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Concepts and methods from the physical sciences have catalyzed remarkable progress in
understanding the cell nucleus in recent years. To share this excitement with physicists
and encourage their interest in this field, this review offers an overview of how the physics
which underlies structures and functions in the nucleus is becoming more clear thanks to
methods which have been developed to simulate and study macromolecules, polymers,
and colloids. The environment in the nucleus is very crowded with macromolecules,
making entropic (depletion) forces major determinants of interactions. Simulation and
experiments are consistent with their key role in forming membraneless compartments
such as nucleoli, PML and Cajal bodies, and discrete “territories” for chromosomes.
The chromosomes, giant linear polyelectrolyte polymers, exist in vivo in a state like
a polymer melt. Looped conformations are predicted in crowded conditions, and have
been confirmed experimentally and are central to the regulation of gene expression.
Polymer theory has revealed how the chromosomes are so highly compacted in the
nucleus, forming a “crumpled globule” with fractal properties which avoids knots
and entanglements in DNA while allowing facile accessibility for its replication and
transcription. Entropic repulsion between looped polymers can explain the confinement
of each chromosome to a discrete region of the nucleus. Crowding and looping are
predicted to facilitate finding the specific targets of factors which modulate activities
of DNA. Simulation shows that entropic effects contribute to finding and repairing
potentially lethal double-strand breaks in DNA by increasing the mobility of the broken
ends, favoring their juxtaposition for repair. Signaling pathways are strongly influenced
by crowding, which favors a processive mode of response (consecutive reactions
without releasing substrates). This new information contributes to understanding the
sometimes counter-intuitive consequences and the evolutionary advantages of a crowded
environment in the nucleus.
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INTRODUCTION
The nucleus can be viewed as a complex colloidal system of
proteins, ribonucleoproteins, and giant charged linear polymers
(the chromosomes), confined within the lamina of the nuclear
envelope. The measured global concentration of macromolecules
exceeds 100 mg/ml (reviewed in [1]); the chromosomes occupy
∼10% of the nuclear volume [2] and total macromolecules
between ∼20% [3] and ∼40% [4, 5]. As observed 100 years ago,
“physical chemists and biochemists have nowadays come to real-
ize that the most fruitful ground of both chemistry and biology
lies in the land of colloids” [6] which Ostwald aptly termed “the
world of neglected dimensions” [7].

Thinking in this field has been marked by the realization that
entropic forces play major roles in interactions between macro-
molecules in the nucleus, as they do in colloidal systems [8, 9]
and, as noted many years ago, in the cell cytoplasm [10], although
they are insignificant in the dilute conditions usually used for

molecular biological experiments in vitro. Entropic (also termed
depletion) forces favor contacts between larger macromolecules
or particles in a concentrated mixture, because then the excluded
volumes which surround them overlap and more volume is avail-
able to smaller molecules [11]. Entropic interactions are highly
sensitive to the local shape of macromolecules, conferring a “lock
and key” selectivity [12, 13]. A further result of crowding which is
likely be important in the nucleus is a significant enhancement of
the thermodynamic activity of macromolecules [14] which would
allow efficient interactions with fewer members of each species
than those required in a dilute medium.

COMPARTMENTS IN THE NUCLEUS
Nuclei contain diverse types of compartments which contain
macromolecular complexes with different specialized functions
(reviewed in [15]), for example nucleoli where ribosomal RNA
is transcribed and other types shown in Figure 1A. These
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FIGURE 1 | (A–D) Features of the nucleus which can be understood as effects
of crowding and entropic forces. (A) Compartments visualized by
immunofluorescence (reproduced from [20]). (B) Discrete territories of the 24
chromosomes in a human fibroblast nucleus labeled with different fluorochrome
combinations (reproduced from [21]). (C) Gene-poor chromosomes ([18], red)
are located more peripherally than gene-rich chromosomes ([19], green) in the
nucleus of human lymphocytes (reproduced from [22] by permission from

Macmillan Publishers Ltd, 2001). (D) A loop of DNA containing ∼220 kb of the
human dystrophin gene visualized by fluorescence in situ hybridization (FISH)
(reproduced from [23] by permission of Oxford University Press). (E) The
nuclear lamina confines and compresses the contents of the nucleus. The
nuclear lamina of K562 cells was visualized by immunofluorescence before
(left) or after (right) DNA was digested with restriction enzymes and chromatin
was removed by electroelution (R. Hancock, unpublished). Scale bars 5 μm.

compartments have no external membrane, and with the excep-
tion of chromosomes their macromolecules exchange dynami-
cally with the surrounding milieu (for example [16]), they are
mobile [17], and they can divide and fuse [17, 18]. RNAs may be
essential structural components of compartments [19]. Despite
many descriptive studies, the mechanism by which compartments
are formed has been unclear.

