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We propose a generalization of Gibbs’ statistical mechanics into the domain of
non-negligible phase space correlations. Derived are the probability distribution and
entropy as a generalized ensemble average, replacing Gibbs-Boltzmann-Shannon’s entropy
definition enabling construction of new forms of statistical mechanics. The general
entropy may also be of importance in information theory and data analysis. Application
to generalized Lorentzian phase space elements yields the Gibbs-Lorentzian power
law probability distribution and statistical mechanics. The corresponding Boltzmann,
Fermi and Bose-Einstein distributions are found. They apply only to finite temperature
states including correlations. As a by-product any negative absolute temperatures are
categorically excluded, supporting a recent “no-negative T ” claim.

Keywords: statistical mechanics, entropy, generalized-Lorentzian distributions, cosmic ray spectra, information

theory, maximum entropy

1. GENERALISATION OF GIBBS’ STATISTICAL MECHANICS
In Gibbs’ Statistical Mechanics [1, 2] the probability wi(εi) ∝
exp ( − εi/T) of finding a particle in energy state εi at constant
temperature T (in energy units) is obtained from considering the
infinitesimal change of the phase space volume �[S(ε)] deter-
mined by the (normalized) entropy S(ε), a function of energy ε,
as d�/dε = GG(S) ∝ exp[S(ε)]/�ε, holding under the ergodic
assumption and valid for stochastic (Markovian) processes. The
dependence of the phase space element on entropy S(ε) can be
generalized, defining an arbitrary function G(S) such that

d�/dε = G
[
S(ε) − S(E)

]
/�ε, (1)

with S(E) the entropy at any given reference energy E. Application
to the Gibbs-function GG = exp S just yields the arbitrary pro-
portionality factor exp[−S(E)].

The function G(S) is subject to constraints which have to be
determined from the requirement that the probability of finding a
particle in energy state εi in phase space in the given fixed interval
�ε around E is

wi ∝
∫ [

d�(ε)

dε

]
δ(εi + ε − E) dε. (2)

Considering the product d�1(S1) d�2(S2) of two phase space
elements of different entropies S1, S2 yields

d�1d�2 ∝ G(S1)G(S2). (3)

It is easy to prove that the only function for which this
expression becomes equal to d�3 ∝ G(S3), with G(S3) = G(S1 +
S2), is Gibbs’ log GG(S) ∝ S. [This can be seen by assuming

S2 = S1(1 + �/S1) which produces an additional quadratic term
in G(S1)G(S2). For all G �= GB this term is irreducible to a
constant factor. An illustrational example is given below in
Equation (9).] For any G(S) different from GG the entropies of
the two phase space elements are not independent but correlated,
indicating the presence of phase-space correlations, entropic non-
extensivity, and violation of the ergodic assumption [see, e.g., 3, 4,
for a more extended discussion].

Expanding the entropy around energy E

S(ε) ∼ S(E) + ∂S(ε)

∂ε

∣∣∣∣
ε = E

(ε − E) = S(E) + ε − E

T
, (4)

with ∂S(ε)/∂ε
∣∣
ε = E = 1/T and inserting into G(S), Equation (2)

yields the wanted phase space probability distribution

wi(εi) ∝ G( − εi/T). (5)

For wi(εi) being a real physical probability, the requirement is that
G(S) be a real valued positive definite function of its argument
which can be normalized by summing over all accessible phase
space energy states

∑
i wi(εi) = 1. This determines the constant

of proportionality in Equation (5). Of the whole class of such
functions G, only those may have physical relevance which satisfy
a number of supplementary constraints.

The first physical constraint is that the probability should con-
serve energy. This is most easily checked for non-relativistic ener-
gies εi = p2

i /2m, where m is particle mass. Under the simplifying
ideal gas assumption [for non-ideal gases one just adds an exter-
nal or an interaction potential field �(x) of spatial dependence]
and, for d momentum space dimensions, energy conservation
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implies that, for large p, the function G{S[ε(p)]} asymptotically
converges faster than p−d−2.

Any exponentially decaying asymptotic function of momen-
tum p or energy ε would thus be appropriate. In contrast to
algebraic functions, for which more restrictive conditions would
have to be imposed, they also hold under the requirement of con-
servation of higher moments of the probability distribution. One
particular class of such functions is

G(S) = eS(ε)G̃(S), (6)

where G̃(S) is any algebraic function. It produces the modified
Gibbsian probability distribution wi ∝ G̃( − εi/T) exp(− εi/T).

