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We review the role of fundamental spin-0 bosons as bosonic coherent motion (BCM) in
the Universe. The fundamental spin-0 bosons have the potential to account for the baryon
number generation, cold dark matter (CDM) via BCM, inflation, and dark energy. Among
these, we pay particular attention to the CDM possibility because it can be experimentally
tested with the current experimental techniques. We also comment on the panoply of
the other roles of spin-0 bosons–such as those for cosmic accelerations at early and late
times.
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1. INTRODUCTION
Recent cosmological observations [1, 2] confirm the eight decade
old Zwicky’s proposal [3] that the Universe contains a large
amount of dark matter (DM). The DM profile has been mea-
sured accurately enough to pinpoint DM to “it is cold dark matter
(CDM) [1].” The bosonic coherent motion (BCM) can be CDM
[4–6] if the coherent-boson lifetime is long enough to have sur-
vived until now [7–10]. The axion proposed to solve the strong CP
problem [11–14] is fitting to this BCM scenario [15]. The BCM is
one of many possibilities of CDM scenarios [15] which accounts
for only 27% in the energy pie of the Universe. The dominant
portion, 68%, in the energy pie is the homogeneous energy den-
sity, at least up to the 103 Mpc scale, which is usually referred
to dark energy. Dark energy (DE) being homogeneous cannot be
accounted for by corpuscular particles but may be accountable by
the cosmological constant or by some vacuum expectation value
(VEV) of spin-0 boson(s) [16–22]. The visible particles (mostly
atoms in the energy count) constitute only 5% in the energy pie.

If we accept the Big Bang cosmology from the earliest possi-
ble time, 10−43 s, the success of the Standard Model of particle
physics is based on the assumption of very tiny DE of order
less than 10−46 GeV4 because the age of the Universe is very
long � 13.8 Gy [1, 2]. So, the DE problem or the theoretical
cosmological constant problem [23] is not only the problem in
cosmology but also a problem in particle physics. Out of despair,
many adopt the anthropic scenario for the cosmological constant
problem [24–26]. For the anthropic solution to work, the cos-
mological constant must be a free undetermined parameter in
particle physics, as integration constants of Hawking [27], Kim
et al. [28] and Kim [29]. In a deterministic theory such as in
string theory, possible cosmological constants must be allowed
near 0 for our Universe to have adopted one of these, which
is the reason trying to have as many as 10120 models, to pack

the vacua with separation between them by (10−3 eV)4, from
string theory [26]. But, all those 10120 vacua must allow three
family Standard Models, and satisfy the known SM phenom-
ena such as the grand unified theory (GUT) scale weak mixing
angle sin2 θW = 3/8 [30–32], etc. But, we have only a handful
of minimal supersymmetric Standard Models from string theory
satisfying the requirements [33–37]. Or, a Standard Model solu-
tion with DE � 10−47 GeV4 has to be found so that the anthropic
argument chooses it. This search seems more difficult than find-
ing a vanishing cosmological constant solution theoretically. At
present, we can say that the anthopic solution in string theory
has not worked out yet. Therefore, in the Standard Model and in
its supergravity extension, it is fair to say that the cosmological
constant is assumed to be zero.

By observing the luminosities of Type-I supernovae [38, 39],
the recent acceleration of the Universe has been established. So,
explaining the DE scale of 10−47 GeV4 − 10−46 GeV4 became an
important topic [19–21]. In Table 1, we list several ideas pro-
posed to account for this recent acceleration of the Universe.
Both the high scale inflation [45–47] and the recent acceleration
[38, 39] in the Universe are based on the assumption of vanishing
cosmological constant.

To determine the VEV of a scalar field, say φ, one must
consider all the allowed effective terms at low energy. At each
interaction point, suitable symmetry requirements must be sat-
isfied. A typical mass scale of φ is given by the effective mass
term m2|φ|2. In Figure 1, we consider only two diagrams with the
dimension 4 (d = 4) couplings. If each d = 4 vertex of Figure 1
satisfies the global phase symmetry, the two-loop and one-loop
mass terms do not break the global symmetry. On the other hand,
each d = 4 vertex satisfies the dilaton symmetry (requiring just
d = 4 couplings) but the diagrams of Figure 1 are d = 2 terms
which of course break the dilaton symmetry. One well-known
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Table 1 | Typical DE models with a few pseudo-Goldstone bosons originating from global symmetries.

Ideas Description (scalar S or pseudoscalar P) Discrete symmetry? Fine-tuning? Model from string

MOND a Change Newtonian gravity. (No boson) Irrelevant Yes Not yet

Anthropic principle Out of many possible vacua, only those Irrelevant Irrelevant Not yetb

suitable for age> tU survived. (S or P)

Quintessence With a runaway V ∝ 1/φn. (S) No Yesc Not yet

Dilaton pseudo-Goldstone boson from dilaton sym. (S) No Yesd Not yet

U(1)DE Gold. boson pseudo-Goldstone boson from U(1)DE sym. (P) Yes No Yese

aMilgrom [40] and Beckenstein and Milgrom [41], bZee [26], cZlatev et al. [42], d Wetterich [43], eKim [44].

FIGURE 1 | Diagrams leading to dimension 2 interactions with

dimension 4 coupling at each vertex.

model breaking the dilaton symmetry at the one-loop quantum
level, including the d ≥ 6 terms, is the Coleman-Weinberg model
[48]. Therefore, it is not likely that a consistent calculation of a
small DE scale can be performed by introducing the dilaton sym-
metry. However, some global phase symmetry may be suitable
for this.

In Section 2, we present the focus points of this review: the
BCM scenarios and the axion detection experiments. In Section
3, we point out the difficulty of obtaining zero cosmological con-
stant theoretically. In Section 4, we mini-review the inflationary
cosmology, in particular in view of the recent BICEP2 data. In
Section 5, we discuss the subject of this review: why the role of
fundamental spin-0 particles are important in cosmology.

