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Monte Carlo (MC) simulation is recognized as the “gold standard” for biophotonic
simulation, capturing all relevant physics and material properties at the perceived cost
of high computing demands. Tetrahedral-mesh-based MC simulations particularly are
attractive due to the ability to refine the mesh at will to conform to complicated
geometries or user-defined resolution requirements. Since the chosen MC method does
not inherently require approximations on the materials, it is applicable to the broadest
set of biophotonic simulation problems. MC methods also have other implementation
features including inherent parallelism, and permit a continuously-variable quality-runtime
tradeoff. We demonstrate here a complete MC-based prospective fluence dose evaluation
system for interstitial PDT to generate dose-volume histograms on a tetrahedral mesh
geometry description. To our knowledge, this is the first such system for general interstitial
photodynamic therapy employing MC methods and is therefore applicable to a very broad
cross-section of anatomy and material properties. We demonstrate that evaluation of
dose-volume histograms is an effective variance-reduction scheme in its own right which
greatly reduces the number of packets required and hence runtime required to achieve
acceptable result confidence. We conclude that MC methods are feasible for general PDT
treatment evaluation and planning, and considerably less costly than widely believed.
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1. INTRODUCTION
Photodynamic Therapy (PDT) is an emerging treatment modal-
ity for cancerous lesions in a variety of indications. It is
widely used for indications which are superficial in terms of
both the method of light application and the lesion depth,
so currently mostly actinic keratosis [1] and skin cancer [2].
For more difficult interstitial applications, it shows both great
promise [3] and ongoing challenges with inconsistent outcomes
[4, 5].

Photodynamic cell killing mechanisms depend on cell physiol-
ogy (response to radical production), and require the overlap of
photosensitizer, tissue oxygen, and photon fluence. Selectivity is
achieved through influencing these factors by methods including:
designing photosensitizer biochemistry for preferential uptake by
the tumor; exploiting pharmacokinetic differences between dis-
eased and healthy tissue; controlling oxygen delivery dynamics;
artificially inducing or using naturally-occurring differential sen-
sitivity between tumor and nearby tissue; and by controlling the
shape of the light fluence field to achieve spatially selective photo-
sensitizer activation. We focus here on control of the light fluence
field, as it is largely independent of the other factors and all else
being equal an improvement in light targeting always improves
the outcome. The ability to simulate the light fluence field is also

critical to understanding optical measurements made (including
for implicit or explicit dosimetry parameters), and for opti-
mal placement of monitoring probes to detect optical properties
in vivo.

MC is also the standard of care for ionizing radiation ther-
apy (IRT), where the coefficients of absorption and scattering
are lower resulting in significantly fewer interaction events per
photon and hence much lower compute requirements. Ionizing
radiation therapy (IRT) has become a main-line treatment for
cancers, with well-developed workflows, numerical optimization
based on Monte Carlo simulation, and rigorous quality-assurance
procedures. Such practices are still emerging for PDT treatment
planning and monitoring, with some challenges due to the unique
characteristics of PDT. Compared to IRT, the red or near-infrared
photons used for PDT have significantly higher coefficients of
interaction with the target tissue. The greater propensity to scat-
ter leads to light confinement within much smaller volumes
around the implanted light source which facilitates treatment
targeting. Such selectivity comes at a cost, though; since each pho-
ton undergoes a very large number of scattering events prior to
absorption (and hence causing cell damage), the cost of compu-
tational modeling is correspondingly increased. A complete PDT
treatment plan covers a large range of parameters, some under
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control of the treating physician and some outside as summarized
in Table 1, yielding a difficult optimization problem. Given the
large number of degrees of freedom and the often-long com-
pute times to simulate the fluence field, one of the challenges
in successfully delivering PDT is numerical optimization of the
treatment plan.

Based on simulations of the fluence field, we derive dose-
volume histograms (DVH) and related metrics which are
extremely widely used in radiation therapy planning. Operating
within a defined planning volume, the dose-volume histogram
displays the percentage of each organ within the planning vol-
ume receiving a dose (vertical axis) which exceeds a given dose
level (independent, horizontal axis). The DVH permits the abil-
ity to query what fraction of an organ receives a dose exceeding
�J/cm2, or conversely to find the minimum dose received by
the v% most heavily-treated portion of an organ. Where used,
simulation-based PDT treatment planning often expresses tumor
exposure goals in terms of D90, the minimum dose received by
at least 90% of the tumor. When the dose is scaled to deliver
sufficient energy to meet the D90 objective, the DVH permits
inspection of the dose distribution received by other organs at
risk to assess the likelihood of complications. Under the photo-
dynamic threshold model [6], those portions of the organs at risk

Table 1 | Controllable and non-controllable factors in PDT treatment

planning, showing which parameters will alter the fluence field and

hence require separate optical simulations (* denotes limited range).

Factor Controllable Impacts

fluence
Pre-tx In-tx

Patient anatomy �
Patient optical properties �
Activation wavelengths � �* �
Number of sources � �
Source emission profile � �
Photosensitizer choice �
Photosensitizer dose �
Drug-light interval �
Light time and power � �
Additional protective or sensitizing techniques �

receiving more than their threshold fluence dose are not expected
to survive.

