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The importance of ions in low pressure PECVD plasmas
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Plasma enhanced chemical vapor deposition (PECVD) can be used to fabricate surfaces
with a wide range of physical and chemical properties and are used in a variety of
applications. Despite this, the mechanisms by which PECVD films grow are not well
understood. Moreover, the species which contribute to film growth can be considered
quite differently depending on the process. Particularly for functionalized plasma polymer
films, the growth mechanisms are considered with respect to the chemistry of the
depositing species, ignoring the physics of plasmas. Here we analyse the role ions play
in the deposition of three common classes of depositing plasmas, and how these closely
related fields treat ions very differently.
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INTRODUCTION
While glow discharges were observed as early as 1796 [1] the term
“plasma” was first coined by Irving Langmuir in 1928 [2]. Plasma
discharges of reactive vapors were first reported as early as the
1930 [3], but research interest in plasma deposition started in
the 1960s when the physical [4, 5] and chemical [6] properties
of some organic plasma deposits were described. Modern plasma
deposition techniques include magnetron sputtering [7], ion plat-
ing [8], pulsed laser deposition [9], and various plasma enhanced
chemical vapor deposition (PECVD) techniques.

PECVD has found use in a wide variety of applications. For
example silane plasmas are used in solar cells [10] and micro-
electronics [11], diamond-like carbon (DLC) coatings are used as
hard, wear-resistant barriers for mechanical parts and biomed-
ical implants [12], while soft functionalized plasma polymers
may be used to attach biomolecules to surfaces for improved
biocompatibility or drug delivery [13]. Recently, plasma depo-
sition has enabled the convergence of technologies in the nano
and micro scale range, including controlling interfacial bonding
in composites [14], fabrication of nano-thin films for electronic
applications [15, 16] and microscale features to control protein
adsorption [17].

An important consideration in the growth of all of these types
of coatings from plasma is the mechanisms by which film growth
occurs (Figure 1). As plasma consists of a complex mixture of
species with different masses, charges, chemical reactivities and
kinetic energies, identifying the species which provide mass to
the film can be difficult. However, as discussed later, these species
can confer very different properties to the film due largely to the

energy they provide to the surface. Therefore, an understanding
of the growth mechanisms is crucial to tailoring film properties.
One of the key plasma components are positively charged ions.
This is because the electrical fields established by plasmas adjacent
to surfaces provide ions with sufficient kinetic energy to promote
chemical reactions, and therefore the ions are the engines which
drive film growth (either directly or indirectly). The role that ions
play though is understood in quite different ways depending on
which field of PECVD is being discussed.

DIAMOND-LIKE CARBON FILMS
DLC films were first grown in 1971 [18] and are grown from
plasmas of molecules such as methane, acetylene, or larger hydro-
carbons. It has been known in this field for some time that the
mechanical properties of the film are determined by the energy
of the ions arriving at the surface [19]. Additionally, DLC films
were originally grown from ion-beam deposition [20]. Therefore,
ions have been considered to be important species in contributing
mass to the film, and this led to early researchers in the field con-
sidering ions almost exclusively. More recently, the role of neutrals
has been demonstrated. For example, both Richter et al. [21] and
Moller [22] assumed a sticking probability of 1 for ions (proba-
bly an overestimate) and calculated for a range of precursors that
ions contributed between 25 and 100% to the mass of the deposit,
critically depending on the chemical structure of the precursor. As
pointed out by Richter et al. [21] “despite the fact that most authors
confine themselves to the ions, in principle both ionized species and
neutral molecules must be taken into account as film-forming parti-
cles.” Therefore, in the field of DLC films, ions and neutral species
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(intact precursor molecules and radicals) have been thought to be
important mass-contributing species.