2. SPIN-0 BOSON FILLING THE UNIVERSE
After the discovery of a fundamental spin-0 scalar particle (the
Brout-Englert-Higgs boson) at the LHC, it is timely to study the
roles of fundamental spin-0 bosons in the Universe. It is very
interesting to note that fundamental spin-0 bosons have been
employed to account for the mothers of atoms ( i.e., baryon
number generation via the Affleck-Dine mechanism [49]), CDM
via BCM [4], DE via a transient cosmological constant [50–54],
and even the vacuum energy needed for the high scale inflation
[45–47]. Among these, we focus on CDM via BCM in this review
because similar ideas can be applicable to DE and inflation mod-
els. Another attractive point discussing CDM via BCM is that it
can be experimentally proved in the near future [55].

We are familiar with the ether idea of the late 19th Century,
filling out the Universe. The VEV idea of spin-0 particles used for
breaking global symmetries [56] and gauge symmetries [57, 58]
is a kind of ether. If a scalar field φ has a universal value over the
entire Universe, any operation of the type “Poincare transforma-
tion” does not notice a change. Thus, the VEV of a scalar field, 〈φ〉,
respects the Poincare symmetry. But, if φ is a complex field, then

the VEV breaks the phase transformation symmetry, i.e., breaks
a global phase symmetry [56]. Even though the Brout-Englert-
Higgs mechanism [57–60] for breaking gauge symmetries is not
a monopoly of spin-0 particles [61–63], now the role of spin-0
particles becomes more important, especially after a hint of large
tensor-to-scalar ratio r, based on the BICEP2 observation [64].

Let us denote scalar and pseudoscalar particles as s and a,
respectively. Scalar particles transform under the parity operation
as P : s(x) → +s( − x), and pseudoscalar particles transform as
P : a(x) → −a( − x). If they are components of a complex field,
it is usually represented as the radial and phase fields, respec-
tively, φ = seia/f where f is a mass parameter. Thus, the complex
field transforms under parity as P : φ(x) → φ∗( − x). Any pseu-
doscalar field represented as a phase can be represented by an
angle field with the angle defined in the range [0, 2Nπ), where
N is the domain-wall number. A Goldstone boson arising from
breaking a global phase symmetry by the VEV v is a pseudoscalar
field a defined as

〈φ〉 = v + s√
2

e ia/f , 〈s〉 = 0, 〈a〉 = [0, 2Nπ f ). (1)

2.1. COSMOLOGY WITH BCM
On the flat Friedmann-Lemaitre-Robertson-Walker cosmological
background space described by the line element ds2 = −dt2 +
a2(t)δijdxidxj, the evolution of the classical scalar field φ, (i.e., the
evolution of the VEV of φ), is given by

d2

dt2
〈φ〉 + 3H

d

dt
〈φ〉 + V ′(〈φ〉) = 0 , (2)

where H = ȧ/a is the Hubble parameter and V ′ = (d/d〈φ〉)V
is a derivative of the potential V (a dot represents a derivative
with respect to the cosmic time t). With a discrete symmetry
φ → −φ, the leading term of V ′ is the mass term m2〈φ〉. When
〈φ〉 moves very slowly, we can neglect the second derivative term,
and the evolution equation gives 3Hφ̇ � −m2φ. 〈φ〉 starts to
change rapidly when H becomes small enough to satisfy 3H � m.
After this condition is met, 〈φ〉 oscillates rapidly, as shown in
Figure 2, which is interpreted as the BCM of φ.

As mentioned above, the VEV 〈φ〉 is assumed to be the same
over the entire Universe for the Poincare invariance, otherwise the
invariance is broken. In the Universe, this homogeneity is subtly
broken. The inflation manages different scales of quantum fluctu-
ations enter the horizon at different scales, basically breaking the
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FIGURE 2 | After t1, the BCM potential of 〈φ〉 at the red bullet oscillates

around the minimum.

homogeneity. A given scale condenses gravitationally. The VEV
in that scale evolves according to Equation (2), and describes the
BCM of 〈φ〉.

From the Friedmann equation we have 3H2M2
P = ρ, where ρ

is the energy density of the Universe and MP is the reduced Planck
mass (MP = 2.4 × 1018 GeV). Denoting the time at the onset of
oscillations of 〈φ〉 as t1, the condition for determining t1 is

√
3ρ(t1)

M2
P

= m(t1). (3)

These oscillations are equivalent to a gas of φ particles of low-
momentum. This kind of spin-0 particle coherent motion was
first discussed in Preskill et al. [4], Abbott and Sikivie [5] and
Dine and Fischler [6] for the case φ = axion. It is known that the
BCM behaves like CDM because of the low-momentum. Thus,
the number and energy densities are given by

n = m〈φ〉2 , ρ = m2〈φ〉2 . (4)

We denote the current age of the Universe as tU. Depending on t1

and tU, we can classify BCMs as

• BCM: If t1 < tU, the currently oscillating vacuum 〈φ〉 is
BCM. The BCM can be classified into the following two sub-
categories.

� BCM1: The lifetime of φ is long enough, τφ > tU. Then, the
oscillating BCM contributes to the CDM amount. The QCD
axion belongs here.

� BCM2: The lifetime of φ is short, τφ < tU. Then, all φ
quanta decayed already, producing SM particles. The infla-
ton with τφ ∼ 10−36 s belongs here and reheating after
inflation gives the beginning of the radiation-dominated
Universe.

• CCtmp: Temporary cosmological constant. On the other hand,
if 〈φ〉 has not oscillated yet, then t1 > tU and 〈φ〉 stays there
now, behaves like a cosmological constant, but it is a temporary
phenomenon and will eventually become BCM1 after t1. For
this to be satisfied, the mass is around 10−33 eV with a trans-
Planckian decay constant [65]. If V(〈φ〉) describes CCtmp,
the equation of state wφ , characterized by the field energy
density ρφ = 1

2 φ̇
2 + V(φ) and the pressurePφ = 1

2 φ̇
2 − V(φ),

is a useful parameter,

wφ ≡ Pφ
ρφ

=
1
2 φ̇

2 − V(φ)
1
2 φ̇

2 + V(φ)
. (5)

Provided that 1
2 φ̇

2 
 V(φ), wφ is close to −1, behaving like
the cosmological constant. In order to realize the recent accel-
eration, we require the condition wφ < − 1

3 .