A severe restriction imposed on G(S) is the demand that
any stationary statistical mechanics based on Equation (1) is
required to be in accord with thermodynamics. It needs repro-
ducing the macroscopic relations between entropy S, energy E,
pressure P, volume V and the derived thermodynamic potentials.
In addition, the temperature T must maintain its thermodynamic
meaning.

The obvious path to statistical mechanics paralleling Gibbs’
approach is via inverting G(S), finding the appropriate entropy
S [wi(G)] ∝ S

[
G−1(wi)

]
as functional of probability. This is sug-

gested by Gibbs-Boltzmann’s use of log wGB, which is the inver-
sion of the Gibbs-Boltzmann probability wGB ∝ exp( − ε/T), in
the definition of entropy S.

Thus, formally, for any arbitrarily chosen G(S) that satisfies the
above two constraints, the entropy is determined as the ensemble
average

S =
〈
G−1

[wi

A

] 〉
∝
∫

dp dx w(εp) G−1
[

w(εp)

A

]
, (7)

with A the normalization constant. It requires the existence of the
inverse function G−1(S) which, for arbitrary G(S), poses a hur-
dle of constructing a viable statistical mechanics. Since w(εp) is
normalized, a constant − log A can be added to G−1 in order to
adjust for the first law. Of interest is the local entropy density
s = wiG−1[wi/A], rather than the global entropy S.

This completely general definition of entropy may be of
relevance not only for statistical mechanics but as well for
several other fields like maximum entropy methods in data
analysis, information theory, where it replaces Shannon’s clas-
sical definition of information, and also outside physics in the
economical and social sciences. Its extension to complex func-
tions G(S) implying complex probabilities is obvious. Since the
meaning of complex entropies is unclear, it requires that the
entropy S in Equation (7) be real, i.e., calculated as a real
expectation value.

In the following we demonstrate that for a limited class
of algebraic functions, so-called generalized Lorentzians G(x) =
(1 + x/κ)−κ , with arbitrary expression x ≡ S independent of 0 <

κ ∈ R [cf., e.g., 5], construction of a viable statistical mechanics is
nevertheless possible if only the ubiquitous additional constraint
is imposed on G(S) that, in some asymptotic limit, it reproduces
the exponential dependence of Gibbs’ phase space element on
entropy.

2. ALGEBRAIC EXAMPLE: GIBBS-LORENTZIANS
With G(S) an algebraic generalized Lorentzian, substitution into
Equation (1) yields

d�(ε)

dε
= 1

�ε

{
1 + 1

κ

[
S(E) − S(ε)

]}−κ−r

. (8)

It is obvious that for κ → ∞ this expression reproduces the
Gibbsian variation of the phase space volume. The negative sign
in the brackets is self-explanatory. The relevance of entropy S(E)
is seen in that, for κ → ∞, it just generates a constant factor in
d�. We also made use of the freedom of adding a number r ∈ R
to the exponent, as it has no effect when taking the large κ limit.

It is easy to prove explicitly that finite κ < ∞ imply correla-
tions in phase space by (even for constant κ) considering

d�3 =
{

1 + [S3(E) − S3(ε)]
κ

+ [S1(E) − S1(ε)][S2(E) − S2(ε)]
κ2

}−κ−r

. (9)

The irreducible quadratic term indicates that the two phase space
elements in the κ-generalized Gibbs-Lorentzian model are not
independent.

Equation (5) yields the Gibbs-Lorentzian probability

wiκ (εi, x) = A
{

1 +
[
εi + �(xi)

]
/κ T

}−κ−r
, (10)

generalized here to non-ideal gases by including a potential
energy �(xi). A is a constant of normalization of the probability
when integrating over phase space d�. Equation (10) allows for
a formulation of Gibbsian statistical mechanics consistent with
fundamental thermodynamics.