SILANE FILMS
Reports of films grown from SiH4 and related compounds and gas
mixtures started appearing in the late 1960s [23]. The dominant
species are often SiH+

x , but also SiHx radicals. From early in the
development of silane based films, both neutrals and ions were
considered important [24, 25]. Researchers in this field have stud-
ied the plasma phase mass spectra of both neutrals and ions [26]
and controlled the ion energy to elucidate the role of SiHx radi-
cals, SiH+

x ions and even H+ ions in the deposition process [27].
A strong dependence on the plasma pressure is observed with
Perrin [28] demonstrating that the contribution of ions to the
deposit varies between nearly 100% at 0.1 Pa down to around 1%
at 100 Pa.

PLASMA POLYMER FILMS
A number of fundamental papers on plasma polymer deposi-
tion were published in the late 1960s and early 1970s, including
a number of studies looking at the mechanisms of deposition
from plasma, including the roles of both ions [29, 30] and rad-
icals [31]. Then in 1979, Shen and Bell [32] correctly showed
that in weakly ionized plasmas the ratio of radicals to ions in
the plasma phase is of the order of 103–105. They followed this
with a discussion on the role of radicals in mechanisms of depo-
sition, ignoring any possible contribution from ions presumably
because they believed the density of ions was so low that any
mass deposited by ions would be insignificant. Then in Plasma
Polymerization Yasuda [33] proposed the rapid step-growth poly-
merization mechanism (RSGP), which became the most cited
work in the field. While Yasuda acknowledged that RSGP could
proceed via any “chain-carrying species” (including radicals, ions
and excited species), all the mechanisms subsequently discussed
involved radicals exclusively. Thus, it was implied that ions pro-
vided energy to the surface through energetic collisions which
enabled further reactions to occur [34], but their role in con-
tributing mass to films was discounted. As discussed below, there
is now growing experimental evidence to support ions playing a
greater role in plasma polymer growth [35–37].

PLASMA PHYSICS OF IONS
Thus, it can be seen that these related fields approach the issue of
ions in plasmas in quite different ways, and accordingly ascribe
different importance to ions. In some cases this appears to be
driven by historical development of the field. What has been
overlooked in some of these studies is some basic physics of
non-thermal plasmas. Tonks and Langmuir described the plasma
phase as a region of space where the “densities of ions and electrons
are high but substantially equal” [38]. This is the case in the bulk
of non-thermal plasmas and the flux, J, of both neutrals and ions
are governed by thermal motion.

J = 0.25n

√
8kT

πm

where n is the particle density, k is Boltzmann’s constant, T is the
absolute temperature and m is the particle mass.

FIGURE 1 | Potential species for deposition from plasma. Deposition
may occur via direct ion deposition, or grafting of intact monomer or radical
species to surface radicals formed by high energy ion impact.

However, as early as 1949 David Bohm [39] described the
effect of placing a surface in contact with a plasma phase. As elec-
trons are lighter and hotter than positively charged ions, the flux
of electrons to surfaces is initially much greater than that of the
ions. This results in the surface gaining a negative potential rel-
ative to the plasma. The surface potential then develops until at
equilibrium the flux of positive and negative charged species is
equal. Bohm showed that the presence of the surface in the plasma
results in the formation of a sheath region adjacent to the surface
where the density of charged particles decreases. In fact, there are
two distinct regions; the sheath, where the density of the positive
ions is higher than that of electrons, and a pre-sheath, where the
densities are the same but decrease slightly compared to the bulk
plasma. In this pre-sheath region, ions are accelerated such that
they enter the sheath at the Bohm velocity, ub

ub =
√

kTe

m

where Te is the electron temperature. The flux of ions, Ji, is then
given by:

Ji = exp

(
−1

2

)
ni

√
kTe

m

where ni is the ion density in the plasma phase and the exp (−1/2)
term describes the decrease in ion density in the pre-sheath.