Experimental and simulation studies are consistent with a key
role for crowding in the association of macromolecules to form
compartments. Simulations show that model particles form clus-
ters in crowded conditions (Figure 2A) [24]. Cluster formation
is observed quite commonly in colloidal systems [25], and the
concentration of protein in clusters formed in a crowded solution
may reach up to ∼700 mg/ml [26] (Figure 2B). The formation of
compartments can also be regarded as phase separation, where
entropic attractions in a mixture of macromolecules result in
expulsion of one component as a separate phase [27]. Since
entropic effects favor the positioning of particles on a surface [28]
they may contribute to the frequently-observed localization of
Cajal and PML bodies in contact with chromosomes (for example
[29, 30]).

STRUCTURE AND PACKING OF CHROMOSOMES
CHROMATIN FIBERS
DNA in eukaryotic cells is associated with spherical protein sub-
units (nucleosomes) as a giant linear polyelectrolyte polymer, and
until recently thinking was dominated by the model that this fiber
has a regular helical conformation with a diameter of ∼30 nm.
Nevertheless, irregular conformations were seen quite commonly
in vivo in studies by electron and optical microscopy (for exam-
ple [31, 32]) (Figure 3B) and were also predicted by simulation
of the response to crowding of linear polyelectrolyte polymers [9,
33] (Figure 3A) and by considering that chromosomes resemble
block copolymers [34, 35] with interspersed regions of repeated
DNA sequences [36], methylated cytosine-containing DNA which

FIGURE 2 | Formation of protein clusters in a crowded solution. (A)

Molecular Dynamics simulation of Lennard-Jones particles (red) shows
clustering induced by crowding particles (blue) which is more pronounced
at higher volume fractions (φc ) of crowder (reproduced from [24] with
permission from Elsevier, © 2012). (B) A cluster of monoclonal antibody
molecules in a solution with trehalose as crowder (scanning electron
microscopy); similar clusters form using polyethylene glycol as crowder.
Scale bar 100 μm (reproduced from [26] with permission from the
American Chemical Society, © 2012).

has particular conformational properties [37, 38], and nucleo-
somes containing variant or modified histones which influence
fiber interactions [39, 40]. These discrepancies have been resolved
by recent cryo-electron microscopy and X-ray scattering studies,
which show conclusively that chromatin fibers exist in vivo in a
disordered, interdigitated state resembling a polymer melt [41].

LOOPS IN CHROMATIN FIBERS IN VIVO
The existence of loops in DNA in vivo has been a common theme
in optical and electron microscopy studies of lysed nuclei (for
example [42, 43]), and is now realized to be central to under-
standing chromatin fiber conformations in vivo [44]. Looping
must be invoked in order to reconcile the spatial distance
between two points on a chromosome in vivo, measured by
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3D fluorescence in situ hybridization (FISH), with their lin-
ear distance along the chromosome [45, 46]. Simulation shows
that spontaneous looping of a polymer is favored by crowding
(Figure 4A) and is more frequent and persistent in longer chains
[47]. These predictions have been confirmed experimentally by
mapping the contact points at the base of chromatin loops after
crosslinking them in vivo (chromosome conformation capture,

FIGURE 3 | Conformations of chromatin fibers. (A) Simulation by
Molecular Dynamics of a linear polyelectrolyte polymer resembling
chromatin at increasing concentration (ρ) (self-crowding) (reproduced from
[34] with permission of ACS Publications, © 1999). (B) Conformations
in vivo of the DNA of a transgene deduced from studies using FISH; the
transgene DNA is red, bacterial artificial chromosome DNA is blue, and lac
operator DNA is green (reproduced from [32] by permission of Rockefeller
University Press, © 2010).

3C) which reveals loops a few kb to tens of Mb in length [48, 49].
Looping is at least to some extent a stochastic process, and in
the context of gene regulation is clearly an attractive model for
bringing regulatory sequences in DNA into proximity to the genes
which they control [50, 51] (Figure 4B). Nucleoli [52] and tran-
scription factories [53] are proposed to be formed by the assembly
of numerous loops.

CHROMOSOME TERRITORIES
Each chromosome is confined to a discrete territory in the
nucleus, with little or no intermingling (reviewed in [21, 22])
(Figure 1B). Simulations show that this segregation can be under-
stood by the entropic repulsion which occurs between polymers
containing loops [44, 54]. The preferential positioning of gene-
rich and transcriptionally active chromosomes in central regions
of the nucleus while inactive chromosomes are more peripheral
[55] (Figure 1C) can be explained by entropic effects result-
ing from a higher frequency of loops in more compact inactive
chromatin [52].