To determine the value of power r, we switch temporarily from
probability to phase space distribution wiκ (εi) → fκ (p), with p
particle momentum and ε(p) = p2/2m and restrict to ideal gases.
Normalizing (2π h̄)−3

∫
fκ (p)d� determines Afκ as function of

particle number N and volume V to

Afκ = Nλ3
T

V

κ− 3
2 �
(
κ + r

)
�
( 3

2

)
�
(
κ + r − 3

2

) , (11)

where λT =
√

2π h̄2/mT is the thermal wavelength. The average
energy is obtained from the kinetic energy moment of the nor-
malized distribution function. This produces an additional factor

(κT)
5
2 �( 5

2 )�(κ + r − 5
2 )/�(κ + r). Combination yields for the

ideal gas kinetic energy density

〈E〉
V

= 3

2

κ

κ + r − 5
2

NT

V
. (12)

Three degrees of freedom require 〈E〉 = 3
2 NT which immediately

yields that

r = 5

2
, (13)
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proving that T is the physical temperature of the system, as was
inferred earlier in the generalized Lorentzian thermodynamics
[5] though lacking the determination of r. [Correspondingly,
for d degrees of freedom the factor 3/2 and the denominator
in Equation (12) become d/2 and κ + r − (2 + d)/2, respec-
tively, which yields for r = 1 + 1

2 d in order for the energy to be
〈E〉 = (d/2)NT.] Any κ gas embedded into a heat bath necessar-
ily assumes the temperature of the bath. Also, two gases in contact
at a boundary will adjust to a common temperature, independent
on whether both are κ gases of equal or different κs or one of
them being a Boltzmann gas.

We note for completeness that, in the time-asymptotic limit, the
correct r value was determined from a direct kinetic calculation of
the particular case of interaction between electrons and a thermal
Langmuir wave background [6]. It was also inferred in Livadiotis
and McComas [7] arguing about the role of total energy E in κ

distributions.
Having determined r, the constant particle number ideal gas

canonical phase space κ-distribution is

fκ (p) = Afκ (1 + εi/κ T)−κ− 5
2 . (14)

Including variable particle number N, the entropy S(E, N)
becomes a function of N. Expanding S with respect to energy and
particle number, defining the derivative of the entropy at constant
energy (∂S/∂N)N=0,E = −μ/T, the extended Gibbs distribution
is given by

wiκ (εiN ) = A

(
1 + εiN − μN

κ T

)−κ−r

. (15)

The index N identifies the Nth subsystem of fixed particle
number N. (If the subsystems contain just one particle, it is
the particle number.) This is the general form of the Gibbs-
Lorentzian probability distribution with physical temperature T
in state (iN).

These expressions also contain the non-Lorentzian power law
distribution, wir′ ∝ [1 + εi/T]−r′ with r′ = κ + r, for instance
encountered in cosmic ray spectra. Equation (12) then has κ only
in the denominator requiring r′ = 7

2 . Defining � the number of
the highest conserved statistical moment yields, more generally,
r′ = 1 + 1

2 (2� + 1).

3. GIBBS-LORENTZIAN STATISTICAL MECHANICS
The form of the Generalized Gibbsian probability distribu-
tion inhibits the use of the Gibbsian definition of entropy S =
−〈log w〉 as phase space average 〈. . . 〉 ≡ ∫

. . . d� of the loga-
rithm of w(ε). Instead, another form of entropy has to be found
enabling construction of a generalized thermodynamics in agree-
ment with the fundamental thermodynamic definitions. Forms
have been proposed in Tsallis’ q statistical mechanics [8, 9] and
in the Generalized Lorentzian thermodynamics [5]. Adopting the
latter version we define the functional

g[w] = exp

{
−κ

[(
A

wκ

)(κ+r)−1

− 1

]
− log A

}
, (16)

whose logarithmic expectation value leads to the entropy
S = −〈log g[w]〉. Its particular version is chosen in agreement
with Equation (7) for reconciling with thermodynamics by
adding an additional normalization constant A. Clearly, log g
is related to the inverse function G−1[wκ/A] in this case.
Substituting wiκ (εi) and g[wiκ (εi)] into the ensemble average
Equation (7) yields

S = − log A + 〈E〉/T. (17)

The thermodynamic relation 〈E〉 = TS + F identifies F = T log A
as the free energy F. The generalized canonical Gibbs κ-
probability distribution then reads

wiκ = exp (F/T)

(1 + εi/κ T)κ+r . (18)

Since A is the normalization of wiκ one also has that
∑

i wiκ = 1
and, hence, for the free energy

F = −T log

∫
d�

[
1 + ε(p, x)

