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In this paper, we provide a context for the modeling approaches that have been

developed to describe non-Gaussian diffusion behavior, which is ubiquitous in diffusion

weighted magnetic resonance imaging of water in biological tissue. Subsequently, we

focus on the formalism of the continuous time random walk theory to extract properties

of subdiffusion and superdiffusion through novel simplifications of the Mittag-Leffler

function. For the case of time-fractional subdiffusion, we compute the kurtosis for the

Mittag-Leffler function, which provides both a connection and physical context to the

much-used approach of diffusional kurtosis imaging.We provideMonte Carlo simulations

to illustrate the concepts of anomalous diffusion as stochastic processes of the random

walk. Finally, we demonstrate the clinical utility of the Mittag-Leffler function as a model

to describe tissue microstructure through estimations of subdiffusion and kurtosis with

diffusion MRI measurements in the brain of a chronic ischemic stroke patient.

Keywords: anomalous diffusion, kurtosis, Mittag-Leffler function, continuous time random walk, fractional

derivative, magnetic resonance imaging, stroke

1. Introduction

In the first measurements of water diffusion in biological tissue using magnetic resonance
imaging (MRI) systems, the term “apparent diffusion coefficient” (ADC) was chosen to high-
light the fact that, although the free diffusion coefficient of water at body temperature is ∼
3 × 10−3mm2/s, typical values in white matter (WM) and gray matter (GM) regions of inter-
est in the human brain were found to be an order of magnitude smaller ∼ 0.6 − 1.0 ×
10−3mm2/s due to hindrances imposed on water self-diffusion by the tissue microstructure
[1–3]. Furthermore, it was recognized that the diffusion decay signal does not always follow
a monoexponential decay as predicted by the Bloch-Torrey equation when diffusion weighted
measurements are sampled at different time and length scales [4]. The non-monoexponential
behavior suggested a superposition of two Gaussian diffusion populations with slow and fast
ADC values which related to the volume fractions of intracellular and extracellular space
within the imaging voxel, known as the biexponential model [5, 6]. Although the biexponen-
tial model provides a means to accurately fit the diffusion signal, the estimation of intracel-
lular and extracellular volume fractions does not accurately correspond to the actual physical
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makeup of the underlying microstructure, either in vivo or even
in a simple ghost erythrocytes model [7, 8].

As a result, more sophisticated geometrical models have been
developed to more subtly identify diffusion properties that pro-
vide insight about tissuemicrostructure [9–13]. Some approaches
describe the non-monoexponential signal as a shift from Gaus-
sian diffusion to non-Gaussian diffusion. There have been efforts
to utilize the exponential function and stretch the argument by
a parameter in the exponent to provide an index that classi-
fies the deviation from Gaussianity [14–17]. Additionally, there
has been an attempt to characterize fixed biological tissue with
higher moment analysis of the diffusion propagator in order
to extract fractal-dimension measures [18, 19]. Another way to
identify non-Gaussian diffusion, known as diffusional kurtosis
imaging (DKI), uses a Taylor-series expansion of the argument
in the exponential function in order to estimate excess kurtosis
of the measured signal vs. the Gaussian case of a monoexponen-
tial decay [20]. However, due to the parabolic form of the fitting
function in DKI, a limit must be placed on the maximum diffu-
sion gradient strength for the fitting function to monotonically
decrease with increased diffusion weighting [21]. It is possible to
extend the gradient limit by including higher order terms in the
expansion, however this requires the inclusion of terms greater
than the second and fourth order cumulants that correspond to
the second and fourth moments [22]. As very high strength gra-
dients have recently become available, the mathematical form in
DKI limits the ability to interrogate tissue microstructure [23].
Recently, the continuous time random walk (CTRW) has been
applied to neural tissue to connect a mathematical model with
a physical interpretation of diffusion [24–28]. As pointed out in
Jensen andHelpern [21], the stretched exponential model in Ben-
nett et al. [14] is not compatible with DKI as it is not an analytic
function. However, by considering a model for subdiffusive pro-
cesses, it is possible to compute the excess kurtosis using moment
analysis of the Mittag-Leffler function (MLF). In CTRW theory,
the MLF is a generalization of the exponential function, which is
an analytic and monotonically decreasing function for all argu-
ments. The MLF, while rigorously defined as a convergent power
series, is, nevertheless, challenging to compute and fit for clinical
MRI data, which is constrained in sampling due to practical lim-
its on scan time. Here, we formulate simplified fitting forms of
the MLF, connect subdiffusion to kurtosis, provide simulations
of random walk conditions to illustrate the diffusion physics,
and demonstrate measurements of non-Gaussian diffusion in the
brain of a chronic stroke patient.