PACKING THE GENOME INTO THE NUCLEUS
The ∼2 m of DNA in human cells are packed as chromatin
fibers into a nucleus ∼10 μm in diameter, a formidable level of
compaction. How this is achieved has been revealed by the sem-
inal simulation studies of the collapse of a linear polymer by
Grosberg et al. [57], which show how a compact “crumpled glob-
ule” with fractal properties is formed (a notable example of the
value of non-translational research). Experiments and simula-
tions strongly support this fractal manner of packing chromatin
in the nucleus [58–61] (with the exception of yeast), which was
suggested earlier by neutron diffraction studies of nuclei [62].
Data from 3C studies of human chromosomes are consistent with
a fractal organization, but not with the alternative “equilibrium
globule” conformation [58]. On could speculate that the fractal
globule conformation has been selected during evolution because
the chromatin fiber does not contain knots or entanglements,
DNA is easily accessible, and chromosomes are localized in a

FIGURE 4 | Loops in chromatin. (A) Simulation by Langevin dynamics of the
spontaneous formation of loops in a linear polymer. In the presence of
crowding particles (upper panel), the minima of the end-to-end distance (d1,N)
which reflect looping are more frequent and persistent (lower gray areas)

(reproduced from [47] with permission from the American Physical Society, ©
2006). (B) Chromatin loops in the region of the human α-globin gene in vivo
deduced from chromosome conformation capture (3C) experiments
(reproduced from [48] by permission from Macmillan Publishers Ltd, © 2014).
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territorial pattern without intermingling (Figure 5) [58, 59]. A
more evolved model which is consistent with the fractal globule
allows dynamic variations of chromatin folding and switch-like
changes of genome architecture to be captured [63]. These mod-
els will replace the common textbook depictions of chromatin
packed through a hierarchical series of largely speculative coiled
intermediates.

DIFFUSION AND SIGNALING
Diffusion of molecules is central to all cellular activities, from
biochemical reactions to metabolic networks, signaling pathways,
and control of gene expression. Diffusion of macromolecules
is slowed in the nucleus ([64, 65], reviewed in [66]) probably
due to collosions with chromatin and other large obstacles or to
viscoelasticity, but nevertheless most macromolecules and mul-
tiprotein complexes can explore the entire nuclear volume [67].
Large particles and macromolecules show anomalous diffusion
in the nucleus, a lesss-than-linear increase of mean-square dis-
placement with time like that seen in crowded solutions [68].
Remarkably, subdiffusion can increase the probability of finding
a nearby target compared to normal diffusion [68–71].

FIGURE 5 | Chromosome territories. (A) Simulation of two polymer chains
compacted into a fractal globule shows a territorial organization like that of
chromosomes 18 and 19 in a human lymphocyte nucleus (B), whereas they
are mixed in an equilibrium globule. (A) reproduced from [58], (B)

reproduced from [22] by permission from Macmillan Publishers Ltd, © 2001.

Signaling pathways depend on diffusion and are therefore
influenced by crowding, as illustrated by fascinating recent studies
of a step in the Mitogen-activated Protein Kinase (MAPK) path-
way which transmits signals from the cell surface to DNA in the
nucleus. This has the typical structure of a cascade of kinases in
which each kinase phosphorylates the next and activates it; phos-
phorylation can be reversed by a phosphatase and must occur
at two sites for complete activation. In dilute conditions, after
phosphorylating its substrate the kinase dissociates leading to a
significant probability that a different kinase molecule will phos-
phorylate the second site, a distributive mode. In contrast, in
crowded conditions when diffusion is slower it is more probable
that the first kinase molecule will remains bound or close to its
substrate while regaining activity by binding ATP and will then
phosphorylate the second site, a processive mode (Figure 6A)
[72]. This prediction has been confirmed experimentally using
purified kinases and a crowding agent in vitro [73] (Figure 6B).
Thus responses of pathways of this type appear to be distribu-
tive in in vitro experiments, but in conditions in vivo are actually
processive with different downstream responses to signals [74].

FINDING TARGETS IN THE GENOME
Proteins which regulate activities of DNA are believed to find their
target in chromatin by facilitated diffusion, a combination of 3-
dimensional diffusion in the medium and 1-dimensional sliding
on chromatin [75]. Target finding is predicted to be accelerated
by crowding [76, 77], and also by DNA looping which facilitates
the bypassing of factors which could block sliding [76]. The frac-
tal organization of chromatin [67] also has implications for the
kinetics of target finding; chromatin-binding proteins have a long
residence time in compact (hetero-) chromatin, suggesting that
they bind to all available sites, while on the other hand exploration
is faster and less redundant in less compact (eu-) chromatin which
offers more exposed DNA, presumably facilitating the detection
of less frequent regulatory elements [60].