2.2. SCALAR PARTICLES
The Brout-Englert-Higgs boson is the only known fundamental
scalar field. The other scalar most widely used in particle the-
ory is dilaton, the scalar Goldstone boson arising from breaking
the dilatonic symmetry. The effect of dilatonic symmetry on the
cosmological constant problem has been discussed extensively in
Wetterich [43]. For the solution, however, a fine-tuning is needed.
The obvious effect of a VEV of a scalar field s in cosmology
is the universal constant on the right-hand-side of the Einstein
equation.

The scalar-field cosmology in the presence of a barotropic per-
fect fluid was studied in 1980–1990s [43, 66–76], even before the
discovery of the recent cosmic acceleration. This was chiefly moti-
vated by the “missing matter problem” in 1980s. In 1990, Fukugita
et al. [77] tested cosmological models against observations of the
number count of faint galaxies and showed that these data favor
the Universe with low matter density (i.e., matter is missing). In
the abstract of their paper they stated that “Furthermore, it is
shown that the best agreement with the data is obtained with a
sizable cosmological constant, including the case of zero curva-
ture model as predicted by inflation.” In addition, it was already
known in the early 1990s that the presence of a cosmological
constant can make the age of the Universe longer such that it is
consistent with the age of oldest globular clusters.

If the cosmological constant originates from a vacuum energy
appearing in particle physics, it is vastly larger than the today’s
average cosmological density [23]. Because of this problem, peo-
ple tried to construct dynamical cosmological constant models in
which the energy density of cosmological constant varies in time,
basically belonging to a kind of CCtmp. For example, if we con-
sider a dilaton field φ, the cosmological constant depends on φ by
transforming the dilatonic action to the so-called Einstein-frame
action (in which the dilaton does not have a direct coupling with
the Ricci scalar) [43, 67].

Exponential potentials often arise from the curvature of inter-
nal spaces associated with the geometry of extra dimensions (so
called “modulus” fields) [78, 79]. Inspired by this, the expo-
nential potential V(s) = V0e−λ sMP has been used, with constant
parameters V0 and λ. There are two distinct fixed points on the
flat Friedmann-Lemaitre-Robertson-Walker cosmological back-
ground space [19, 76]: (a) the scaling solution, and (b) the
scalar-field dominated solution.

For λ2 > 3(1 + wm), where wm is the equation of state for a
background fluid, the solutions approach the scaling fixed point
(a), characterized by the field density parameter 
s = 3(1 +
wm)/λ2 and the field equation of state ws = wm [69, 73, 76].
Even for the initial conditions where ρs is larger than ρm in
the early radiation-dominated era, the field eventually enters the
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scaling regime in which ρs is proportional to ρm with ρs/ρm =
constant < 1. The field energy density of the scaling solution con-
tributes to the total energy density of the Universe, but it does
not lead to the cosmic acceleration. For λ2 < 3(1 + wm), there
exists the scalar-field dominated fixed point (b), characterized by

s = 1 and ws = −1 + λ2/3. The late-time cosmic acceleration
can be realized for λ2 < 2. Since in this case the point (b) is also
stable, the scalar field can be the source of DE. For λ2 < 2, the
scalar potential is quite shallow, so the field density in the early
Universe needs to be much smaller than the background energy
density (unlike the scaling solution discussed above).

After the discovery of the recent cosmic acceleration in 1998,
the cosmological dynamics of “quintessence” (a canonical scalar
field responsible for DE) were studied in detail for several dif-
ferent potentials [80, 81]. One example is the inverse power-law
potential V(s) = M4 + ns−n, where M and n are positive con-
stants. This potential can arise in globally supersymmetric QCD
theories [82]1 . The Universe enters the stage of cosmic accel-
eration for the field value larger than s0 ≈ MP. Since V(s0) is
of the order of H2

0 M2
P, one can estimate the mass scale M as

M ≈ 10−(46 − 19n)/(4 + n) GeV. For n = O(1), this energy scale can
be compatible with that appearing in particle physics.

In the presence of a perfect fluid with the equation of state wm,
there exists a so-called tracker solution for the potential V(s) =
M4 + ns−n. The tracker is characterized by a common, cosmic
evolutionary trajectory that attracts solutions with a wide range
of initial conditions [81]. The field equation of state along the
tracker is given by ws = (wmn − 2)/(n + 2), which corresponds
to ws = −2/(n + 2) > −1 during the matter era. The slope of the
potential λ = −MPV,s/V = nMP/s gets smaller with the growth
of s, so ws approaches −1 in the future. The inverse power-law
potential belongs to a class of freezing quintessence models [83]
in which the evolution of the field gradually slows down.

There is another class of quintessence models, dubbed thawing
models [83], in which the field has been frozen by Hubble fric-
tion and then it starts to evolve after the Hubble parameter drops
below the field mass m. In this case the field equation of state ws is
close to −1 at the initial stage, but it starts to grow at the late cos-
mological epoch. The field mass ms responsible for dark energy
corresponds to ms � 10−33 eV [65]. The representative potential
of thawing models is that of a pseudo-scalar field arising from
breaking the global U(1) symmetry (which we will explain more
details in Section 2.3).

If we consider a scalar field φ non-minimally coupled to the
Ricci scalar R (like dilaton), this gives rise to a coupling with
non-relativistic matter in the Einstein frame [84]. The fifth force
induced by such a matter coupling needs to be suppressed in the
solar system. There are several ways to suppress the propagation
of the fifth force in local regions of the Universe.