2. Materials and Methods

2.1. Continuous Time Random Walk Theory
The fundamental concept in CTRW theory is to extend the
diffusion equation such that the fractional-order partial deriva-
tives can be utilized as mathematical operators to describe the
diffusion propagator, P(x, t):

∂αP(x, t)

∂tα
= Dα,β

∂βP(x, t)

∂|x|β
, (1)

where ∂α/∂tα represents the order of the Caputo fractional
derivative in time for 0 < α ≤ 1, ∂β/∂|x|β represents the order
of the Riesz fractional derivative in space for 1 < β ≤ 2, andDα,β

is the generalized diffusion constant (lengthβ /timeα) [24, 29, 30].
The justification for making use of the fractional derivative

operators is to provide a mathematical means to interpolate from
homogeneous and relatively simple systems that exhibit local,
Gaussian behavior to heterogeneous and relatively complex sys-
tems that exhibit non-local, power-law behavior [25, 30–34]. In
the CTRW context, the fractional order operators, α and β , pro-
vide a description of a random walk’s likelihood to have broader
distributions of waiting times and jump lengths, respectively, in
comparison to classical Brownian motion. When α = 1 and
β = 2, Equation (1) simplifies to the integer-order partial dif-
ferential equation to describe Gaussian diffusion. Through the
mean-squared displacement (MSD), when the ratio 2α/β < 1
the dynamics are sub diffusive and when 2α/β > 1 the dynamics
are super diffusive [24, 25]. In the most general case in which α

and β are of arbitrary orders, Equation (1) can be readily trans-
formed to Fourier-Laplace space and represented in closed form
as the MLF [32, 35]. The Fourier-Laplace transform, P(x, t)→
p(q, s), in Equation (1) is,

p(q, s)=
1

s+ Dα,β s1−α|q|β
. (2)

Applying the inverse Laplace transformation to Equation (2), we
obtain a simple expression for the characteristic function (CF) of
the diffusion propagator as,

p(q, t)= Eα

[

− Dα,β |q|β tα
]

, (3)

where Eα is the single-parameter MLF [36, 37]. When α = 1 and
β = 2, Equation (3) becomes,

p(q, t)= exp(−D1,2|q|2t), (4)

The MLF is an entire function defined as a power series expan-
sion,

f (z)= Eα(z)=
∞
∑

k= 0

zk

Ŵ(αk+ 1)
, (5)

where theŴ function is the generalized form of the factorial func-
tion, defined for real numbers [38]. When α = 1, through the
identity Ŵ(k+ 1)= k !, Equation (5) becomes,

f (z)= E1(z)=
∞
∑

k= 0

zk

k !
, (6)

which is the Taylor series definition of the exponential function.
For the case of time-fractional subdiffusion (i.e., 0 < α ≤ 1

and β = 2), in which the distribution of waiting times for the
random walk follows power-law behavior (that is, more likely to
wait longer times prior to each step), but the distribution of step
lengths is Gaussian, Equation (2) becomes,

p(q, s)=
1

s+ Dα,2s1−α|q|2
, (7)
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and applying the inverse Laplace transform yields,

p(q, t)= Eα

[

−Dα,2|q|2tα
]

. (8)

For the case of space-fractional superdiffusion (i.e., α = 1 and
1 < β ≤ 2), in which the distribution of waiting times is Gaus-
sian, but the distribution for the random walker’s step lengths
follows power-law behavior (that is, more likely to jump further),
Equation (2) becomes,

p(q, s)=
1

s+ D1,β |q|β
, (9)

and applying the inverse Laplace transform yields,

p(q, t)= exp(−D1,β |q|β t). (10)