Target finding is crucial for the survival of a cell when
potentially lethal double-strand breaks (DSBs) in DNA must be
repaired by rejoining one extremity of the broken DNA correctly

FIGURE 6 | Stimulation by crowding of the processivity of a step in a

signaling pathway. (A) In the MAPK pathway MEK (Mitogen/Extracellular
signal-regulated Kinase) (green) phosphorylates ERK (Extracellular
signal-Regulated Kinase) (blue) at two positions, on tyrosine and threonine. The
system also contains phosphatases (red). In the presence of crowders (gray)
the reactants diffuse more slowly, and therefore the probability of rebinding and

a second phosphorylation of ERK on threonine is increased (reproduced from
[72] with permission from Elsevier, © 2014). (B) Experimental data using
purified kinases in vitro showing how the frequency of a second
phosphorylation of ERK by the same molecule of MEK (processivity) increases
as a function of the concentration of the crowder PEG-6000 (reproduced from
[74] by permission from Macmillan Publishers Ltd, © 2013).
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to the other extremity. A DSB causes local changes in the mobil-
ity of chromatin; modeling predicts an increased mobility due to
entropic effects [78], but motion in vivo is subdiffusional [79]
which reduces the probability of long-range movements. The bro-
ken ends adopt more peripheral positions in chromosomes [78],
favoring their meeting and rejoining.

FUTURE CHALLENGES AND DIRECTIONS
The new insights discussed here suggest that many features of
the nucleus which are apparently complex can be understood
by the operation of relatively simple physicochemical princi-
ples. Many aspects of the biophysical implications of crowding
in the nucleus remain to be explored. Experimentally-accessible
questions include:

- the effects of crowding on the structure in vivo of chromatin
which contains DNA in conformations other than the classi-
cal B-form double helix, such as the DNA in telomeres whose
conformation in vitro is strongly influenced by crowding [80];

- the consequences of crowding for the structures of RNAs and
ribonucleoproteins in vivo; the folding and stability of RNA
in vitro are enhanced significantly by crowding [81–83];

- loops in chromatin fibers in vivo are usually thought to be sta-
bilized by proteins such as cohesin (for example [84]). Reports
that nucleosomes which contain identical DNA sequences can
self-associate preferentially [85] raise the possibility that similar
interactions could contribute to the formation and stabilization
of loops [86]. Could this be one of the still obscure functions of
“junk” DNA [87]?

ACKNOWLEDGMENTS
The author would like to acknowledge the hospitality of Drs.
Joanna Rzeszowska and Andrzej Swierniak during the prepara-
tion of this review.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fphy.2014.

00053/abstract

REFERENCES
1. Hancock R. The crowded nucleus. Int Rev Cell Mol Biol. (2014) 307:15–26. doi:

10.1016/B978-0-12-800046-5.00002-3
2. Weidemann T, Wachsmuth M, Knoch TA, Müller G, Waldeck W, Langowski

J. Counting nucleosomes in living cells with a combination of fluorescence
correlation spectroscopy and confocal imaging. J Mol Biol. (2003) 334:229–40.
doi: 10.1016/j.jmb.2003.08.063

3. Finan JD, Chalut KJ, Wax A, Guilak F. Nonlinear osmotic properties of the cell
nucleus. Ann Biomed Eng. (2009) 37:477–91. doi: 10.1007/s10439-008-9v618-5

4. Rowat AC, Lammerding J, Ipsen JH. Mechanical properties of the cell nucleus
and the effect of emerin deficiency. Biophys J. (2006) 91:4649–64. doi:
10.1529/biophysj.106.086454

5. Fritsch CC, Langowski J. Anomalous diffusion in the interphase cell nucleus:
the effect of spatial correlations of chromatin. J Chem Phys. (2010) 133:025101.
doi: 10.1063/1.3435345

6. Moore B. In memory of Sidney Ringer (1835–1910). Biochem J. (1911)
5:i.b3–xix.

7. Ostwald W. An Introduction to Theoretical and Applied Colloid Chemistry. The
world of Neglected Dimensions. New York, NY: John Wiley & Sons (1917). p.
232.

8. Yodh AG, Lin K, Crocker JC, Dinsmore AD, Kaplan PD. Entropically driven
self-assembly and interaction in suspension. Phil Trans R Soc Lond A (2001)
359:921–37. doi: 10.1098/rsta.2000.0810

9. Lekkerkerker HNW, Tuinier R. Colloids and the Depletion Interaction. Lecture
Notes in Physics, vol. 833. Berlin, Heidelberg: Springer (2011). p. 233. doi:
10.1007/978-94-007-1223-2

10. Walter H, Brooks DE. Phase separation in cytoplasm, due to macromolec-
ular crowding, is the basis for microcompartmentation. FEBS Lett. (1995)
361:135–9. doi: 10.1016/0014-5793(95)00159-7

11. Asakura S, Oosawa F. On interaction between two bodies immersed in a
solution of macromolecules. J Chem Phys. (1954) 22:1255–6. doi: 10.1063/1.
1740347

12. Kinoshita M, Oguni T. Depletion effects on the lock and key steric inter-
actions between macromolecules. Chem Phys Lett. (2002) 351:79–84. doi:
10.1016/S0009-2614(01)01346-X