Therefore, the surface has the effect of increasing the flux of
positive ions through the pre-sheath/sheath regions to the sur-
face. The increase in flux above the normal thermal flux, Jt, can
be mathematically described by:

Ji

Jt
= √

2πexp

(
−1

2

)√
Te

Ti

where Ti is the temperature of the ions in the plasma phase, usu-
ally close to ambient temperature. Therefore, for a typical electron
temperature of ∼3eV, the flux of ions is increased by a factor
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of ∼15 [40]. It should be noted that for DC plasmas, this fac-
tor can be even higher [41]. Neutral species, such as radicals and
intact precursor, are not accelerated to the surface due to the gen-
eration of potentials in the plasma, and so while the density ratio
of radicals-to-ions may be of the order of 104, the flux ratio, the
important ratio for film growth, is substantially lower.

While this phenomenon is well known to plasma physicists,
it is often overlooked in the field of depositing plasmas as it
is assumed that depositing plasmas are governed by chemical
processes [1]. Additionally, one of the assumptions in Bohm’s cal-
culations was that the sheath region is non-collisional; in some
cases, particularly for silanes and plasma polymers where the
pressure can be relatively high, this may not be the case which
can affect the ion energy and structure [42].

EXPERIMENTAL EVIDENCE
While the increase in ion flux due to the electric fields gener-
ated decreases the neutral: ion flux ratio to around 102–103, it
cannot alone explain how ions can contribute significant mass to
the deposit compared to neutrals. Recent experimental evidence
shows that ions can be larger than neutrals due to reactions in the
plasma phase, and that ions are much more likely to stick to the
surface upon impact.

PLASMA PHASE MASS SPECTROMETRY
Analysis of the plasma phase has shown that ions can form
large oligomers in the plasma phase. O’Toole et al. [43] demon-
strated for organic precursors that ions form large molecules of
the form (nM+H)+, where M is the precursor and n is an inte-
ger up to 3. This was shown for acids [43], alcohols [44] and
amine-containing organics [45]. Simultaneously, the neutral mass
spectra were measured by electron impact and dimers were only
observed for methyl isobutyrate. It has similarly been measured
that silane plasmas exhibit Si2H+

x and SiCH+
x ions when com-

bined with methane [24]. Thus, ion-molecule reactions in the
plasma phase have been confirmed.

There is also experimental evidence of a correlation between
the ionic plasma species observed and the chemistry of the
deposit. Hexamethyldisiloxane plasmas exhibit ion precursor,
dimer and trimer peaks; the same peaks are observed when mea-
suring the surface chemistry by ToF-SIMS. The co-ordination of
silicon and oxygen measured by XPS also correlates well with the
ionic plasma species observed [37].

The mechanism by which large ions grow has been modeled
by selected ion flow tube mass spectrometry, whereby a posi-
tively charged precursor ion, for example (M+H)+, is reacted
with neutral M in a buffer gas and the products measured by
mass spectrometry [46]. Reaction conditions were kept close to
those in plasma (pressure, temperature) and the resultant prod-
uct ions at ∼2 M, 3 M correlate with those directly seen in plasma.
This has allowed some insight into the kinetics of plasma-phase
ion-molecule reactions.

STICKING PROBABILITY
It is often assumed, particularly in DLC plasmas, that the sticking
probability of ions is 1. However, comparison with calculations
for hyperthermal ions [35] shows that this assumed sticking
probability is probably an overestimation. This study showed a

more realistic sticking probability of between 20 and 50%, and is
dependent on the ion energy [37]. It should be noted that this
is almost certainly a net sticking probability as ions with ener-
gies greater than ∼15 eV can simultaneously sputter the growing
film [47].

As ions usually have energy greater than 10eV when they arrive
at the surface, they can provide enough kinetic energy to promote
bond breakage and rearrangement [47]. Neutral species on the
other hand rely on chemical energy to attach to the surface. In
the case of plasma radicals, this requires that the radical arrive
at the surface in the vicinity of an existing surface radical. It has
been shown by von Keudell et al. [48] that the sticking proba-
bility of methyl radicals is extremely low at ∼3 × 10−5, but this
increases to ∼ 3 × 10−3 in the presence of atomic hydrogen. They
also showed that even a plasma radical colliding with a surface
radical only results in a sticking probability of ∼50%. This prob-
ability may be even lower for larger radical species as steric and
collision orientation effects become important [49].