2.2. Parsimonious Models for Diffusion Weighted
MR Data
In order to write Dα,β from Equation (3) in terms of the ADC
with units of length2/time, D1,2,

Dα,β ≡ D1,2
τ 1−α

µ2−β
, (11)

where µ (e.g., µm) and τ (e.g., ms) are heuristic parameters that
can be estimated to preserve the units for the diffusion coeffi-
cient, however, similar parameters have been for conservation of
mass and heavy tailed limit convergence in fractal and fractional
dynamics [33, 39–41]. When α = 1 and β = 2, Equation (11)
shows that Dα,β = D1,2. However, in order to provide a fitting
estimate for Equation (3) from a diffusionMRI signal, at least five
data points are required to find theD1,2, α, β ,µ, and τ , which can
be a challenging minimization problem and also time consuming
for clinical in vivo diffusion MRI measurements. Since Equation
(11) specifies D1,2, µ, and τ as a ratio, any number of parameter
value combinations can satisfy successful fitting results. However,
to constrain these parameters, initial conditions forD1,2,µ, and τ

can be individually estimated using procedures described in Ingo
et al. [24]. In order to simplify the fitting problem such that D1,2,
α, β can be fitted without the need for additional parameters, µ
and τ , we provide the following conversion to write Equation (3)
in terms of the fitted diffusion weighting factor, b, defined as,

b ≡ (γGδ)2t, (12)

where γ is the gyromagnetic ratio, G is the amplitude of the dif-
fusion gradient, δ is the duration of the diffusion gradient pulse,
and t is the effective diffusion time. The parameter q is defined as,

q ≡ γGδ. (13)

For the case of the spin-echo variant of the Stejskal-Tanner
diffusion-weighted pulse sequence,

t ≡ 1 −
δ

3
, (14)

where 1 is the time between diffusion gradient pulses, such that,

b ≡ (γGδ)2(1 −
δ

3
)= q2t. (15)

Combining Equations (3) and (11),

p(q, t)= Eα

[

−D1,2
τ 1−α

µ2−β
qβ tα

]

, (16)

which can also be written as,

p(q, t)= Eα

[

−D1,2
τ 1−α

µ2−β
(q2)β/2tα

]

. (17)

By substituting q2 with b/t, Equation (17) becomes,

p
(b

t
, t

)

= Eα

[

−D1,2
τ 1−α

µ2(1−β/2)

(b

t

)β/2
tα

]

, (18)

which can be rearranged as,

p
(b

t
, t

)

= Eα

[

−D1,2
τ 1−α

µ2(1−β/2)
(b)β/2t(α−β/2)], (19)

and the substitution can be made to define the classical diffusion
coefficient, D, raised to the order β/2 as,

Dβ/2 ≡ D1,2
τ 1−α

µ2(1−β/2)
t(α−β/2), (20)

in whichDβ/2 has units, for example, (mm2/s)β/2, resulting in the
form,

p(b)= Eα

[

− (bD)β/2], (21)

such that D, α, and β can be estimated from a minimum of three
data samples. Equation (21) is a compact equation with which
to interrogate diffusion and perfusion properties in biological
tissues in the realms of sub-, super-, and Gaussian diffusion to
capture, for example, intravascular incoherent motion (IVIM)
at small b-values [42]. However, if one is interested in captur-
ing only subdiffusion and Gaussian diffusion properties of WM
and GM of the brain, which was demonstrated to be the general
behavior in Ingo et al. [24] as β → 2 and 2α/β ≤ 1 for most
voxels, Equation (21) can be further condensed by setting β = 2,

p(b)= Eα

(

−bD
)

. (22)

As an alternative approach to develop a model for subdiffusion,
Equations (8) and (11) can be combined by setting β = 2 to give,

p(q, t)= Eα

[

−D1,2τ
1−α|q|2tα

]