One is the so-called chameleon mechanism [85], under which
the mass of a scalar degree of freedom is different depending on
the matter densities in the surrounding environment. If the effec-
tive mass is sufficiently large in the regions of high density, the
coupling between the field and non-relativistic matter can be sup-
pressed by having a thin shell inside a spherically symmetric body.

1However, the scalar in this case is composite.

In Brans-Dicke theory (including f (R) gravity) [86] it is possible
to suppress the propagation of the fifth force by designing the field
potential V(φ) appropriately [87–92].

Another is the so-called Vainshtein mechanism [93], under
which non-linear scalar-field self interactions can suppress the
fifth force at short distances even in the absence of the field poten-
tial. The self interactions of the form (∂φ)2�φ, which correspond
to the Lagrangian of covariant Galileons [94], can lead to the
decoupling of the field φ from matter within a radius much larger
than the solar-system scale [95–98].

2.3. PSEUDOSCALAR PARTICLES
Most pseudoscalar particles observed so far are pseudo-Goldstone
bosons. Let a,� and f , respectively, be a Goldstone boson from
a spontaneously-broken global U(1) symmetry, the dominant
explicit symmetry breaking mass parameter, and the decay con-
stant. Then, the mass of a is

ma = ca
�2

f
, (6)

where ca is the number given by the explicit symmetry breaking
terms. For the QCD axion, the breaking of the U(1) symmetry
is given by the QCD anomaly and we have ca�

2 = [Z1/2/(1 +
Z)]fπmπ with Z = mu/md where fπ ,mπ ,mu,md are neutral-pion
decay constant, its mass, and u and d quark masses [14]. If the
explicit breaking term is given by Vbr = −(�4 − nφn + h.c.)/2,
then we have ma = (f /�)n/2(n�2/f ). As shown in Figure 1,
the pseudo-Goldstone boson arising from a global symmetry
U(1)gl does not appear in the loops if each vertex satisfies U(1)gl.
But, it is known that all global symmetries are approximate [44, 99–
102]. Most strong explicit breaking may be from the anomaly of
the type U(1)gl-G-G, where G is a non-Abelian gauge group.

The most waited-for pseudoscalar particle is the very light
axion in the axion window because its discovery will confirm at
least three: (1) a physical confirmation of instanton solutions of
non-Abelian gauge theories [103], (2) ´t Hooft solution [104] of
the U(1) problem of QCD [105], and (3) at least some portion
of CDM in the Universe. The particle axion was first appreciated
by Weinberg and Wilczek in the Ben Lee Memorial Conference
in October, 1977 [106], using the Peccei-Quinn (PQ) symme-
try [107]. If G is QCD, the symmetry U(1)gl is called the PQ
symmetry U(1)PQ and the pseudo-Goldstone boson a related to
U(1)PQ is called the QCD axion. The axion is needed to under-
stand the strong CP problem of “Why is the neutron electric
diplole moment so small even though the gluon interactions (in
the presence of instanton solutions of QCD) allow a neutron-size
dipole moment?” In early days, three kinds of solutions to the
strong CP problem were admitted [11]: the calculable solution,
the massless up quark case, and the axion solution. The calcu-
lable solutions have not provided yet an acceptable model with
sufficiently small neutron electric dipole moment. The massless
up quark case is not favored in the global fit [14]. The remaining
axion solution is checked in various cases as discussed in the next
Subsect.

Field theory examples on axions with renormalizable cou-
plings corresponding to BCM1 are usually classified to the KSVZ
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and DFSZ models [7–10]. But, this classification is too simple.
There can be many KSVZ and DFSZ type models with one type of
quark representations [108]. One may introduce many different
types of quarks also for axion phenomenology.

Therefore, it is better to have a theory predicting definite PQ
charges of the quarks in a full theory. The most attractive pro-
posal along this line is the string compactification. Here, the PQ
global symmetry is determined once the compactification scheme
is presented. Standard models obtained from string compactifica-
tion include many quarks beyond the Standard Model spectrum,
in particular numerous singlet fields. Along this line, several years
ago a QCD axion including non-renormalizable terms was stud-
ied and the axion-photon-photon coupling has been calculated
with an approximate U(1)PQ symmetry [109]. Recently, an exact
U(1)PQ symmetry has been studied in a string compactification
where the axion-photon-photon coupling has been calculated
below the PQ symmetry breaking scale [110],

caγ γ = 1123

388
− 1.98 � 0.91 . (7)

We expect that more calculations of caγ γ will be performed in
string models with the property of successful Standard Model
phenomenologies, which will guide us where to look for the QCD
axion [55].

Dark energy can be the case of CCtmp in the above classifi-
cation. Pseudoscalar CCtmp have been discussed already more
than a decade ago in Kim and Nilles [50], Choi [54] and Nomura
et al. [111]. But, a more plausible analysis, looking into the
detail of string compactification, has been presented recently
[44, 102, 112].

The field mass ma responsible for dark energy corresponds to
ma � 10−33 eV [65]. Meanwhile, if the axion field is responsible
for CDM, the typical mass scale is between 10−5 eV and 10−2 eV
[14]. In string theory there are many ultralight axions possibly
down to the Hubble scale H0 = 10−33 eV [113]. Axions in the
mass range between 10−28 and 10−18 eV become non-relativistic
at a later cosmological epoch relative to the standard CDM. Such
a light scalar field leads to the suppression of the CDM power
spectrum on small scales [113–115] (like light massive neutrinos),
so there is an observational signature for ultralight axions if the
axion potential is of the form [1 − cos (a/fa)]3 [112].2

2.4. AXION DETECTION
Figure 3 captures the idea behind the main experimental axion
dark matter detection effort. There are two equivalent pic-
tures describing the axion to photon conversion in the presence
of a Direct-Current (DC) magnetic field B [116–118], briefly
described here: The axion decays to two photons through the tri-
angle anomaly. Its lifetime, for an axion mass in the μeV range,
is of order 1050 s, much larger than the lifetime of our Universe.
This decay rate can be significantly enhanced in the presence of a
DC B-field via the inverse Primakov effect [116]. This decay rate
is additionally enhanced by the density of the final states, e.g., the

2For this specific form, one needs fine-tunings between domain wall number
one, two, and three terms in the potential.