13. Sacanna S, Irvine WTM, Chaikin PM, Pine DJ. Lock and key colloids. Nature
(2008) 464:575–8. doi: 10.1038/nature08906

14. Schnell S, Hancock R. The intranuclear environment. Methods Mol Biol. (2008)
463:3–19. doi: 10.1007/978-1-59745-406-3_1

15. Sleeman JE, Trinkle-Mulcahy L. Nuclear bodies: new insights into assem-
bly/dynamics and disease relevance. Curr Opin Cell Biol. (2014) 28C:76–83.
doi: 10.1016/j.ceb.2014.03.004

16. Weidtkamp-Peters S, Lenser T, Negorev D, Gerstner N, Hofmann TG,
Schwanitz G, et al. Dynamics of component exchange at PML nuclear bodies.
J Cell Sci. (2008) 121:2731–43. doi: 10.1242/jcs.031922

17. Platani M, Goldberg I, Swedlow JR, Lamond AI. In vivo analysis of Cajal body
movement, separation, and joining in live human cells. J Cell Biol. (2000)
151:1561–74. doi: 10.1083/jcb.151.7.1561

18. Brangwynne CP, Mitchison TJ, Hyman AA. Active liquid-like behavior of
nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl
Acad Sci USA (2011) 108:4334–9. doi: 10.1073/pnas.1017150108

19. Caudron-Herger M, Rippe K. Nuclear architecture by RNA. Curr Opin Genet
Dev. (2012) 22:179–87. doi: 10.1016/j.gde.2011.12.005

20. Hancock R, Hadj-Sahraoui Y. Isolation of cell nuclei using inert macro-
molecules to mimic the crowded Cytoplasm. PLoS ONE (2009) 4:e7560. doi:
10.1371/journal.pone.0007560

21. Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, et al. Three-
dimensional maps of all chromosomes in human male fibroblast nuclei
and Prometaphase rosettes. PLoS Biol. (2005) 3:e157. doi: 10.1371/jour-
nal.pbio.0030157

22. Cremer T, Cremer C. Chromosome territories, nuclear architecture and
gene regulation in mammalian cells. Nat Rev Genet. (2001) 2:292–301. doi:
10.1038/35066075

23. Iarovaia OV, Bystritskiy A, Ravcheev D, Hancock R, Razin SV. Visualization of
individual DNA loops and a map of loop domains in the human dystrophin
gene. Nucleic Acids Res. (2004) 32:2079–86. doi: 10.1093/nar/gkh532

24. Cho EJ, Kim JS. Crowding effects on the formation and maintenance of nuclear
bodies: insights from molecular-dynamics simulations of simple spherical
model particles. Biophys J. (2012) 103:424–33. doi: 10.1016/j.bpj.2012.07.007

25. Kovalchuk N, Starov V, Langston P, Hilal N. Formation of stable clusters in
colloidal suspensions, Adv Colloid Interface Sci. (2009) 147–148:144–54. doi:
10.1016/j.cis.2008.11.001

26. Johnston KP, Maynard JA, Truskett TM, Borwankar AU, Miller MA, Wilson
BK, et al. Concentrated dispersions of equilibrium protein nanoclusters that
reversibly dissociate into active monomers. ACS Nano (2012) 6:1357–69. doi:
10.1021/nn204166z

27. Aumiller WM Jr., Davis BW, Keating CD. Phase separation as a possible means
of nuclear compartmentalization. Int Rev Cell Mol Biol. (2014) 307:109–49.
doi: 10.1016/B978-0-12-800046-5.00005-9

28. Dinsmore AD, Wong DT, Nelson P, Yodh AG. Hard spheres in vesicles:
curvature-induced forces and particle-induced curvature. Phys Rev Lett. (1998)
80:409–12. doi: 10.1103/PhysRevLett.80.409

29. Shopland LS, Byron M, Stein JL, Lian JB, Stein GS, Lawrence JB. Replication-
dependent histone gene expression is related to Cajal body (CB) association
but does not require sustained CB contact. Mol Biol Cell (2001) 12:565–76.
doi: 10.1091/mbc.12.3.565

30. Wang J, Shiels C, Sasieni P, Wu PJ, Islam SA, Freemont PS, et al. Promyelocytic
leukemia nuclear bodies associate with transcriptionally active genomic
regions. J Cell Biol. (2004) 164:515–26. doi: 10.1083/jcb.200305142

www.frontiersin.org September 2014 | Volume 2 | Article 53 | 5

http://www.frontiersin.org/journal/10.3389/fphy.2014.00053/abstract
http://www.frontiersin.org/journal/10.3389/fphy.2014.00053/abstract
http://www.frontiersin.org
http://www.frontiersin.org/Biophysics/archive


Hancock Biophysics of the crowded nucleus

31. Horowitz RA, Agard DA, Sedat JW, Woodcock CL. The three-dimensional
architecture of chromatin in situ: electron tomography reveals fibers com-
posed of a continuously variable zig-zag nucleosomal ribbon. J Cell Biol (1994)
125:1–10. doi: 10.1083/jcb.125.1.1