One advantage of IRT over PDT is that the imaging (CT)
and treatment use similar photon energies and hence the imag-
ing modality used to build the geometric model directly provides
measurements of the necessary propagation properties. On the
other hand, the patient properties relevant to PDT (coefficients
of absorption μa and scattering μs) are considerably more vari-
able [4] both intra-patient (day-to-day and treatment-induced
changes), and inter-patient (population variance). Successful
PDT delivery will need to account for these variations through
a variety of techniques including implicit and explicit dosime-
try monitoring, online plan adjustment, and a planning process
which is robust with respect to the anticipated range of opti-
cal properties. All of these require the ability to calculate and
optimize the fluence field within the treatment volume. Robust
treatment planning will also require validating a given source
geometry against a range of perturbations in optical properties
and source placement errors. Adequate exploration of the large
space of variation and possible plans will require the ability to
conduct many simulations quickly, as well as good optimization
algorithms.

Figure 1 illustrates our proposed PDT treatment planning
workflow, analogous to current standards of care in radiother-
apy [7]. It comprises several distinct phases, each with differing
computational requirements. The areas impacted by the present
article are highlighted to place them in context of the full treat-
ment flow, and approximate computation requirements are listed
in Table 2.

From this workflow, we can derive a set of requirements for a
simulation environment which could be applied to any indication
for which PDT is suitable:

1. Gives valid results in low-scattering areas
2. Able to accommodate curved surfaces
3. Refinable geometry model to provide high detail where needed
4. Able to model varied light emitters and probes, including

customized extended sources
5. Predictable, quantifiable result uncertainty
6. Modest run-time requirements to support iterative optimiza-

tion
7. Broad range of quality-effort tradeoffs, capable of high preci-

sion when needed

FIGURE 1 | Complete PDT pre-treatment planning workflow, with the phases contributed by this article highlighted.
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Table 2 | Workflow phases requiring optical simulation.

Phase Purpose Requirements

Simulations Precision Throughput Turn-around

Source placement Derive plan which delivers the desired fluence
dose

≈ 102 − 103 Low High Low

Signoff Verify plan remains acceptable under expected
variation of optical properties and source
placements

≈ 101 − 102 Moderate Moderate Low

Monitoring placement Find optimal sensor probe placements to
monitor optical properties and/or fluence

≈ 101 High Low Low

Online adjustment (1) Verify configuration as-placed is acceptable,
adjust power/time, (2) Infer and adjust to
optical property changes

≈ 101 − 102 Moderate Moderate Critical

We demonstrate below a software implementation
“FullMonte” which meets all these criteria using a tetrahe-
dral mesh description of the planning volume, and a Monte
Carlo simulation to solve for the light distribution. We also show
that the use of dose-volume histograms for assessing a proposed
treatment geometry acts as a variance reduction scheme which
greatly reduces the computational cost of Monte Carlo simula-
tions. Taken together with our work on hardware acceleration, we
conclude that MC-based prospective PDT treatment evaluation,
planning, and online monitoring are both feasible and desirable.

2. BACKGROUND
Of the workflow illustrated in Figure 1, we focus on the first
loop: simulation and evaluation, in which the simulator calcu-
lates the light fluence within the planning volume resulting from
the specified treatment geometry (patient anatomy, optical prop-
erties, source(s) with positions and emission patterns). Based on
those simulations of the fluence field, the second component gen-
erates measures of the resulting plan’s quality using the prescribed
target characteristics. We choose to focus on the dose-volume his-
togram as our primary evaluation tool, given its prevalence in IRT
planning and use by many clinicians. The discussion below pro-
vides background on prior work in both of these areas. Given a
simulation-evaluation loop of sufficient quality and performance,
a scalar merit objective function to maximize, and a set of con-
straints, the next natural step is to perform automatic iterative
algorithmic optimization using those building blocks.

2.1. BIOPHOTONIC SIMULATIONS
Simulation of light propagation through living tissue is compli-
cated by the very high scattering coefficients within the optical
window generally used for photosensitizer activation. Physically,
a photon will scatter many times before absorption, with the
expected number of interactions depending on the material’s
albedo. Tissue has a higher albedo for interactions with optical
photons than x-rays, meaning that considerably more scatter-
ing must be modeled for PDT compared to IRT. The Radiative
Transfer Equation (RTE, or sometimes ERT) expresses the con-
servation relationship which must hold for light transport in
a scattering medium. Solution techniques can be classified into
three groups: analytic and finite-element numerical solutions

using the diffusion approximation (the simplest and least accu-
rate method); other numerical methods to solve the RTE directly;
and Monte Carlo methods.