FIGURE 3 | The magnetic and electric field behavior used in the axion

detection experiments. The CP violating effect is ∝ B · E, and the
oscillating tiny E over the constant large B is schematically drawn. The E

follows the oscillation of the classical axion field 〈a〉.

quality factor Q of a resonant microwave cavity when its resonant
frequency coincides with the axion field oscillation frequency.

In the second picture the axion couples to the product of E · B,
where E is an electric field. In the presence of a DC magnetic field
there is an oscillating electric field appearing with the same fre-
quency as the axion field. If the DC magnetic field is of finite
extent, then the oscillating E-field induces an azimuthal oscil-
lating magnetic field due to Maxwell’s equations. If there is a
resonant microwave cavity at the same boundary and with the
same resonant frequency, it then provides feedback that enhances
the oscillating E-field by the quality factor of the cavity [117, 118].
The power conversion of the axion DM to microwave photons
estimated by the two methods is the same and it is given by

Pa→γ = g2
aγ γ

(
ρa

ma

)
B2

0VCjQL , (8)

where QL is the cavity loaded quality factor, Cj is the mode fill-
ing factor, gaγ γ is the axion-photon-photon coupling constant,
ρa is the axion DM local density, ma is the axion mass, B0 is the
strength of the DC magnetic field and V the volume of the cavity.

The expected power conversion Pa→γ is extra-ordinarily
small, but nonetheless it can be within the present experimen-
tal capabilities for an axion mass in the 1–20μeV range. Have
we known the axion mass with a 1 part per million (ppm) accu-
racy, it would take less than a day to detect it if axions were more
than 10% of the DM. The main issue is that, barring the BICEP2
results [119, 120], we have no such information. The best-suited
axion DM mass is below about 1 meV all the way to about 1μeV,
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spanning three orders of magnitude with a potential line width of
about 1 ppm. Clearly, scanning the whole axion mass range will
require too many steps, and therefore the sensitivity needs to be
very high at each step.

Furthermore, in some theoretical scenarios, the axion DM
mass is not constrained from below and can be very light, well
below 1μeV. In addition to the microwave cavity method, which
is mostly applicable between 1 and 20μeV, other methods include
looking for axions emitted by Sun’s core, and astrophysical limits,
as axions can provide another channel of energy loss, significantly
altering the star lifetime. An overview of the present experimen-
tal/astrophysical limits of the axion coupling constant vs. the
axion mass are given in Figure 4.

Looking at Equation (8), it is clear there is a number of possi-
ble improvements one can make in this method: (i) Increase the

magnetic field value, (ii) Increase the magnetic field volume, and
(iii) Increase the cavity quality factor. The pioneering axion DM
experiments that started in the late 1980’s [121, 122] probed an
axion DM candidate in a limited mass region, assuming a stronger
axion to photon coupling than is required by theory by roughly
two orders of magnitude.

Over a period of more than 15 years, the dominant axion dark
matter experiment (ADMX), currently located at the University
of Washington and ADMX-HF located at Yale University, have
made several conceptual improvements and have improved on
those limits. The second generation ADMX experiment, owing to
the development of very low noise SQUID amplifiers just below
1 GHz [123] and a number of additional smaller developments,
has reached the boundaries of a plausible axion DM candidates.
Currently implementing a dilution refrigerator to their system

FIGURE 4 | Experimental/astrophysical limits of gaγ vs. ma [15]. The
experiments giving the limits are shown. The KSVZ and DFSZ lines are from
Kim [108], and the string calculation is the green line [110]. The limit of the
yellow region is the largest one from kim [108]. The excluded gray region is

from Marsh et al. [119] and Vissineli and Gondolo [120], allowing a factor 5
generosity due to the domain wall annihilation problem [165]. The
astrophysics lines in the bigger box represent that the regions above those
lines are excluded.
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is expected to allow them to either detect or exclude an axion
comprising 100% of the DM for masses in the range 1–20μeV.

The new Center for Axion and Precision Physics (CAPP)3

established by the Institute for Basic Science in South Korea4 ,
plans to either detect or exclude an axion DM component down
to the 10% level for a similar axion mass range. This will be
achieved by Semertzidis [55] (a) Development of a 25 T and then
a 35 T solenoidal magnet compared to the currently used 8–9 T
solenoidal magnets, (b) Substantially improving, roughly by an
order of magnitude, the quality factor of the microwave cavities
in the presence of strong magnetic fields, and (c) Constructing
and running a toroidal cavity with a large volume and a reason-
able B-field value so that the overall product B2V is an order of
magnitude larger than present values.

The commonly used NbTi superconducting cable has a critical
current that falls very rapidly as the magnetic field increases above
10 T, making it unsuitable to obtain higher B-field strengths.
However, recent developments with high Tc cables makes pos-
sible achieving much higher current densities at large B-field
values, when they are cooled at low temperatures around 4 K.
This is an experimental method fueled by the energy-storage field
and prototype magnets are already under development. CAPP is
collaborating with the Magnet Division of Brookhaven National
Laboratory to develop a 10 cm inner bore diameter capable of
producing around 25 T of magnetic field. Preliminary tests on dif-
ferent high Tc cables are providing encouraging results that the
goal can be met. The expected time period for this development
is of order of 5 years, after which we develop a separate mag-
net with a goal of achieving 35 T peak magnetic field, albeit with
smaller inner bore diameter. The next step would be to config-
ure a toroidal magnetic field, optimizing the use of the magnetic
field as the fringe field is minimized in that geometry. Preliminary
cable testing results also point to this geometry for achieving the
highest possible magnetic field values. The time scale for this
development is of order 10 years.