, (23)

which for estimated values of τ ≃ t, as demonstrated in Ingo
et al. [24], produces an effective mathematical form given by the
two parameter model in Equation (22) such that the equations
are interchangeable under the condition τ ≃ t.
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2.3. Connecting Subdiffusion to Excess Kurtosis
Qualitatively, kurtosis is a measure to non-specifically describe
the peakedness and/or heavy tail shape in a probability distri-
bution via the standardized fourth moment [43]. For example,
a Gaussian probability density function (pdf) has a kurtosis value
of 3, whereas the hyperbolic secant pdf has a kurtosis value of 5 as
its shape is both more peaked and heavier-tailed than the Gaus-
sian shape. A convenient index called excess kurtosis is defined
as the difference between the estimated kurtosis value for a given
distribution with the value of the Gaussian pdf (i.e., 3), such that
the excess kurtosis of a Gaussian pdf is 0. In applications of dif-
fusion MRI, approaches have been developed to expand the loga-
rithm of the exponential signal decay in the form of a Taylor series
to arrive at higher order diffusionmodels [20, 44, 45]. Specifically,
in Jensen et al. [20], the concept of excess kurtosis was connected
to the Taylor series expansion of b, which, in its simplest scalar
form, is given by,

S/S0 = exp(−bD+
1

6
b2D2Kapp), (24)

where Kapp is the apparent excess kurtosis. When Kapp = 0, the
second term in Equation (24) disappears resulting in a monoex-
ponential form, which is the CF for a Gaussian pdf. In Jensen et
al. [20], in vivo diffusion measurements of the human brain have
shown Kapp ≥ 0, indicating non-Gaussian dynamics. In the con-
text of the mathematical definition of the true excess kurtosis, Kt ,
these measurements indicate that the diffusion of water in neural
tissue follows probability distributions with standardized fourth
moments which are broader than the Gaussian case,

Kt ≡
〈x4〉
〈x2〉2

− 3. (25)

Due to the parabolic form of the argument in Equation (24), there
is a limit on the maximum b-value which can be fitted using this
model. For typical diffusion MRI measurements in the human
brain, the maximum values range from b ≤ 2000 − 4000 s/mm2

in order for the fitting function to monotonically decrease with
increased diffusion weighting, as detailed in Jensen and Helpern
[21]. In contrast to the parabolic form of Equations (24), (3),
(8), (10), and (21) monotonically decrease as b → ∞. However,
Equations (3), (10), and (21) cannot be analytically expanded at
q = 0 when β < 2 and, so, the second moment diverges for
the diffusion propagator, P(x, t), which by extension, also applies
to the stretched exponential models (about q or b) in Bennett et
al. [14], Hall and Barrick [15], Magin et al. [16], Palombo et al.
[17]. Although the second moment for these models diverge, it
has been shown that rescaling methods lead to a pseudo MSD
that is proportional to a trajectory that is faster than the Gaus-
sian case of linear time dependence [25, 26]. On the other hand,
Equations (8) and (23) can be expanded as analytic functions of q
in order to compute the higher order moments and estimate the
excess kurtosis as shown below.

By first utilizing the simple form of the Laplace-Fourier solu-
tion to time-fractional subdiffusion in Equation (7), the MSD can
be computed by taking the second derivative of Equation (7) with

respect to q in the limit of q → 0 and then performing a Laplace
inversion,

〈x2(t)〉 = L
−1 lim

q→0
{−

d2p(q, s)

dq2
}, (26)

which gives,

〈x2(t)〉 = L
−1{2Dα,2s

−(α+1)}, (27)

and utilizing the common Laplace and time domain transform
pair,

tα

Ŵ(α + 1)
= L

−1{s−(α+1)}, (28)

yields the form of the MSD,

〈x2(t)〉 =
2Dα,2

Ŵ(α + 1)
tα, (29)

as reported in Metzler and Klafter [25]. Extending the formal-
ism of operating in the Laplace domain, the fourth moment of
Equation (7) can be expressed as,

〈x4(t)〉 = L
−1{24(Dα,2)

