic solubility constant is given by

K0
s = 1

as
= 1

γscs
(1)

where as, γs, and cs respectively denote the thermodynamic activ-
ity, activity coefficient, and concentration of soluble protein in
equilibrium with the condensed phase. We then define the effec-
tive solubility constant [21]

Ks ≡ 1

cs
= K0

s γs (2)

For transition-state rate limited (i.e., slow) association reactions,
crowding affects primarily the association rate constant [21], so
we may write

ln
(
ka/k0

a

) ∼= ln
(
Ks/K0

s

) = ln γs (3)

where k0
a denotes the value of the association rate constant in

dilute (ideal) solution. We represent the soluble protein as an
equivalent hard sphere with radius rs and the background envi-
ronment as a fluid containing a volume fraction φ of uniform
hard spheres (“crowders”) with radius rc. Scaled particle theory
[22] then yields the approximate expression

ln γs = ln (1 − φ) + A1z + A2z2 + A3z3 (4)

where

A1 = R3 + 3R2 + 3R (5a)

A2 = 3R3 + 4.5R2 (5b)

A3 = 3R3 (5c)

z = φ

1 − φ
(6)

and R ≡ rs/rc.
We assume that the condensed phase (aggregate) is essentially

insoluble, and that the rate of dissolution may be neglected. The
kinetics of aggregation are then described by the following first-
order rate equation:

dfs
dt

= −kafs (7)

where fs denotes the mass fraction of soluble protein, and the
fraction of aggregated protein is just 1 − fs.

FIBRILLATION
The association reaction to be modeled is the addition of
monomer to the end(s) of a growing fibrillar aggregate: P1 +
Pn � Pn+1. The thermodynamic equilibrium constant is given by

K0
n = an+1

a1an
= γn+1cn+1

γ1c1γncn
(8)

and the effective equilibrium defined in terms of concentrations
is then given by

Kn ≡ cn+1

c1cn
= K0

n
γ1γn

γn+1
(9)

As before, the monomer is modeled as an equivalent hard sphere
of radius r1, and its activity coefficient calculated according to
Equations (4–6), with R = R1 ≡ r1/rc. The oligomeric fibrils Pn

and Pn+1 are modeled as hard spherocylinders (cylinders capped
with hemispheres on each end) with radius rsc and the ratios
of cylindrical length to diameter Ln and Ln+1 respectively. The
activity coefficient of an isolated spherocylinder in a fluid con-
taining volume fraction φ of uniform hard spheres of radius rc is
estimated using Equations (4,6), with

A1 = R3 + 3R2 + 3R + 1.5L
(
R2 + 2R + 1

)
(10a)

A2 = 3R3 + 4.5R2 + 4.5L
(
R2 + R

)
(10b)

A3 = 3R3 + 4.5LR2 (10c)

where R = Rsc ≡ rsc/rc [23].
As in the case of condensation, it is assumed that crowding

affects primarily the association rate constant, so that

ln
(
ka/k0

a

) ∼= ln
(
Kn/K0

n

) = ln γ1 + ln γn − ln γn+1 (11)

We may write

ln γn+1 = ln γn + d ln γ

dn
= ln γn + d ln γ

dL

dL

dn
(12)

It follows from equations [10a–c] that

d ln γsc

dL
= 1.5

(
R2

sc + 2Rsc + 1
)

z

+4.5
(
R2

sc + Rsc
)

z2 + 4.5R2
scz3 (13)

Assuming conservation of volume upon association, we obtain

dL

dn
= 2

3

(
r1

rsc

)3

(14)

Inspection of Equations (12–14) reveals that ln γn+1 − ln γn,
equal to the excess free energy of adding a monomer to an
oligomer, is independent of the size of the oligomer. This result
agrees with our intuition, since fiber growth only occurs at the
ends of the oligomer. Then Equation (11) may be rewritten as

ln
(
ka/k0

a

) = ln γ1 − d ln γsc

dL

dL

dn
(15)
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where ln γ1 is calculated using Equations (4–6) with R = R1, and
d ln γsc/dL and dL/dn are calculated using Equations (13, 14)
respectively.

As in the case of the condensation model, we shall assume that
the linear fibrils are essentially insoluble, so that the dissociation
rate may be neglected relative to the association rate. Then the
rate of addition of monomer to oligomer will be given by the first
order rate expression

df1
dt

= −kaf1 (16)

where f1 denotes the mass fraction of monomer, and the mass
fraction of fibril is just 1 − f1.

TIME-DEPENDENCE OF CROWDING
The concentration of soluble protein in various regions of human
brain has been reported to increase roughly linearly with age [13],
in some regions doubling over a lifespan of 80 years. We therefore
model the total volume fraction of “crowder” as a linear function
of time:

φ = φ0 + βt (17)

Parameswaran et al. [16] measured the fraction of volume
excluded to albumin in rat mesenteric tissue as a function of the
age of the rat, and reported that this fraction increased from 20
to 40% over the lifetime of the rat (650 days). We shall use the
results cited above as a qualitative basis for positing a possible lin-
ear increase in volume fraction of crowder from 0.2 to 0.4 over the
80 year lifespan of a human, i.e., φ0 = 0.2 and β = 0.0025yr−1.
Simulations were carried out varying each of these parameters
about the values cited.

Calculation of the mass fraction of aggregated protein accord-
ing to the solubility model was performed by numerical integra-
tion of Equation (7) with a time-dependent value of ka calculated
according to Equations (3–5, 17), using the differential equa-
tion solver ODE15s in MATLAB v. 2013b (Mathworks, Natick,
MA). The corresponding calculation carried out according to

the fibrillation model was performed by numerical integration
of Equation (16) with a time-dependent value of ka calculated
according to Equations (13, 14, 15).