κ T

]−κ−r

= −T log Zκ , (19)

with d� = d3p dV/(2π h̄)3 the phase space volume element.
From the last expression we immediately read the generalized
Gibbsian version of the classical canonical partition function

Zκ ≡
∫

d�
[
1 + ε(p, x)/κ T

]−κ−r
. (20)

In the quantum case the integral becomes a sum over all quantum
states i:

Zκ ≡
∑

i

(
1 + εi/κ T

)−κ−r
. (21)

This completes the discussion for a system with fixed particle
number since all statistical mechanical information is contained
in the partition function Zκ .

Allowing for a variable particle number N and again making
use of the chemical potential μ = −T(∂S/∂N)EV , the normaliza-
tion condition becomes

T log A = F − μ〈N〉 ≡ �, (22)

with 〈N〉 the average particle number, and � the thermodynamic
potential. With F = μN + � for the Nth subsystem of particle
number N the generalized Gibbs distribution reads

wκ,N = exp (�κ/T)[
1 + (εiN − μN)/κ T

]κ + r , (23)

repeating that N is the index of the subsystems of different par-
ticle numbers. Normalization requires summing over these N
subsystems, a procedure not affecting � and thus yielding

�κ = −T log
∑

N

∑
i

[
1 + (

εiN − μN
)
/κ T

]−κ−r
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= −T log Zκ . (24)

The argument of the logarithm is the grand partition function
Zκ = ∑

N Zκ,N which is the sum over all partition functions
of the N separate subsystems of different particle number N.
For classical systems the inner sum over states i again becomes
the Nth phase space integral. All thermodynamic information is
contained in it.

4. UNDISTINGUISHABLE PARTICLES
The most interesting case is that of N undistinguishable subsys-
tems (particles) in states i in an ideal gas (again, in non ideal gases
one simply adds the external and interaction potentials). Then the
sum over N in the logarithm is understood as an exponentiation
yielding for the free energy

F = −NT log

∫
d� exp (1)

N(2π h̄)3

[
1 + εp − μ

κ T

]−κ−r
, (25)

an expression to be used for the determination of the common
chemical potential μ from ∂F/∂N = μ/T yielding, with r = 5

2 ,

μ

κ T
= log

[
V exp (1)

Nλ3
κ

B (3/2, κ + 1)

(1 − μ/κ T)(κ + 1)

]
. (26)

The logarithmic dependence on μ is weak, producing a small
correction term of order O(κ2T2/|μ|2). Hence the chemical
potential of the ideal classical κ-gas of undistinguishable par-
ticles is essentially the same as that for the ordinary ideal
classical gas.

4.1. THE BOLTZMANN CASE
Following Gibbsian philosophy we consider particles in a given
state i and write for the index N = ni, with ni the occupation
number of state i, and for the energy εiN = niεi. Then

�κi = −T log
∑

ni

[
1 + ni(εi − μ)/κT

]−κ − 5/2
, (27)

and the Gibbsian probability distribution for the occupation
numbers reads

wκni = exp (�κi/T)
[
1 + ni(εi − μ)/κT

]−(κ + 5/2)
. (28)

The probability for a state to be empty is obtained for ni = 0.
Thus wκ0 = exp(�κi/T) is identical to the non-κ case of zero
occupation. At high temperatures the occupation numbers of
states are generally small. Hence the average occupation 〈ni〉 is
obtained for ni = O(1) and �κi/T � 1, yielding

〈ni〉 =
∑

ni

niwκni ≈ wκ1 ≈ [
1 + (εi − μ)/κT

]−κ−5/2
. (29)

This is the κ-equivalent of the Boltzmann distribution of occu-
pation numbers of states in an ideal gas (no external interac-
tion potential) of variable particle number, with μ < 0 given
in Equation (26). Inspection suggests that this distribution of

occupations is about flat for εi < |μ|. For constant particle num-
ber it instead becomes Equation (14), the ordinary (canonical)
one-particle κ distribution [10]. In going from occupation of
states to the distribution function, normalization is to the par-
ticle density N/V . Extracting 1 + |μ|/κT from the integral, the
contribution of μ can, like in the Boltzmann case, be absorbed
into the normalization constant, however with energy in units of
κT + |μ|. Since μ is large this distribution is flat for κT < |μ|
being of interest only at large T.