2s−(2α+1)}, (30)

and inverting into the time domain using the transform in
Equation (28) gives,

〈x4(t)〉 =
24(Dα,2)2

Ŵ(2α + 1)
t2α. (31)

Inserting Equations (29) and (31) into Equation (25), the excess
kurtosis of the MLF for time-fractional subdiffusion is,

KMLF = 6
Ŵ2(α + 1)

Ŵ(2α + 1)
− 3. (32)

When α = 1, the MLF becomes the monoexponential CF and
KMLF = 0. For 0 < α < 1, KMLF > 0 with the maximum excess
kurtosis value limited to max(KMLF)= 3 when α → 0. Equation
(32) is plotted in Figure 1 which shows a nearly inverse linear
relationship between KMLF and α. Therefore, the monotonicity
of the MLF provides an alternative and explicit means to interro-
gate the kurtosis of the pdf for the diffusion propagator, but with
the important advantage that there are no longer limitations on
the b-value that can be fitted, as is the case for Equation (24).

Interestingly, the form in Equation (32) coincides with the
universal scaling law derived in Goychuk et al. [46],

lim
t→∞

〈x(t)2〉
〈x(t)〉2

= 2
Ŵ2(α + 1)

Ŵ(2α + 1)
− 1, (33)

which gives the relationship of the mean particle position to its
MSD for subdiffusive diffusion dynamics described by α. These
authors show through numerical simulations that the relation-
ship in Equation (33) holds, within statistical error, under varying
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FIGURE 1 | Plot of Equation (32) for the kurtosis, KMLF , computed in

the Mittag-Leffler representation of subdiffusion vs. time-fractional

derivative, α.

FIGURE 2 | One dimensional random walk simulation of Brownian

motion given by a Gaussian distribution of the waiting time parameter

(α = 1) and a Gaussian distribution of the jump length parameter

(β = 2).

values of applied forces and temperatures, as is clearly illustrated
in Figure 2 of Goychuk et al. [46]. Furthermore, a similar result to
Equation (33) was derived in He et al. [47], showing this relation-
ship is also a measure of ergodicity breaking behavior. Therefore,
it is possible that Equations (32) and (33) reflect fundamen-
tal properties of biological tissue structure, which are minimally
impacted by temperature and pressure, for diffusionMRI studies.

2.4. Random Walk Monte Carlo Simulations
In order to illustrate the diffusion dynamics specified in Equa-
tions (3), (4), (8), and (10), one-dimensional random walk

FIGURE 3 | One dimensional random walk simulation of time-fractional

subdiffusion given by a power-law distribution of the waiting time

parameter (α = 0.75) and a Gaussian distribution of the jump length

parameter (β = 2).

simulations were performed using the R software environment
[48]. These numerical simulations provide a context to demon-
strate how the order of the fractional derivatives in Equation (1)
impact the governing statistics in a randomwalk’s distributions of
waiting times and jump lengths. To simulate the sample path as
governed by the CF in Equation (4), a walk with independent and
identically distributed (iid) Gaussian jump lengths and iid Gaus-
sian waiting time increments produces the dynamics described
by Brownian motion in Figure 2. To simulate the sample path as
governed by the CF in Equation (8), a walk of iid Gaussian step
lengths, but with iid power-law waiting time increments, pro-
duces the dynamics described by time-fractional subdiffusion in
Figure 3with α = 0.75. To simulate the sample path as governed
by the CF in Equation (10), a walk of iid power-law jump lengths
and iid Gaussian waiting time increments produces the dynam-
ics described by space-fractional superdiffusion in Figure 4 with
β = 1.5. To simulate the sample path as governed by the CF
in Equation (3), in a walk with step lengths and waiting times
that are both independently iid power-law produces the dynam-
ics described by time- and space-fractional diffusion in Figure 5

with α = 0.75 β = 1.5. In order to compute the iid power
law behavior for the waiting times were selected from the Pareto
distribution,

F(t)= (
t

c
)−

1
α , (34)

and the zero-mean corrected Pareto distribution for step lengths
in the positive and negative directions,

F(x)= (
x

c
)−

1
β −

β

β − 1
c
1
β , (35)
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FIGURE 4 | One dimensional random walk simulation of

space-fractional superdiffusion given by a Gaussian distribution of the

waiting time parameter (α = 1) and a power-law distribution of the

jump length parameter (β = 1.5).