2.1.1. Diffusion approximation (DA)
The Diffusion Approximation (DA) [8] yields analytic solutions
for simple problem geometries and can be formulated for non-
trivial geometries using the finite-element method to achieve
relatively fast run-times at the expense of approximations in both
the materials (isotropic, highly scattering) and physics (neglect-
ing reflection/refraction) of the problem. NIRFAST [9] is an
example of a widely-used open-source package generally used
for fluorescence and bioluminescence studies which includes a
diffusion solver. Similar techniques are also employed for prop-
agation modeling in PDT treatment as discussed below. For
certain anatomical regions, particularly homogeneous organs of
solid highly-scattering tissue, the DA holds reasonably for points
several mean free paths away from a source or material boundary.

However, there are several conditions which would invalidate
the diffusion approximation in a large fraction of the treatment
volume:

1. Use of extended sources where an appreciable volume of tissue
is located near (within a few mean free paths of) a light source
(Jacques and Pogue [8], particularly Figures 1, 4, 7 therein)

2. Heterogeneous structures with a large number of material
interfaces (see previous point)

3. Presence of air-tissue interfaces with reflection and refraction
(e.g., sinuses, esophagus in head and neck; see Figures 1, 7 in
Jacques [10])

4. Presence of low-scattering voids (e.g., cerebral-spinal fluid
in brain/spine; bladder) or high-absorbing regions (discussed
with references in Boas et al. [11])

For many indications, one or more of these conditions will
be violated, yielding incorrect simulation results which would
jeopardize the safety and efficacy of the treatment.

2.1.2. Numerical solutions to the RTE
Other solution methods with less onerous approximations have
been applied to the RTE. Klose and Larsen, for instance, have
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shown an SP3 solution [12] which relaxes the requirement for the
radiance to be isotropic, a model refinement shown to offer better
accuracy in bioluminescence applications [13] that could likely
translate to PDT as well. In exchange for increased result preci-
sion, such methods require longer run times (2.5x longer than to
diffusion) to formulate and solve the problem. For SP3 methods,
some error remains near material boundaries and sources, which
may be problematic in PDT. Many cases will also involve extended
sources and highly heterogeneous anatomy, placing a significant
proportion of tissue within a small number of transport mean free
paths of a source or boundary.

2.1.3. Monte Carlo methods
Monte Carlo methods are generally acknowledged as the “gold
standard” for biophotonic simulations, covering the widest set
of problem descriptions with accuracy which can be arbitrarily
refined, at the perceived cost of long run times required to
produce sufficient result confidence. Particularly for air-tissue
interfaces (e.g., head-and-neck cancers) and volumes with
low-scattering voids (e.g., bladder cancers), the approximations
required for other solution techniques are likely to invalidate
the results, while MC methods remain able to deliver a quality
solution.

A diversity of prior work exists using Monte Carlo meth-
ods to solve biophotonic problems with a variety of geometry
descriptions. The basic concept started in the early 1980’s with
Wilson and Adam [14]. Wang and Jacques’ MCML [15] remains
a widely-used open-source package for layered media (e.g., skin)
with normally-incident light beams, running packets of photons
through the popular “hop, drop, spin” pipeline. Variations on
that technique for scoring different output quantities and geome-
tries exist, including time-resolved calculations for semi-infinite
media [16], and hardware accelerated calculations in layered
media [17, 18].

Diffuse imaging applications [11] often make use of a voxelized
approach in which a general 3D treatment volume is divided into
a cubic grid with each cube being assigned optical properties.
Unlike the diffusion approximation, this permits simulation of
anisotropy and low-scattering regions but it does not provide cor-
rect normals for curved surfaces. While very successfully applied
for imaging applications (e.g., brain) where the refractive indices
are matched, the lack of normals are a known problem [19] for
reflection and refraction. Hardware-accelerated implementations
using this voxelized approach also exist (e.g., MCX [20]) which
achieve considerable runtime speedup, albeit subject to the same
restrictions on the problem domain.

To address refractive interfaces correctly, several 3D
tetrahedral-mesh-based simulators have been created [21]
including our own FullMonte [22] which is the fastest such
open-source software at the time of publishing this report to
our knowledge. Such simulators are able to model very general
structures to an arbitrary degree of precision through selection
of an appropriate mesh size and number of packets. A finer mesh
requires more memory and computing time but offers a closer
geometric approximation.

Offsetting the many benefits of Monte Carlo simulation are
the perceived computational costs. Despite a high amount of

effort expended on software optimization, required run times
for high-quality simulations of complex geometries remain long.
Shen and Wang’s TIM-OS made efficient use of multi-core
processors and Intel’s automatic vectorization capabilities for
double-precision floating point arithmetic. We improved fur-
ther on those results when writing FullMonte by moving to
single precision floating-point (including validating that there
was no loss of quality), and using hand-tuned SIMD instruc-
tions for further performance gains. We have also demonstrated
a pre-existing but previously-unknown quality-runtime trade-
off (the wmin roulette parameter) which permits result quality
to be varied across the dynamic range such that the results
in areas with very low fluence (i.e., significantly below PDT
threshold, and therefore not clinically of interest) can be coars-
ened to provide a speed boost on the order of 25%. Further
advancing the state of the art, we created an FPGA implemen-
tation of the FullMonte pipeline for limited mesh sizes [23]
using custom digital logic to run 4x faster and 67x more
power-efficiently than a highly-tuned CPU implementation.
Work currently in progress should increase that performance
to ≈16x while maintaining compelling cost and power-efficiency
advantages.