32. Sinclair P, Bian Q, Plutz M, Heard E, Belmont AS. Dynamic plasticity
of large-scale chromatin structure revealed by self-assembly of engineered
chromosome regions. J Cell Biol. (2010) 190:761–76. doi: 10.1083/jcb.2009
12167

33. Micka U, Holm C, Kremer K. Strongly charged, flexible polyelectrolytes in
poor solvents: molecular dynamics simulations. Langmuir (1999) 15:4033–44.
doi: 10.1021/la981191a

34. Woloszczuk S, Banaszak M, Knychala P, Lewandowski K, Radosz M.
Alternating multiblock copolymers exhibiting protein-like transitions in
selective solvents: a Monte Carlo study. J Non-Cryst Solids (2008) 354:4138–42.
doi: 10.1016/j.jnoncrysol.2008.06.022

35. Neratova IV, Komarov PV, Pavlov AS, Ivanov VA. Collapse of an AB copolymer
single chain with alternating blocks of different stiffness. Russ Chem B (2011)
60:229–37. doi: 10.1007/s11172-011-0038-6

36. Richard GF, Kerrest A, Dujon B. Comparative genomics and molecular dynam-
ics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev. (2008) 72:686–727.
doi: 10.1128/MMBR.00011-08

37. Severin PM, Zou X, Gaub HE, Schulten K. Cytosine methylation alters
DNA mechanical properties. Nucleic Acids Res (2011) 39:8740–51. doi:
10.1093/nar/gkr578

38. Shimooka Y, Nishikawa J, Ohyama T. Most Methylation-Susceptible DNA
sequences in human embryonic stem cells undergo a change in conforma-
tion or flexibility upon methylation. Biochemistry (2013) 52:1344–53. doi:
10.1021/bi301319y

39. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z. et al. High-
resolution profiling of histone methylations in the human genome. Cell (2007)
129:823–37. doi: 10.1016/j.cell.2007.05.009

40. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. Histone
H4-K16 acetylation controls chromatin structure and protein interactions.
Science (2006) 311:844–7. doi: 10.1126/science.1124000

41. Nozaki T, Kaizu K, Pack CG, Tamura S, Tani T, Hihara S, et al. Flexible
and dynamic nucleosome fiber in living mammalian cells. Nucleus (2013)
4:349–56. doi: 10.4161/nucl.26053

42. Benyajati C, Worcel A. Isolation, characterization, and structure of the folded
interphase genome of Drosophila melanogaster. Cell (1976) 9:393–407. doi:
10.1016/0092-8674(76)90084-2

43. Hancock R, Hughes ME. Organization of DNA in the interphase nucleus. Biol
Cell (1982) 44:201–12.

44. Heermann DW. Physical nuclear organization: loops and entropy. Curr Opin
Cell Biol. (2011) 23:332–7. doi: 10.1016/j.ceb.2011.03.010

45. Tark-Dame M, van Driel R, Heermann DW. Chromatin folding - from
biology to polymer models and back. J Cell Sci. (2011) 124:839–45. doi:
10.1242/jcs.077628

46. Mateos-Langerak J, Bohn M, de Leeuw W, Giromus O, Manders EM, Verschure
PJ, et al. Spatially confined folding of chromatin in the interphase nucleus. Proc
Natl Acad Sci USA (2009) 106:3812–7. doi: 10.1073/pnas.0809501106

47. Toan NM, Marenduzzo D, Cook PR, Micheletti C. Depletion effects and loop
formation in self-avoiding polymers. Phys Rev Lett. (2006) 97:178302. doi:
10.1103/PhysRevLett.97.178302

48. Baù D, Sanyal A, Lajoie BR, Capriotti E, Byron M, Lawrence JB, et al. The
three-dimensional folding of the α-globin gene domain reveals formation
of chromatin globules. Nat Struct Mol Biol. (2011) 18:107–14. doi: 10.1038/
nsmb.1936

49. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T,
Telling A, et al. Comprehensive mapping of long-range interactions reveals
folding principles of the human genome. Science (2009) 326:289–93. doi:
10.1126/science.1181369

50. Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional orga-
nization of genomes: interpreting chromatin interaction data. Nat Rev Genet.
(2013) 14:390–403. doi: 10.1038/nrg3454

51. Kadauke S, Blobel GA. Chromatin loops in gene regulation. Biochim Biophys
Acta (2009) 1789:17–25. doi: 10.1016/j.bbagrm.2008.07.002

52. Canals-Hamann AZ, das Neves RP, Reittie JE, Iñiguez C, Soneji S, Enver T,
et al. A biophysical model for transcription factories. BMC Biophys (2013) 6:2.
doi: 10.1186/2046-1682-6-2