Combined, these analyses show that while the density of neu-
trals and radicals in the plasma phase may be extremely high
relative to ions, the combination of increased flux due to sheath
formation, plasma phase oligomerisation and higher ionic stick-
ing probability demonstrates that both ions and neutrals should
be considered as contributing mass to plasma deposits.

IMPLICATIONS
DEPOSITION KINETICS
The role that ions plays in depositing plasmas compared to
neutral species has a profound effect on the kinetics of depo-
sition [43]. It has been shown that the deposition of saturated
precursors is dominated by ionic processes while precursors
which contain sites of unsaturation can deposit via neutral graft-
ing [50]. There is a strong negative correlation between the
degree of neutral grafting and fragmentation of the precursor
in the plasma phase; thus for unsaturated precursors, neutral
grafting dominates the kinetics at low plasma power and high
pressure, but ionic processes increase in importance when the
power is increased or the pressure decreased. Similar results
have been shown for DLC films for methane and acetylene
plasmas [51].

The contribution of ions to the deposition process also opens
the possibility to control the kinetics using measureable plasma
parameters, such as ion flux. This was first demonstrated in 1971
when the DC bias on the substrate was varied between +60
and −350 V [29]. Applying a positive bias decreases the posi-
tive ion flux and ion energy and Westwood showed that at high
enough bias, the deposition stopped (note that intact precur-
sor and radical species could still diffuse to the substrate but no
deposition was observed). Decreasing the bias resulted in a lin-
ear increase in deposition rate until–100 V when the deposition
rate decreased again, presumably due to ion etching becom-
ing important. Similarly, the flux of ions to substrates can be
used as a process parameter to transfer plasma processes between
reactors [52].

FILM PHYSICAL AND MECHANICAL PROPERTIES
It has been well known in the field of DLC plasmas that ions
play the dominant role in determining the mechanical properties
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of films. Pappas and Hopwood [53] and Peter et al. [51] mea-
sured an increase in the film hardness for methane plasmas up
to bias voltages of ∼200–300 V, followed by a slight decrease at
higher biases. For methane the trend was largely independent
of pressure, however for acetylene the hardness decreased with
increasing pressure. These results correlated with the contribution
of ions to the deposit (methane ∼60%, acetylene ∼20%) and the
ion energy flux to the film per deposited carbon atom. For silane
plasmas, the role of ion energy in determining the crystallinity of
the film has also been shown [27].

In the case of functional plasma polymers, the trends are
less clearly defined. Hegemann et al. [54] for example showed
that increasing the momentum flux density (dominated by ion
contribution) resulted in densification of NH3/C2H4 copolymer
films. Similarly, increasing the ratio of NH3: C2H4, and therefore
decreasing the amount of unsaturated precursor in the plasma,
resulted in denser films [55]. Conversely for lower energy den-
sity film formation, saturated precursors result in less dense films
but with increased elastic modulus [56] due to high cross-linking.
Typical ion energies for plasma polymer deposition are 10–50 eV,
while for DLC plasma deposition the ion energy can be an order
of magnitude higher. Even higher ion energies (∼20 keV) can
be utilized in plasma immersion ion implantation [57] which
effect long lasting chemical changes to a depth of around 30 nm.
These studies highlight the key role ion energy plays in depositing
plasmas.

CONCLUDING REMARKS
While the fields of DLC, silane and plasma polymer surface coat-
ings share some similarities, the way they have approached the
role of ions in deposition is quite different. In recent years there
has been a slight convergence of ideas, with recognition by plasma
polymer researchers that many plasma species, including ions,
may contribute mass to surface coatings from plasma. The role
that ions play is unique in that they not only can provide mass,
but also dramatically affect the chemical and physical properties
of the film due to their high energy. Further understanding of
the role of ions in this regard will help develop better films and
control of plasma polymer processes in the future.
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