4.2. THE FERMI CASE
From Equation (27) under the Fermi assumption that any energy
states can host at most one particle, restricting the occupation
numbers to ni = 0, 1, yields

�F
κi = −T log

{
1 + [

1 + (
εi − μ

)
/κT

]−(κ + 5/2)
}
. (30)

The average occupation number of states follows as

〈ni〉F
κ = −∂�F

κi

∂μ
=
{

1 + [
1 + (εi − μ)/κT

]κ + 5/2
}−1

. (31)

Normalized yields the total particle number N. For εi > μ both
�F

κi and 〈ni〉F
κ vanish when T → 0. On the other hand, any energy

level below μ cannot be occupied when the temperature vanishes
for the reason that the distribution must be real.

One concludes that T = 0 is not accessible to the ideal
gas κ-Fermi distribution. This is in accord with the idea
that correlations in phase space imply complicated dynam-
ics, hence, finite temperature. The Fermi-κ distribution does
not define any Fermi energy since no degenerate states exist.
At T > 0 any positive chemical potential would be bound
by μ < κT not providing any new information. Extension to
the non-ideal case is straightforward by adding an interaction
potential.

4.3. BOSE-EINSTEIN CASE
When the occupation number of states is arbitrary, summa-
tion over all states ni from ni = 0 to ni = ∞ is in place. Again,
the chemical potential μ < 0 is negative. The Bose-Einstein-κ
distribution becomes

〈ni〉BE
κ =

(
1 + 5

2κ

) ∞∑
ni = 1

ni
[
1 + ni

(
εi − μ

)
/κT

]−κ−7/2

1 +
∞∑

ni = 1

[
1 + ni

(
εi − μ

)
/κT

]−κ−5/2
. (32)

Its low temperature behavior is again determined by the chemical
potential μ. It is readily shown that in the limit T → 0 the dis-
tribution vanishes for all states εi �= 0 and for all μ < 0. There is
no Bose-Einstein condensation on the lowest energy level ε0 = 0,
seen by taking the limit μ → 0 and T → 0. The distribution
applies to finite T only.

Temporarily replacing all expressions of the kind (1 +
x) → exp x, all sums become geometricprogressions and can
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be performed. Resolving all exponentials, one ultimately
obtains the appropriate approximation for the Bose-Einstein-κ
distribution

〈ni〉BE
κ ≈

{
1 − [

1 + (εi − μ)/κT
]−κ− 5

2

}

×
⎡
⎢⎣ (1 + 5/2κ)

[
1 + (εi − μ)/κT

]−κ− 7
2{

1 − [
1 + (εi − μ)/κT

]−κ− 7
2

}2

⎤
⎥⎦ . (33)

5. CONCLUSIONS
A recipe is provided for constructing equilibrium statisti-
cal mechanics from arbitrary functionals G(S) with universal
“Gibbsian" phase space probability distribution Equation (5).
If only the inverse functional G−1(S) exists, the generalized
entropy follows as its ensemble average (expectation value) allow-
ing for the formulation of an equilibrium statistical mechan-
ics. This form of entropy extends and generalizes the Gibbs-
Boltzmann-Shannon definition. It can be extended to complex
functions G(S) and complex probabilities under the require-
ment that the entropy obtained from Equation (7) is real. This
version of entropy might be applicable not only in physics,
but also in information theory, maximum entropy methods in
data analysis, and possibly even in the economic and the social
sciences.

As for an example we revisited the Gibbs-Lorentzian sta-
tistical mechanics [11] which leads to κ-distributions of ener-
getic particles. Such distributions result from wave particle
interaction in plasmas [6, 12] and have been observed in the
heliosphere [13, 14]. They also apply to observed cosmic ray
spectra.

Gibbs-Lorentzian statistical mechanics is restricted to high
temperatures only, excluding vanishing absolute temperatures.
It thus categorically forbids any negative absolute temperatures
T < 0 as they would require cooling across the non-existing state
T = 0. Since κ → ∞ reproduces classical and quantum statisti-
cal mechanics for all T, this conclusion provides another proof
for the nonexistence of negative absolute temperatures follow-
ing from Gibbsian theory, supporting a recent proof [15] of
this fact.
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