The presently used cavities have a quality factor between 50
and 100 K. It has been reported by ADMX that they are devel-
oping cavities with thin-film superconducting coatings on the
vertical side walls with the goal of increasing the cavity quality
factor by roughly a factor of five. This is possible when the B-
field is shaped to be aligned with the vertical wall, minimizing
the transverse B-field below about 100 Gauss. Further increases
of the quality factor are hindered by the top/bottom surfaces of
the right-cylindrical cavity as the magnetic field angle travers-
ing the surface is very close to 90◦. Our plan to further improve
upon this achievement is two-fold: First, develop a toroidal cavity
where the B-field can be shaped along the cavity walls reduc-
ing the transverse B-field below the required level. If that is
possible, the quality factor can be increased by several orders
of magnitude. Second, the top/bottom plates are going to be
treated in a way that the B-field can penetrate it without affect-
ing the superconducting layer on the inside of the cavity. Again,
the quality factor can potentially increase by several orders of
magnitude.

3http://capp.ibs.re.kr/html/capp_en/
4http://www.ibs.re.kr/eng.do/

The expected axion width is of order 1 ppm, i.e., the axion
quality factor is a bit better than 106. Therefore, the best one can
do is to produce a cavity with the same quality factor, so the best
one can expect is to gain a factor of 10–20 in the axion to photon
power conversion. The scanning speed goes as the square root of
the quality factor since there are more steps required in order to
cover all possible frequencies, i.e., the best one can expect to do is
a scanning speed improvement factor between three and five.

BICEP2 results favor axion masses in the meV range, albeit
with only 1–10% of DM composed of axions. This fact makes
it particularly difficult to detect it as the volume of microwave
cavities are particularly small and not of much practical use at
those frequencies, plus the axion DM density is very weak. If the
BICEP2 results turn out to be confirmed,5 one could follow a dif-
ferent strategy in detecting axions [124]. If the axion mass were
to be found, then one could launch a dedicated axion DM exper-
iment within a very small axion mass range having much higher
chances of success.

3. THE COSMOLOGICAL CONSTANT PROBLEM AND STRING
THEORY

In order to realize the present-day cosmic acceleration with the
cosmological constant �, we require that � is of the order
of H2

0 , i.e., � ≈ H2
0 = (2.1332h × 10−42 GeV)2, where h ≈ 0.7.

This corresponds to the energy density ρ� ≈ �M2
P ≈ 10−120M4

P.
Even before the discovery of the present-day cosmic acceleration,
Weinberg [24] put the bound on ρ�, as

−2 × 10−120M4
P � ρ� � 6 × 10−118M4

P . (9)

The lower bound comes from the fact that the negative cosmo-
logical constant does not lead to the collapse of the Universe
today. The upper bound corresponds to the requirement that
the vacuum energy does not dominate over the matter density
for redshifts z larger than 1 to realize the successful structure
formation.

There have been attempts to explain the very low values of
ρ� ranging the Weinberg bound (9). For example, Bousso and
Polchinski [126] employed the 4-form field Fμνλσ with the energy
density FμνλσFμνλσ /48 = c2/2, where c is a constant. In the con-
text of string theory, there are “electric charges” (membranes)
sourcing the 4-form field dual to “magnetic charges” (5-branes).
The constant c can be quantized in integer (n) multiples of the
membrane charge q, such that c = nq.

Bousso and Polchinski introduced J 4-form fields together
with J membrane species with charges q1, q2, · · · , qJ . The num-
ber J can be as large as 100 in string theory. Since the flux
energy density of each charge is given by n2

i q2
i /2, the effective

cosmological constant reads

� = �b +
J∑

i = 1

n2
i q2

i /2 , (10)

5We note that the recent Planck-dust report extrapolated to the BICEP2
field gives the dust contribution similar to r ≈ 2 without the dust
contribution [125].
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where �b is the bare cosmological constant. For the anti de Sitter
minimum with�b < 0, there exist integers ni satisfying

2|�b| <
J∑

i = 1

n2
i q2

i < 2(|�b| +��) , (11)

where�� � 10−123 in the unit MP = 1.
If we consider a J-dimensional grid with axes corresponding

to niqi, the displacement of the 4-form field is given by discrete
grid points with integers ni. The region (11) corresponds to a
thin-shell characterized by the radius r = √

2|�b| and the width
�r = ��/

√
2|�b|. The volume of the thin-shell is

VS = 
J − 1rJ − 1�r = 
J − 1|2�b|J/2 − 1��, (12)

where 
J − 1 = 2π J/2/�(J/2) is the area of a unit (J − 1)-
dimensional sphere. A grid cell has a volume VC = ∏J

i = 1 qi.
There is at least one value of� for VC < VS, i.e.,

J∏
i = 1

qi <
2π J/2

�(J/2)
|2�b|J/2−1�� . (13)

When J = 100, |�b| = 1 and �V = 10−123 with equal charges
(qi = q, for i = 1, 2, · · · , J), the condition (13) is satisfied for
q < 0.035. Since the charge

√
q has the dimension of mass from

Equation (10), this condition translates to
√

q < 0.19 in units
of MP. Thus, the presence of many 4-form fields allows the
possibility of realizing a small effective cosmological constant.

The idea of Bousso and Polchinski is based on the flux energy
density originating from multiple 4-form fields. This idea was
extended to the so-called flux compactification on a Calabi-Yau
manifold in type II string theory. In the presence of fluxes, Kachru
et al. [127] first set up a supersymmetric anti de Sitter (AdS) vac-
uum with all moduli fields fixed. Then, they obtained a de Sitter
vacuum by adding an anti D3-brane in a warped geometry to lift
up the AdS state.

There are hundreds of different 3-cycles on the Calabi-Yau
manifold in the flux compactification. A macroscopic observer
can view a 5-brane wrapping a 3-cycle as a 2-brane (membrane).
The 5-brane can wrap any of these 3-cycles, which gives rise
to hundreds of different membranes in four-dimensional space-
time. The number of vacua appearing in string theory can be
extremely large. For 500 three-cycles with each cycle wrapped by
up to 10 fluxes, we have 10500 vacua.