53. Doyle B, Fudenberg G, Imakaev M, Mirny LA. Chromatin loops as mod-
ulators of enhancer-promoter interactions in their vicinity. BioRxiv (2014)
arXiv:1403.1236 (q-bio.GN). doi: 10.1101/003087

54. de Nooijer S, Wellink J, Mulder BM, Bisseling T. Non-specific interactions
are sufficient to explain the position of heterochromatic chromocenters and
nucleoli in interphase nuclei. Nucleic Acids Res. (2009) 37:3558–68. doi:
10.1093/nar/gkp219

55. Dietzel S, Zolghadr K, Hepperger C, Belmont AS. Differential large-scale chro-
matin compaction and intranuclear positioning of transcribed versus non-
transcribed transgene arrays containing beta-globin regulatory sequences. J
Cell Sci. (2004) 117:4603–14. doi: 10.1242/jcs.01330

56. Marenduzzo D, Cook PR. Entropic organization of interphase chromosomes.
J Cell Biol. (2009) 186:825–34. doi: 10.1083/jcb.200903083

57. Grosberg AY, Nechaev SK, Shakhnovich EI. The role of topological con-
straints in the kinetics of collapse of macromolecules. J Phys France (1988)
49:2095–100. doi: 10.1051/jphys:0198800490120209500

58. Mirny LA. The fractal globule as a model of chromatin architecture
in the cell. Chromosome Res. (2011) 19:37–51. doi: 10.1007/s10577-010-
9177-0

59. Grosberg AY. How two meters of DNA fit into a cell nucleus: polymer mod-
els with topological constraints and experimental data. Polymer Science Ser C
(2012) 54:1–10. doi: 10.1134/S1811238212070028

60. Bancaud A, Lavelle C, Huet S, Ellenberg J. A fractal model for nuclear orga-
nization: current evidence and biological implications. Nucl Acids Res. (2012)
40:8783–92. doi: 10.1093/nar/gks586

61. Rosa A, Everaers R. Structure and dynamics of interphase chromosomes. PLoS
Comput Biol. (2008) 4:e1000153. doi: 10.1371/journal.pcbi.1000153

62. Lebedev DV, Filatov MV, Kuklin AI, Islamov AK, Kentzinger E, Pantina R, et al.
Fractal nature of chromatin organization in interphase chicken erythrocyte
nuclei: DNA structure exhibits biphasic fractal properties. FEBS Lett. (2005)
579:1465–68. doi: 10.1016/j.febslet.2005.01.052

63. Barbieri M, Chotalia M, Fraser J, Lavitas LM, Dostie J, Pombo A,
et al. Complexity of chromatin folding is captured by the strings and
binders switch model. Proc Natl Acad Sci USA (2012) 109:16173–8. doi:
10.1073/pnas.1204799109

64. Seksek O, Biwersi J, Verkman AS. Translational diffusion of macromolecule-
sized solutes in cytoplasm and nucleus. J Cell Biol. (1997) 138:131–42. doi:
10.1083/jcb.138.1.131

65. Ritland Politz JC, Tuft RA, Pederson T. Diffusion-based transport of
nascent ribosomes in the nucleus. Mol Biol Cell (2003) 14:4805–12. doi:
10.1091/mbc.E03-06-0395

66. Weiss M. Crowding, diffusion, and biochemical reactions. Int Rev Cell Mol Biol.
(2014) 307:383–417. doi: 10.1016/B978-0-12-800046-5.00011-4

67. Bancaud A, Huet S, Daigle N, Mozziconacci J, Beaudouin J, Ellenberg J.
Molecular crowding affects diffusion and binding of nuclear proteins in het-
erochromatin and reveals the fractal organization of chromatin. EMBO J.
(2009) 28:3785–98. doi: 10.1038/emboj.2009.340

68. Banks DS, Fradin C. Anomalous diffusion of proteins due to molecular
crowding. Biophys J. (2005) 89:2960–71. doi: 10.1529/biophysj.104.051078

69. Guigas G, Weiss M. Sampling the cell with anomalous diffusion - the dis-
covery of slowness. Biophys J. (2008) 94:90–4. doi: 10.1529/biophysj.107.
117044

70. Leijnse N, Jeon JH, Loft S, Metzler R, Oddershede LB. Diffusion inside
living human cells. Eur Phys J Special Topics (2012) 204:75–84. doi:
10.1140/epjst/e2012-01553-y

71. Bauer M, Metzler R. In vivo facilitated diffusion model. PLoS ONE (2013)
8:e53956. doi: 10.1371/journal.pone.0053956

72. ten Wolde PR, Mugler A. Importance of crowding in signaling, genetic,
and metabolic networks. Int Rev Cell Mol Biol. (2014) 307:419–42. doi:
10.1016/B978-0-12-800046-5.00012-6