2.2. PDT TREATMENT GEOMETRY EVALUATION
For superficial applications, PDT treatment planning generally
consists of illuminating the surface with a set energy per unit
area, after giving a standard photosensitizer dose in mg/kg. For
deeper-seated lesions optical diffusers may be used to increase
the penetration depth of the light [3]. When delivering intersti-
tial PDT, the simplified treatment planning approach is clearly
deficient since the fluence distribution within the tissue is highly
dependent on optical properties [10] and geometry. Work on
interstitial PDT has thus far been focused on the prostate because
it is a large, relatively homogeneous structure which is eas-
ily accessed for placement of light sources. Working with more
difficult areas will require more involved simulation, treatment
planning, and dosimetry.

Some of the first algorithmic PDT planning was demonstrated
by Altschuler et al. [24] using the Cimmino algorithm for prostate
PDT planning. The forward model used was a simple evaluation
of the diffusion-theory equation for a point source in an infinite
homogeneous medium, convolved with the light source positions
and strengths. They then evaluated dose-volume histograms
for a given configuration, and optimized the configuration to
minimize dose to organs at risk while maintaining a specified
target dose.

Researchers at Lund University and SpectraCure AB [25]
have run clinical trials for prostate cancer using the SpectraCure
IDOSE platform, which uses multiple treatment fibers and real-
time monitoring. Their planning system uses a diffusion-based
solver to calculate light fluence, aiming to deliver a minimum
threshold dose to the entire prostate gland while minimizing
exposure to nearby organs [26]. The fluence dose was evalu-
ated by dose-volume histogram and dose maps to evaluate the
delivery of light throughout the target volume. Conservative dose
targets and tissue heterogeneities were proposed to explain some
observed under-treatment in the trials.
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A series of clinical trials vascular-targeted photodynamic ther-
apy of prostate cancer using Tookad at the Ontario Cancer
Institute [4] also used dose-volume histograms to express
treatment criteria. Their software used a finite-element method
solver similar to the Lund group, with treatment geometries spec-
ified manually and then evaluated by dose-volume histograms
and observation of isofluence contours representing damage
thresholds for both tumor and the urethra/rectal wall. The biopsy
results were interpreted according to D90, the minimum light
dose received by at least 90% of the target volume. In vivo mea-
surements demonstrated the ability of the simulation engine to
predict the location of isofluence contours to within ±2 mm. The
time to create a mesh description of the geometry and calculate
a light dose were reported to be between 10 and 20 min, with a
total 2–5 h required to create a plan. While the exact ratio is diffi-
cult to predict, a single-digit factor of speed improvement is likely
on a current computer compared to the one used in the study 6
years ago.

While a few works have used MC methods, for instance calcu-
lating the dose received at the surface of a cylindrical area around
a light source in the prostate [27], these have generally used sim-
ple geometry models. To our knowledge, no work has yet gone so
far as to use 3D MC simulations for treatment planning.

3. METHODS
We divide the treatment evaluation process into three stages
discussed individually below. First, the problem description con-
sisting of patient geometry, optical properties, target volume, and
light sources must be defined. Next, the description is given to
the Monte Carlo simulator to run a user-specified number of
photon packets. Finally, the results are interpreted in terms of
dose-volume histograms and fluence field visualizations.

Future work would naturally use a numerical optimiza-
tion method coupled with the plan evaluation methods shown
here to iteratively refine the source descriptions toward user-
prescribed goals. Given sufficient computing resources, different
wavelengths may also be contemplated in the optimization by
assigning wavelength-appropriate optical properties to each tis-
sue type.

Variability of optical properties is one of the most important
factors in safe and effective delivery of PDT. Computationally, our
method can address this by evaluating multiple plans spanning
the anticipated range of optical properties, an approach made
more feasible by our short run times. A thorough study of the
effect of such variability on PDT planning and delivery would be
an important future contribution outside the scope of the present
discussion, but enabled by the methods presented here. Given
such an understanding, we would use these plan evaluation tools
to develop treatment planning methods which are robust to the
major sources of PDT variability.

3.1. PROBLEM DESCRIPTION
The planning system accepts as input a tetrahedral mesh in which
each mesh element is assigned a tissue type. Generally this would
be done by a radiologist using CT or MRI information, followed
by software generation of a volumetric mesh from the provided
curves. Pending creation of such infrastructure, we demonstrate

our capability using Digimouse [28] since it is widely available
and a common model for imaging experiments. We placed a
hypothetical tumor in the abdomen near the lung, and then
placed a single line source interactively using software (depicted
in Figure 2). For dose-volume histogram generation, we defined
(again interactively) a bounding box to exclude tissue outside
the region of interest (x, y, z) : x ∈ [7, 17], y ∈ [35.5, 45.5], z ∈
[6.5, 16.5]. The bounding box is needed to exclude the large por-
tions of the mesh which receive no fluence and would otherwise
dominate the dose-volume histogram for organs at risk. The mesh
statistics for the entire mouse, tumor, and organs at risk are
given in Table 3. We note that the DVH volume does not sum to
1000 mm3 because of the inclusion of some air space, and because
of the exclusion of border elements which are not completely con-
tained within the box. Trade-offs involved in mesh generation and
refinement are discussed in the results section.