The possible presence of such a large amount of vacua led
to the notion of so-called string landscape [128]. This landscape
includes so many possible configurations of local minima, among
which our Universe may correspond to one of them. Each vac-
uum in the string landscape has different matter and coupling
constant. The Standard Model is not predicted uniquely in this
picture. The argument is that we may be able to find a vac-
uum with an extremely small energy density among 10500 vacua.
However, this anthropic argument depends on “Those packed
near � = 0 out of 10500 vacua describe particle phenomenology
correctly, in particular with three chiral families and sin2 θW =
3/8,” otherwise the landscpe vacua differring by �� describe

unacceptable universes. From this reasoning, the string landscape
is commented in Table 1 as “not yet” established.

A general problem with the anthropic arguments is that they
are often applied to a single parameter while fixing all the others.
A parameter value that is ruled out in one case may be acceptable
if something else is changed at the same time. In this sense, it is
not clear that the anthropic arguments of� provide a satisfactory
answer to the cosmological constant problem.

As commented before, the DE scale may be accountable from
highly suppressed non-renormalizable terms in string-allowed
discrete symmetries [44, 102] if the true vacuum has zero cos-
mological constant. In this sense, the theoretical solution toward
the vanishing cosmological constant is more difficult to solve than
obtaining a tiny DE scale on top of the vanishing cosmological
constant [23, 26].

4. INFLATION
The possibility of an exponential expansion of the Universe was
known [129–133] even before the influential paper of Guth [45]
which advocates diluting away the GUT scale monopoles [134].
For example, in the abstract of the Kazanas’s paper [132], it is
stated that “. . .In particular it is shown that under certain con-
ditions this expansion law is exponential. It is further argued
that under reasonable assumptions for the mass of the associ-
ated Higgs boson this expansion stage could last long enough to
potentially account for the observed isotropy of the universe.” In
the papers of Sato [130, 131], diluting away topological defects
such as monopoles and domain walls was stressed after the advent
of the modern GUT model [135, 136]. In the Guth’s paper [45]
it was clearly emphasized that the inflationary paradigm can
address the solutions for the homogeneous, horizon and flatness
problems.

The scalar field responsible for inflation is called “inflaton.”
The inflaton field is a superposition of quanta of all possible
wave lengths. A quantum fluctuating scale inflates exponen-
tially and after passing the horizon, it is stretched exponen-
tially with an almost scale-invariant form [137–141] and the
frozen-scale still inflates exponentially (see [142] for a review).
Different fluctuating scales go out of the horizon at differ-
ent cosmic times and their exponentially stretched scales are
correlated.

After the end of inflation, the quantum fluctuations enter the
horizon again and become the sources of density perturbations.
The prediction of nearly scale-invariant primordial perturbations
generated during inflation was consistent with the temperature
anisotropies of Cosmic Microwave Background (CMB) observed
by the COBE satellite [143]. The recent WMAP and the Planck
data of CMB refined the temperature anisotropies to very high
accuracy [1, 2]6.

The observables and the constraints implied by inflation are

• A sufficient inflation, requiring the large e-fold number, Ne >

70, for addressing horizon and flatness problems.

6From the Planck data the existence of CDM was also confirmed (by 7 σ
[144]) better than any other data.
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• The amplitude of temperature anisotropies δT/T � 10−5, for
galaxy formation with CDM.

• The spectral index of scalar perturbations ns � 0.96, from
WMAP and Planck data.

• The tensor-to-scalar ratio r � 0.2, from WMAP and Planck
data.

• The non-linear estimator of scalar non-Gaussianities for the
local shape f local

NL = 2.7 ± 5.8 (68% CL), from Planck data.

As long as the slow-roll conditions are satisfied, the single-
field inflationary scenario generally gives rise to local
non-Gaussianities with |f local

NL | much smaller than 1 even for
most general scalar-tensor theories with second order equations
of motion [145–147]. Hence the slow-roll single-field models
are consistent with the Planck bound of non-Gaussianities.
Using the observational bounds of ns and r, we can distinguish
between many single-field inflationary models [148–150].
For example, the self-coupling potential V(φ) = λφ4/4 [151]
and hybrid inflation [152] with ns > 1 are disfavored from
the data.

The amplitude of tensor perturbations is given by
Ph = 2H2/(π2M2

P), so the detection of gravitational waves
in CMB observations implies that the energy scale of inflation
is directly known [153–157]. Since the B-mode polarization
of CMB is generated by tensor perturbations but not by scalar
perturbations, the B-mode detection is a smoking gun for the
existence of primordial gravitational waves.

If the tensor-to-scalar ratio r is smaller than the order of 0.01, it
is not easy to detect the CMB B-mode polarization.7If r is detected
in the range r > 0.05, then the energy scale during inflation corre-
sponds to the GUT scale. The great interest in the announcement
of r ∼ 0.16 from the BICEP2 group [64] is because of the impli-
cation that the Universe once passed the vacuum energy scale
of 1016 GeV. Even though the GUT scale MGUT is humongous
from our TeV scale Standard Model, it is tiny from the point of
gravity scale, the Planck mass MP. Because of the micro density
perturbation, the vacuum energy at the scale (1016 GeV)4 leads
to r ∼ O(0.1). This phenomenon of the GUT scale energy den-
sity during inflation is usually parametrized by chaotic inflation
with the potential V(φ) = 1

2 m2φ2 [151].
If a large r of order 0.2 is detected, the field value in the φ2

chaotic inflation is bounded from below, i.e., 〈φ〉 > 15MP, which
is known as the “Lyth bound” [158]. This situation is shown in
Figure 5, where the energy density at the inflationary epoch is the
GUT scale. The field value 〈φ〉 > 15MP is trans-Planckian and the
energy density at MP is tiny. So, one needs a fine-tuning in the φ2

chaotic inflation. Introducing a confining force at a GUT scale, a
heavy axion for the inflaton with a potential bounded from above
was proposed [159], which is called natural inflation. In this sce-
nario, the energy density has the upper bound of order MGUT

4

as shown in Figure 6A. One period of the inflaton in this case is
of order MGUT, and hence the Lyth bound is violated. To remedy
this, two confining forces are introduced with two heavy axions
with the resulting potential [160],

7However, the future observations like LiteBIRD may reach this range.