73. Takahashi K, Tanase-Nicola S, ten Wolde PR. Spatio-temporal correlations can
drastically change the response of a MAPK pathway. Proc Natl Acad Sci USA
(2010) 107:2473–8. doi: 10.1073/pnas.0906885107

74. Aoki K, Takahashi K, Kaizu K, Matsuda M. A quantitative model of ERK
MAP kinase phosphorylation in crowded media. Sci Rep. (2013) 3:1541. doi:
10.1038/srep01541

75. Mirny L, Slutsky M, Wunderlich Z, Tafvizi A, Leith J, Kosmrlj A. How a protein
searches for its site on DNA: the mechanism of facilitated diffusion. J Phys A
(2009) 42:1751–8121. doi: 10.1088/1751-8113/42/43/434013

Frontiers in Physics | Biophysics September 2014 | Volume 2 | Article 53 | 6

http://www.frontiersin.org/Biophysics
http://www.frontiersin.org/Biophysics
http://www.frontiersin.org/Biophysics/archive


Hancock Biophysics of the crowded nucleus

76. Li G, Berg OG, Elf J. Effects of macromolecular crowding and DNA loop-
ing on gene regulation kinetics. Nat Phys. (2009) 5:294–7. doi: 10.1038/nphys
1222

77. Brackley CA, Cates ME, Marenduzzo D. Intracellular facilitated diffusion:
searchers, crowders, and blockers. Phys Rev Lett. (2013) 111:108101. doi:
10.1103/PhysRevLett.111.108101

78. Zhang Y, Heermann DW. DNA double-strand breaks: linking gene expression
to chromosome morphology and mobility. Chromosoma (2014) 123:103–15.
doi: 10.1007/s00412-013-0432-y

79. Girst S, Hable V, Drexler GA, Greubel C, Siebenwirth C, Haum M, et al.
Subdiffusion supports joining of correct ends during repair of DNA double-
strand breaks. Sci Rep. (2013) 3:2511. doi: 10.1038/srep02511

80. Sugimoto N. Noncanonical structures and their thermodynamics of DNA
and RNA under molecular crowding: beyond the Watson-Crick double helix.
Int Rev Cell Mol Biol. (2014) 307:205–73. doi: 10.1016/B978-0-12-800046-5.
00008-4

81. Kilburn D, Roh JH, Guo L, Briber RM, Woodson SA. Molecular crowding sta-
bilizes folded RNA structure by the excluded volume effect. J Am Chem Soc.
(2010) 132:8690–6. doi: 10.1021/ja101500g

82. Strulson CA, Boyer JA, Whitman EE, Bevilacqua PC. Molecular crow-
ders and cosolutes promote folding cooperativity of RNA under phys-
iological ionic conditions. RNA (2014) 20:331–47. doi: 10.1261/rna.042
747.113

83. Dupuis NF, Holmstrom ED, Nesbitt DJ. Molecular-crowding effects on single-
molecule RNA folding/unfolding thermodynamics and kinetics. Proc Natl
Acad Sci USA (2014) 111:8464–9. doi: 10.1073/pnas.1316039111

84. Cuylen S, Haering CH. A new cohesive team to mediate DNA looping. Cell
Stem Cell (2010) 7:424–6. doi: 10.1016/j.stem.2010.09.006

85. Nishikawa J, Ohyama T. Selective association between nucleosomes with iden-
tical DNA sequences. Nucl Acids Res. (2013) 41:1544–54. doi: 10.1093/nar/
gks1269

86. Cherstvy AG, Teif VB. Structure-driven homology pairing of chromatin fibers:
the role of electrostatics and protein-induced bridging. J Biol Phys. (2013)
39:363–85. doi: 10.1007/s10867-012-9294-4

87. Ohno S. So much “junk” DNA in our genome. Brookhaven Symp Biol. (1972)
23:366–70.

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 26 June 2014; paper pending published: 30 July 2014; accepted: 22 August
2014; published online: 12 September 2014.
Citation: Hancock R (2014) Structures and functions in the crowded nucleus: new
biophysical insights. Front. Phys. 2:53. doi: 10.3389/fphy.2014.00053
This article was submitted to Biophysics, a section of the journal Frontiers in Physics.
Copyright © 2014 Hancock. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

www.frontiersin.org September 2014 | Volume 2 | Article 53 | 7

http://dx.doi.org/10.3389/fphy.2014.00053
http://dx.doi.org/10.3389/fphy.2014.00053
http://dx.doi.org/10.3389/fphy.2014.00053
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Biophysics/archive

	Structures and functions in the crowded nucleus: new biophysical insights
	Introduction
	Compartments in the Nucleus
	Structure and Packing of Chromosomes
	Chromatin Fibers
	Loops in Chromatin Fibers In vivo
	Chromosome Territories
	Packing the Genome into the Nucleus

	Diffusion and Signaling
	Finding Targets in the Genome
	Future Challenges and Directions
	Acknowledgments
	Supplementary Material
	References