FIGURE 5 | One dimensional random walk simulation of space- and

time-fractional anomalous diffusion given by a power-law distribution

of the waiting time parameter (α = 0.75) and a power-law distribution

of the jump length parameter (β = 1.5).

where c is a constant chosen to be 1 for these simulations to read-
ily demonstrate the square root relationship between distance
and time for diffusion, and t and x have arbitrary units with t ≥ 1
and |x| ≥ 1. The R codes were adapted from the examples fully
described in chapter 5 of Meerschaert and Sikorskii [34].

2.5. Diffusion MRI Experiments
One patient with chronic ischemic stroke was scanned on
a 3 Tesla Siemens Trio MRI scanner with a 16 channel
transmit/receive head coil (Siemens Medical Solutions, Erlangen,

FIGURE 6 | Trace parameter maps of α, D, KMLF , and Kapp for an axial

slice through a brain of a chronic stroke patient with ROIs in the (A)

WM, (B) GM, (C) IT, and (D) CSF.

Germany). The imaging protocol was approved by Institutional
Review Board at Northwestern University. Diffusion-weighted
spin-echo echo planar imaging (SE-EPI) experiments were per-
formed with the following pulse sequence parameters: echo time
TE = 102 ms, repetition time TR = 6 s, 1 = 41.2 ms, δ = 30.6
ms, b-values = 0, 500, 1000, 3000, 4000 s/mm2, 3 orthogonal
diffusion weighted directions, number of averages NA = 6, in-
plane voxel resolution = 2 × 2 mm, voxel thickness = 4mm,
20 axial slices, scan time ∼ 6 min. The raw diffusion weighted
data were corrected for Rician noise by estimating the variance
(σ 2) in the signal intensity of the ventricle at each b-value, such
that Srn =

√
S2 − 2σ 2, which is a limited approach in assum-

ing the spatial distribution of the noise is homogeneous in this
multi-channel acquisition [49, 50]. The Rician noise-corrected
diffusion weighted images were skull-stripped utilizing the Brain
Extraction Tool of the FMRIB Software Library [51]. All skull-
stripped and Rician noise-corrected diffusion weighted images
were co-registered to the b = 0 image space using Statistical
Parametric Mapping (SPM8, Wellcome Department of Cogni-
tive Neurology, London, UK, http://www.fil.ion.ucl.ac.uk/spm).
Using the Levenberg-Marquardt minimization algorithm inMat-
lab (Mathworks, Natick, MA), the averages of the 3 diffusion
weighted direction data were fitted on a voxel-wise basis to Equa-
tion (24) and Equation (22) with the MLF algorithm in Podlubny
[52], Gorenflo et al. [53]. Following estimations of D and α, the
excess kurtosis, KMLF was computed using the conversion pro-
vided in Equation (32). Additionally, data from b = 0 and b =
1000 s/mm2 were fitted to Equation (4) in order to estimate the
classical ADC for comparison to the estimations ofD using Equa-
tions (24) and (22). The isotropic parameter maps of D as esti-
mated by the MLF, α, KMLF , and Kapp for the same axial slice
through the stroke patient’s brain are shown in Figure 6. Using
the same procedures, Equations (24) and (22) were also fit to
b-values = 0, 500, 1000, 3000 s/mm2 to consider the change in
kurtosis estimates by removing the b= 4000 s/mm2 data.
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3. Results