FIGURE 5 | The chaotic inflation with m2φ2 [151]. The red bullet is the

Lyth bound which is far above MP.

V = −�4
1 cos

(
α

a1

F1
+ β

a2

F2

)

−�4
2 cos

(
γ

a1

F1
+ δ

a2

F2

)
+ constant ,

(14)

where α, β, γ , and δ are determined by the corresponding PQ
symmetries of two heavy axions a1 and a2. Even though we
allow O(1) couplings, the GUT mass scales can lead to MP with
the probability of ∼1%. With mass parameters of 50MGUT, we
would obtain 50MPwith the probability of ∼1%. This is the
Kim-Nilles-Peloso 2-flation model [160]. The probability of the
2-flation model with a large decay constant, i.e., fφ > 15MP to
occur as shown in Figure 6B, is about 1%. The green-potential in
Figure 6B is the other heavy axion potential. It can be generalized
to N-flation [161].

The axionic topological defects in the anthropic window [25,
162] can be diluted away if inflation occurs below the anthropic
window scale. With the GUT scale energy density during infla-
tion, however, this dilution mechanism does not work. With the
GUT energy scale inflation as implied by the BICEP2 [64], it
could have pinned down to fa ∼ 1011 GeV [119, 120], using the
numerical calculation of radiating axions from axionic string-wall
system [163]. In the numerical calculation, the Vilenkin-Everett
mechanism [164] of erasing the horizon scale string has not
been taken into account. In addition, the hidden-sector confining
force can erase horizon scale axionic strings such that the QCD
axion domain wall is not a serious cosmological problem [165].
The hidden-sector solution needs the hidden-sector domain-wall
number of Nh = 1, which is possible in string compactification
with an anomalous U(1) [166].

In addition to pinning down the upper bound on fa, the GUT
scale inflation provokes a question, “What is the symmetry which
naturally satisfies the Lyth bound [158]?" Lyth considered this
problem with respect to the η parameter [167]. But, there exists a
more fundamental question. In an ultra-violet completed theory
such as string theory, every parameter is calculable. If we consider
the φ2 chaotic inflation of Figure 5, there is a question, “Why do
we neglect other terms?” In string theory, only discrete symme-
tries are permitted by the compactification process. For example,
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A B

FIGURE 6 | (A) The natural inflation of Freese et al. [159]; (B) The 2-flation [160]. The red bullet in the 2-flation is an O(1) value of 〈a〉/fa.

FIGURE 7 | The hilltop inflation [159]. The green bullet is the point whose
effects are observed by the BICEP2 group.

a term φ104/M100
P can be possible if the discrete symmetries allow

it. But with the trans-Planckian value, for example 〈φ〉 ∼ 31, the
coefficient must be tuned to 1 out of 10127, which is as bad as the
cosmological constant problem.

Fortunately, there is another way for inflation to occur. We
must choose the hilltop inflation, but sacrificing the single-field
inflaton. It is not so bad in view of the fact that the 2-flation model
already introduced two axions in the inflaton sector. Then, the
inflating region is near origin such that the minimum at fDE is far
away from the origin. In the region [0, fDE] the vacuum energy is
of order MGUT

4. This can be obtained from the condition on the
quantum numbers of the assumed discrete symmetry [168]. The
inflaton rolls in the yellow region in Figure 7 where the inflaton
takes a green curve in the two-inflatons space.

5. DISCUSSION
After the discovery of the fundamental Brout-Englert-
Higgs boson, which is represented as Hu and Hd ( =
H†

u in non − SUSY case), we reviewed the cosmological role
of spin-0 bosons. This finding hints the possibility of numerous
spin-0 bosons (φ) at the GUT scale. Spin-0 bosons at the GUT
scale of the canonical dimension 1 can have more important
effects to low energy physics compared to those of spin- 1

2
fermions of the canonical dimension 3

2 (Dirac fermions ψ,ψ for

example) at the GUT scale. For example, the spin-0 contribution

φ2n

M2n + 2m − 4
P

(HdHu)m (15)

dominates the fermion contribution ψnψ n

M3n + 2m − 4
P

(HdHu)m for

n,m ≥ 1. In addition, the existence of fundamental spin-0 bosons
at the GUT scale may be extended to a larger symmetry: super-
symmetric GUTs, or minimal supersymmetric Standard Models
from string compactification. The interactions of the singlet fields
only can take a SUSY superpotential, for example with GUT scale
singlets φ and trans-Planckian singlets� for simplicity [168]

W =
∑

i

φai

Mai + �i − 3
P

��i . (16)

The rationale leading to the forms of Equations (15) and (16)
are the discrete symmetries obtained from string compactifica-
tion [44],8 which guarantees the absence of gravity obstruction of
discrete symmetries, for example via wormholes [99]. The form
of the interactionis (16) can lead to inflation with trans-Planckian
decay constant with a multi-field hilltop potential, i.e., BCM2.
The form of the interactionis (15) can lead to QCD axion via
BCM1, and the DE scale via CCtmp. The fundamental scalars
at the TeV, GUT and trans-Planckian scales allow all scenarios
presented in Subsection 2.1. These are worked out on top of van-
ishing cosmological constant, which is assumed in any particle
physics models. At present, we do not have any persuasive hint
toward a theoretical solution of the vanishing cosmological con-
stant. Any theory for the vanishing cosmological constant must
satisfy the requirements of particle phenomenology we used in
this review.

The fundamental scalars may be detectable if their couplings to
gluons are appreciable. The front runner in the search of funda-
mental scalars hinting high energy (GUT or intermediate) scales
is the QCD axion which couples to the gluon anomaly.
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