3.2. SIMULATION
Monte Carlo simulation was carried out using our FullMonte
software, which uses a tetrahedral mesh geometry description and
sums the total energy Ei absorbed within each mesh element i of
volume Vi during the simulation. Conversion to fluence for each
absorbing element of uniform absorption coefficient takes place
by � = E/Vμa. The roulette parameters were set to wmin = 10−5

and p = 1/Pr (Roulette win) = 10 as is standard practice in TIM-OS and
MCML, though up to 30% speedup could be realized at min-
imal quality cost by increasing wmin as discussed in our paper
introducing the FullMonte software [22].

FullMonte is able to handle arbitrary combinations of a num-
ber of clinically relevant light sources: isotropic points, cut-end
fibers (cone beam emitted from a disc of finite extent), volume

FIGURE 2 | Interactive treatment plan input using Digimouse [28] mesh

showing tumor (red), heart (purple), liver (green), lungs (yellow/light

purple), and skeleton (pink), with the 10 mm DVH bounding cube.

Table 3 | Mesh statistics.

Organ Tetrahedra Volume (mm2)

Entire mouse 306774 21354.2

Tumor 436 4.2

Lung 23148 179.7

Heart 759 31.5

Liver 1557 116.5

Muscle 31873 579.5

Total DVH bounds 57817 912.2
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sources (the interior of a tetrahedral element), face sources (a tri-
angular face of a tetrahedral element), line sources, and pencil
beams. For this instance, we used a single cylindrical diffus-
ing fiber which emits isotropically in the plane normal to the
fiber axis. Extension to sources with a tailored emission pro-
file [29] or to a point source tracing out a path (e.g., as used in
mesothelioma treatments at the University of Pennsylvania [30])
is trivial.

3.3. DOSE-VOLUME HISTOGRAM GENERATION
For each tetrahedral element which lies entirely within the bound-
ing box, the fluence is calculated from the energy absorbed within
the volume Ei. The elements are divided according to the organ
(or tumor) to which it is assigned, and the DVH is calculated in
the usual manner [31]. For illustration purposes, we have scaled
the output for each individual run such that D90 = 100%, i.e.,
90% of the tumor receives the target dose. Naturally, the x (fluence
dose) axis may be scaled arbitrarily by increasing or decreasing
power and/or duration; the shape and relative positions of the
curves are what determine how specifically the plan is targeting
the intended treatment volume.

3.4. FLUENCE FIELD VISUALIZATION
Finally, the fluence field is visualized as both a set of isofluence
contours to evaluate the spatial distribution. In this case, the
source is close enough to the surface that the isofluence con-
tours are truncated at the skin since fluence is not scored beyond
the outer limit of the geometry. When using MC simulations for
planning, we aim to use many low-quality runs to quickly elimi-
nate poor candidates using the DVH variance reduction scheme,
and produce a short list of several good plans for considera-
tion. Having narrowed the list, we can spend more time on those
few plans to produce high-quality results for visualization and
sign-off.

4. RESULTS AND DISCUSSION
4.1. GEOMETRY SETUP
Two treatment plans were tested to illustrate the method: a
subjectively “good” plan, in which the line source was posi-
tioned along the long axis of the tumor [(11.4, 42.4, 10.4) −
(11.7, 41.6, 11.0)], and a “bad” plan in which the source extended
beyond the edges of the tumor into both lung and liver tissue
[(11.5, 40.0, 10.4) − (12.5, 45.1, 12.1)]. The organs at risk which
had significant volumes within the bounding box and received
meaningful doses were the tumor, lung, liver, and surrounding
muscle (the default material in Digimouse where no organ is
assigned). The optical properties used in these simulations are
listed in Table 4.

The dose-volume histogram (DVH, as described in the intro-
duction) results of one simulation run with one million packets
for each of the plans (good/bad) is shown in Figure 3. In the
present situation, the resolution of the dependent variable (% of
volume) is determined by the volumes of the tetrahedral elements
comprising the region, while the horizontal position is the fluence
output from the simulator. The statistical uncertainty in the hor-
izontal positions arising from Monte Carlo fluence simulation is
dealt with below.

Table 4 | Selected simulation optical properties, as provided in Shen

and Wang [21].