RESULTS AND DISCUSSION
The dependence of the mass fraction of polymer on elapsed time,
calculated using the condensation and fibrillation models with
various parameter sets shown in the figure caption, are plotted
in Figures 1A,B. The dashed reference curve in panel A repre-
sents the classical decaying exponential solution to the first-order
rate Equation (7) with ka equal to a constant value of 0.1. Results
obtained from both models are qualitatively similar. Each curve
representing the calculated dependence of fp on elapsed time may
be characterized by two parameters: t50, the time at which half of
the protein is aggregated, and a kinetic cooperativity parameter,
α, a measure of the steepness of the curve at t50, defined according
to Hall and Mnton [24]

α =
(
d ln fp/d ln t

)
t=t50

ln 2
(18)

The value of α so defined is identically equal to 1 for the time
dependence of fp obtained from solution of Equation (7) with a
constant (time-independent) value of ka (for example, the refer-
ence curve plotted in Figure 1A), and increases with the steepness
of the dependence of fp on t. General properties of the model may
be easily deduced upon inspection of correlations between the
various input parameters and the output parameters t50 and α.
It follows from Equations (16, 18) that

α

t50
= ka,50

ln 2
(19)

where ka,50 is the value of ka at t = t50.
In Figure 2A the dependence of fp on elapsed time is plot-

ted for three simulations carried out with the condensation
model with the parameters indicated in the Figure caption. These
parameters were selected to provide significantly different rates of
increase of ka with time, as shown in Figure 2B, but similar values

FIGURE 1 | Dependence of the mass fraction of polymer upon elapsed

time, calculated according to the condensation model (A) and the

fibrillation model (B) as described in the text. Parameters associated with

each simulation are presented in Table 1. The blue dotted curve in (A) is the
solution to the first order rate Equation (7) with a constant value of log
ka = −1.
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of t50. The results of comparable simulations carried out using the
fibrillation model are qualitatively similar and are therefore not
shown. It is evident that the delay time preceding the onset of the
appearance of significant quantitities of polymer, and the rapidity
of significant accumulation of polymer, as reflected in the value

FIGURE 2 | Dependence of the mass fraction of polymer (A) and the

logarithm of the association rate constant (B), calculated according to

the condensation model as described in the text. Parameters associated
with each simulation are presented in Table 2. Vertical dotted lines indicate
the values of t50 associated with each simulation.

of α, are both strongly correlated with the rate of increase of ka,
and thus the rate of increase of volume occupancy by crowder [cf.
Equations (3–5)]. It should also be noted that simulations yield-
ing a relatively abrupt onset of the appearance of polymer (i.e.,
a high value of α), with very similar values of t50 (e.g., curves b
and c of Figure 2A) may be obtained for values of k0

a differing by
several orders of magnitude.

We therefore conclude that, independent of the particu-
lar model or details of the simulation, the apparently sud-
den accumulation of significant amounts of aggregate following
a long delay is a consequence of a rate constant for poly-
mer growth that is initially undetectably small, but increases
at least exponentially with time. These conditions are met in
a wide variety of simulations reflecting broad variation in ini-
tial rates of polymer growth, polymer geometry and size, and
postulated temporal gradients of volume occupancy by an inert
crowder.

The model for fibrillation presented here does not take into
account the potential fragmentation of growing fibrils [25]. The
rate of fragmentation would be expected to increase with the
average size of growing fibrils and hence an increase in the
number of growth sites with time, leading to a potentially coop-
erative accumulation of fibrillated protein with time [26]. An
increasingly crowding-accelerated rate of addition of monomer
to an increasing number of growth sites would enhance the

Table 2 | Input and output parameters characterizing each simulation,

calculated using the condensation model, plotted in Figures 2A,B.

Color Input parameters Output parameters

R logk0
a t50 α

Black 1 −4 56.0 4.9

Red 1.5 −7 54.3 12.4

Green 2 −13 57.3 29.0

Table 1 | Input and output parameters characterizing each simulation plotted in Figures 1A,B.

Panel:model Color Line type Input parameters logk0
a Output parameters

R R1 Rsc t50 α

A: condensation Black Solid 1.5 – – −6 43.2 8.1

Dash −7 54.3 12.4

Dot −8 63.6 17.2

Red Solid 2.0 – – −11 47.3 20.0

Dash −12 52.5 24.4

Dot −13 57.3 29.0

B: fibrillation Black Solid – 1.5 3 −5 40.0 5.6

Dash −6 54.5 9.8

Dot −7 66.2 14.4

Red Solid – 2 4 −10 50.7 18.6

Dash −11 56.6 23.2

Dot −12 62.0 28.0
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cooperative appearance of fibril exhibited by the model presented
here, thus strengthening the qualitative conclusions derived from
this model.

While the models proposed above are highly speculative, we
believe that they may have physiological relevance for the fol-
lowing reasons. The appearance of neurodegenerative diseases is
relatively abrupt and occurs at an advanced age, except in the case
of unstable mutant proteins. There have been many hypotheses
proposed relating the aggregation of a protein or peptide asso-
ciated with a particular disease to the ensuing neuronal damage
and death [27, 28], including loss of essential native protein func-
tion and toxicity of oligomers or large aggregates. The models
proposed here suggest that if neurons are particularly suscepti-
ble to water loss and the concomitant increase in intracellular
crowding with aging, then many neuronal proteins, indepen-
dent of their intrinsic stability, would at some point abruptly
appear to lose solubility as their respective rates of condensa-
tion or fiber formation begin to rapidly accelerate. Which protein
first becomes substantially insoluble, and thus identified as the
cause of a particular infirmity, depends upon the time-dependent
macromolecular composition of a particular cell or tissue type,
and is therefore subject to variation between individuals.
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