Organ μa mm−1 μs mm−1 g μ′
s mm−1 Albedo

Muscle, tumor 10.0 0.23 0.9 1.0 0.9775

Heart 11.0 0.11 0.9 1.0 0.9775

Stomach 17.0 0.21 0.9 1.7 0.9878

Lung 23.0 0.35 0.9 2.3 0.9850

Liver 20.0 0.45 0.9 2.0 0.9780

Skeleton 10.0 0.23 0.9 1.0 0.9775

FIGURE 3 | DVH for two treatment plans using 10M packets to

simulate (2 min runtime each). Bold lines indicate the “good” plan in
which the source is contained within the tumor; faint lines of matching
color indicate the corresponding organ in the “bad” plan. Note the good
plan treats more of the tumor to doses exceeding 90% of targe while
delivering much less dose to the organs at risk.

4.2. RESULT VARIANCE
As a statistical numerical method, Monte Carlo simulation shows
variability in its output results, with the standard deviation scal-
ing proportional to

√
N where N is the number of trials con-

ducted (here photon packets launched). To establish the variance
in output for the example scenario shown, we ran 100 simula-
tions with differing seeds for the random-number generator, and
calculated the mean μi and variance σ 2

i for the energy absorbed in
element i across the set of simulation runs. Mirroring the physical
process which it models, the MC simulation shows Poisson-like
behavior where the variance of absorbed energy in an element is
approximately proportional to its mean value. We say approxi-
mately here because the simulator saves computational effort by
propagating photon packets which are proportionally absorbed
through multiple interaction events, rather than discrete photons
which undergo either scattering or absorption. The relative uncer-
tainty, measured by coefficient of variation (σ/μ), therefore scales
inversely with the square of the energy absorbed in an element

Ei =
�

Vi

μa(p)�(p)∂V (1)
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The absorbed energy integrated over volume is not directly
useful for calculating photodynamic dose because it does not
separate photosensitizer absorption from other chromophores;
that requires knowledge of photosensitizer concentration (out-
side the scope of the optical simulator), absorption cross-section
(a material property), and fluence (derived from optical simula-
tion). Conversion of absorbed energy into fluence requires simply
multiplication by a constant (k = �i/Ei = V−1μ−1

a ) if we assume
homogeneous fluence and absorption coefficient over the volume
element in Equation (1). That multiplication changes the values
of mean (kμ) and variance (k2σ 2) but not the coefficient of varia-
tion due to algebraic cancelation. We can conclude therefore that
the relative uncertainty in the fluence value for an element is the
same as the relative uncertainty in the absorbed energy, which is
inversely proportional to both its absorption coefficient and its
volume.

The variance of an individual element in isolation is of great-
est interest when looking at fluence maps, or calculating the value
that would be measured by a very small isotropic point probe.
For evaluating the merits of a specific treatment plan, though,
examining and extracting values from the dose-volume histogram
(DVH) is the customary method. The DVH is built from a set
of simulated fluence values through sorting. We can expect, and
indeed find, significant reduction in the variance of the order
statistics represented by the DVH compared to the variance of
its individual constituents. This is shown graphically in Figure 4,
where the DVH from each of the 100 different runs are over-
laid to indicate the range of variation in output. Based on that
set of runs, the standard deviation of D90 extracted from a very
quick and coarse 100k-packet run is just 1.2%, which is well below
the currently-permitted calibration error of 5% when measuring
optical power for PDT. Visually, it appears that for most of the
curve DVH generation achieves a reduction in standard devia-
tion of the D90 value of at least 2–4x compared to its constituent

FIGURE 4 | 100 DVHs (100k packets each) overlaid to show result

variance; note organs at risk have much lower DVH variance than the

target tumor despite having lower fluence. Standard deviation of the D90

derived from these DVHs is only 1.2% (black bar overlay) despite being
composed of high-variance individual results.

elements. Figure 5 shows a simulation using 10x as many packets
(1M) and the corresponding 1/

√
N decrease in uncertainty.

The same effect is noticeable when trying to determine Vx,
the volume of an organ which receives a dose greater than x%
of the target, whereby x is defined by the safety require for a
particular indication. Details of the dose-volume histogram for
muscle tissue at risk are shown in Figure 6, which depicts the
region around 100% of target dose, which is critical in determin-
ing the extent of probable damage to organs at risk. The red bars
show a range of ±σ on each individual fluence element com-
prising the DVH; note that of 100 runs, one would expect 5%

FIGURE 5 | 100 DVHs (1M packets each) overlaid to show result

variance reduction relative with increasing simulation packet count.

Each simulation used 10x more packets than Figure 4, requiring 10x longer
(12 s) to compute but yielding 3.3x smaller uncertainty per mesh element.
D90 standard deviation was reduced to 0.6%.

FIGURE 6 | Variance-reduction effect of DVH generation demonstrated

by overlaying 100 DVHs for muscle tissue at risk, each created from a

run of 100k packets (1.3 s runtime each), on top of ±σ bars (red) for

each individual fluence component. Black bars show ±1σ uncertainty in
determining the volume of tissue Vp receiving more than p% of target dose
(p = 60, 70,. . . 140); uncertainties range from 1–5% of Vp tissue volume.
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of results to lie outside the larger zone of ±2σ based on indi-
vidual variance. In fact, we do not see that in the plot because
the DVH is more stable than its constituent elements, permit-
ting us to calculate to within 1–5% relative uncertainty (black
overlay bars, ±1σ ) the Vx values for the organs at risk despite
creating the DVH from noisy elements. Again this is integer fac-
tors better than would be expected and most importantly the
runtime decrease for a given increase in acceptable per-element
standard deviation is quadratic because σ ∝ √

N. The variance
reduction from DVH generation is therefore comparable to the
quality improvement resulting from at least a 4–16x decrease in
runtime.

One interesting point is that the organs at risk (OAR), which
have much lower fluence, and one would therefore expect to
yield higher relative uncertainty, actually show lower variation
in the DVH traces. This is due in part to the much larger
number of elements captured in the OAR traces; though each
element has high uncertainty, we are sorting a large list of such
variables so that the order statistics (DVH) become relatively
stable.

We posit that increasing the spatial resolution of the mesh may
sometimes paradoxically decrease the variance in the DVH. The
increased mesh resolution may modestly increase the compute
time per packet, but a reduction in DVH variance will require
the simulation of fewer packets to achieve an acceptable result. It
may therefore be possible to reduce the required compute time
by working with a finer mesh, increasing spatial resolution and
the confidence in the DVH despite increasing the variance of
the individual constituent elements. Figure 7 shows the result-
ing isofluence lines for one simulation. The impact of differing
optical properties in the tissues is clear from the contours’ lobed
appearance, particularly around the lung and liver, both of which
have lower albedo due to higher scattering (≈2x) and even higher
absorption (≈3 – 4x) coefficients compared to the surround-
ing muscle tissue. This simulation used ten million packets,
requiring 2 min of run time to create a smoother isofluence
surface.

FIGURE 7 | Fluence field for “good” plan depicted as isofluence

contours (beige surfaces, spaced in factors of 10). The organs visible are
liver (green), lung (yellow), and heart (blue) along with the outer surface
(faint gray). Both views show the same case from different perspectives.
The tumor is the interior red surface, with the embedded line source shown
in a darker red. The impact of optical-property differences between the
organs is visible from the lobed appearance of the outer contour particularly.

4.3. RUN TIMES
One advantage of the Monte Carlo method for biophotonic
simulations is that it allows a continuously-variable tradeoff of
run time and result variance. Due to statistical averaging in the
output, the uncertainty (standard deviation) for the fluence in
any individual output element is inversely proportional to

√
N

where N is the number of photon packets simulated. Considering
the simulation result for a single mesh element, the variance
is influenced by the number of absorption events during the
simulation which is itself determined by several factors: wmin

roulette parameter [22], mesh element volume, material albedo,
and element fluence (which depends on the surrounding geom-
etry and sources). Of these, only the number of packets run,
wmin, and mesh element volume are under control of the user
with the rest dictated by the problem being simulated. A refine-
ment of the mesh will give finer spatial resolution to the output
fluence, at the cost of increased result variability due to the
reduced number of absorption events within each smaller mesh
volume.

Simulations were conducted on a high-performance laptop
(MacBook Pro 15′′, mid-2014 model) with a latest-generation
Intel Haswell processor, 2.8 GHz (Turbo to 3.6 GHz) quad-
core with hyper threading supporting 8 simultaneous threads.
Previous comparisons have shown that the required compute
time scales inversely with increasing numbers of cores and clock
speed, and linearly with the number of packets requested. To con-
duct a coarse but indicative simulation of 100k packets (Figure 4),
the average time required was just 1.34 s. The required time
scaled up linearly in the number of packets, with 200k packets
taking 2.32 s and 1M packets running in 12.1 s. These runtime
figures show some minor deviations from a linear fit, likely due
to other processes and/or clock speed changes due to thermal
management.

Desired result quality and problem geometry are the primary
factors affecting required run time. As discussed in the DVH sec-
tion above, for evaluation of treatment plans, several factors come
into play to determine the required precision for individual ele-
ments to yield an acceptable measure of plan merit. Given the
American Association of Physicists in Medicine (AAPM) absolute
calibration standards of optical power meters for PDT to within
5% [32], we suggest that a DVH dose confidence level of 1% is
more than adequate to render the impact of simulation error on
outcome negligible. Appropriate understanding of the confidence
level in the output can therefore reduce run time considerably by
shifting the user’s perception of the number of simulated packets
required to achieve their desired outcome.

When conducting PDT treatment planning, a large num-
ber of candidate plans will be examined to determine which is
the best under a given measure of plan merit. Comparing two
plans will thus have some probability of yielding an incorrect
result based on the confidence bounds of each of the solutions,
and thus mis-directing the optimizer. One can and should try
to use optimization techniques that are robust to noisy inputs.
Ideally, though, we would like to run simulations which are
“good enough” with respect to the degree of confidence in the
output without incurring excessive computational cost (run time
or financial cost of hardware).
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A different degree of confidence may be required depending
on the end goal of a simulation run. As described below, the
generation of dose-volume histograms gives a variance reduc-
tion effect. If, on the other hand, the user is looking for the
sensitivity of fluence within a single element to a small change
of input parameters, for instance in looking to place a small
fluence-rate monitoring probe, a much greater number of pack-
ets may be required to reduce the variance to an acceptable level.
For such smaller regions, the options for variance reduction are
more limited but spatial averaging remains a viable option. When
designing a complete workflow one can achieve significant sav-
ings by customizing the level of effort to the level of quality
needed, for instance running a large number of plans quickly to
rapidly explore the space before running more refined calcula-
tions. It should also be feasible to separate source planning and
monitor plan execution as discussed in the introduction such
that many candidate placements can be examined at low packet
counts, prior to running fewer high-resolution simulations for
deriving a monitoring plan.

5. CONCLUSIONS AND FUTURE WORK
5.1. CONCLUSIONS
We have shown that Monte Carlo methods are computationally
tractable for PDT treatment evaluation, permit continuously-
variable quality-runtime tradeoffs, and are amenable to hardware
acceleration. Additionally, the computation of dose-volume his-
tograms (DVHs) from MC simulations functions as a significant
variance-reduction scheme which greatly reduces the runtime
required to achieve a given level of output confidence. Current
run times can be sufficiently low, even on a laptop computer,
that tetrahedral-mesh MC is a viable option for evaluating PDT
treatment plans. Higher-precision simulations with a larger num-
ber of packets which will permit accurate sensitivities (e.g., to
probe placements or to personalized optical properties) can also
be calculated. For iterative treatment planning and algorithmic
optimization, accelerated hardware enables a very large volume
of simulations to be run quickly. In short, given an appropriate
understanding of the requirements for acceptable output quality,
and of the effects of DVH generation, Monte Carlo simulations
for PDT treatment planning may be considerably (integer factors)
less expensive than is generally perceived.

5.2. OPTICAL PROPERTY VARIABILITY
This work demonstrates the capability and low computational
cost of using Monte Carlo methods to evaluate the dose deliv-
ered by a given light source configuration into a specified tis-
sue geometry with known optical properties. In the practice
of interstitial PDT delivery, however, patient optical properties
vary widely [33, 34]. Development of treatment plans which
are robust to a range of optical properties, as well as tech-
niques for in-vivo detection and compensation for such variability
(building on prior efforts in the prostate [4, 25]), would be
important contributions to PDT practice. The first part involv-
ing assessment of variability is enabled in a straightforward way
by the present work, requiring only simulation of clinically-
derived meshes over a range of properties with analysis of the
results. Development of robust optimization techniques and

optical property detection/compensation methods are more dif-
ficult questions; this work provides an important prerequisite,
namely a fast and accurate plan evaluation engine.

5.3. ALGORITHMIC TREATMENT PLANNING FLOW
Using the infrastructure developed, we aim to create an
automated numerical optimization system which works toward
user-defined treatment plan goals (minimum dose for tumor,
maximum dose to organs at risk, and a penalty function for devi-
ations). It will need to be robust to misdirection due to the out-
put variance, though to what degree remains to be determined.
One may contemplate a highly robust algorithm (e.g., simulated
annealing) which works on very short, low-quality/high-variance
simulation runs; or, one may choose to employ an algorithm
which is less demanding in the number of sample plans to
evaluate but requires higher-quality input.

5.4. HARDWARE ACCELERATION
In previous work, we have also demonstrated the capabil-
ity to perform identical Monte Carlo simulations using Field-
Programmable Gate Arrays (FPGA) custom digital logic [23],
running 4x faster and 67x more power-efficiently than a high-
end quad-core Intel processor for mesh sizes up to 48k elements.
Such simulations can replace the software kernel used herein to
generate results considerably more quickly and cheaply than the
general-purpose CPU used. We aim to use this specialized plat-
form to enable algorithmic optimization of PDT treatment plans.

5.5. DOSE CONCEPT REFINEMENT
While the present work focuses entirely on delivering a evaluat-
ing the light fluence delivered, definitions of photodynamic dose
encompassing more factors exist [5, 6]. Given the existing sim-
ulator’s output of fluence within the tissue, additional explicit
dosimetric information regarding oxygenation, photosensitizer
concentration, and tissue sensitivity can be incorporated to pro-
duce a DVH of photodynamic dose which should more closely
predict the clinical outcome. Such additional factors would need
to be modeled separately and integrated with the fluence informa-
tion from the optical simulator, for computation of photodynamic
dose-volume histogram rather than (or in addition to) simple
light fluence dose.

5.6. IMPACT OF MESH REFINEMENT
The connection between mesh size and DVH variance needs fur-
ther investigation. As discussed in the results section, there are
contrary pressures when mesh element size decreases: individ-
ual element variance would tend to increase because of a smaller
number of arrivals to be summed; DVH variance would how-
ever tend downwards due to the variance-reduction properties of
sorting the fluence elements. Mesh refinement also adds a mild
computational burden, which may or may not be offset by the
decreased number of packets which will be required to achieve an
acceptable level of confidence in the DVH.
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