The Monte Carlo simulations in Figures 2–5 can be interpreted
as the random motion of a single particle governed by the statis-
tical conditions imposed by the order of the fractional derivatives
in the generalized diffusion equation in Equation (1). Qualita-
tively, it can be observed that the magnitude of the distances in
the sample paths are on the order of square-root of the time dura-
tion, a characteristic which is particularly evident in the Brownian
motion case of Figure 2. For the case of time-fractional subdif-
fusion in Figure 3, the sample path clearly evolves slower than
the square-root of time, whereas for space-fractional superdiffu-
sion in Figure 4 the particle diverges faster than the Brownian
case over time. Interestingly, for the time- and space-fractional
diffusion in Figure 5 in which the simulation conditions have
a ratio of 2α/β = 1, the sample path distance roughly evolves
with the square root of time, however, the trajectory is clearly dif-
ferent from the Brownian motion simulated in Figure 2. Exper-
imentally, the case for Brownian motion in Figure 2 is readily
distinguishable from the time- and space-fractional diffusion sce-
nario in Figure 5 by inspection of the CFs with respect to the
monoexponential form.

In Figure 3, the apparent subdiffusive behavior of the particle
appears as Brownian motion within certain time intervals, but is
also punctuated by long periods in which the particle makes lit-
tle or no randommovement as a consequence of the heavy-tailed
likelihood to wait longer than in the Gaussian case. In the counter
condition shown in Figure 4, the apparent superdiffusive behav-
ior of the particle appears as Brownian motion for most of the
time, but is interrupted by short intervals when large steps are
made to displace the particle to a new non-local position (i.e.,
pseudo-transport) as a consequence of the heavy-tailed likeli-
hood to jump further than the Gaussian case. By combining these
iid power-law conditions in both distance and time as shown
in Figure 5, it can be observed that the particle is experiencing:
moments of apparent Brownianmotion, periods of extended rest,
and apparent non-local transport within short periods of time.

In the diffusion MRI experiments, Table 1 shows the estima-
tions of α, KMLF , Kapp, DMLF (estimated by Equation 24), DK

(estimated by Equation 24), and ADC (estimated by Equation
4), for the ROIs circled in the parameter maps of Figure 6. The
ischemic tissue in the right hemisphere of the patient’s brain (left
side of the image) has an ADC value which is similar to the typ-
ical ADC found in the CSF. As these data were acquired ∼ 2
years following onset, the IT has necrosed such that bulk ADC

has increased to an unhindered value. Furthermore, the diffu-
sion in the IT is close to Gaussian at all sampled length scales
(b-values) as α ∼ 1, indicating a monoexponential behavior,
which is also the case for the CSF. The trace values for ADC in the
healthy WM and GM are ∼ 1/3 of the values in the IT and CSF,
with the WM possessing an overall slower diffusion than mea-
sured in the GM. As the scale in the D map in Figure 6 spans
the range up to 3 × 10−3mm2/s, the contrast between WM and
GM is difficult to discern, however, in the α map the WM/GM
contrast is clearly visible with the WM demonstrating more sub-
diffusive behavior compared to the GM. The KMLF map also has
clearly visible GM/WM contrast and appears as a negative image
with respect to the α map due to the nearly inverse relationship
between KMLF and α in Equation (32). The Kapp map resembles
similar GM/WM contrast in comparison to KMLF , albeit with a
smaller dynamic range of values between the tissue types as sum-
marized in Table 1, in which the average values in the WM ROI
are KMLF ∼ 1.75 and Kapp ∼ 0.99, whereas the average values in
the GM ROI are KMLF ∼ 0.75 and Kapp ∼ 0.58. Figure 7 shows
example fits of Equations (22) and (24) to the diffusion data in
voxels of WM, GM, and CSF along with the respective estima-
tions for D determined from each equation in order to visualize
the deviations from monoexponential decay on a semilog scale.

4. Discussion

The one dimensional, single particle random walk simulations
with varying statistical conditions provide an illustrative means
to conceptualize the differences between Gaussian and non-
Gaussian diffusion. Of course, in MRI measurements of diffusion
in biological tissue, the spatial resolution of a voxel is meso-
scopic and therefore contains populations of proton spins diffus-
ing about a biological microstructure medium that has varying
properties of heterogeneity and anisotropy. When the diffusion
MRI experiment is designed to sample multiple length and/or
time scales (i.e., b-values) in order to probe the tissue microstruc-
ture, it is reasonable to consider that the bulk diffusion prop-
erties are non-Gaussian due to the heterogeneity of the tissue,
reflected by the presence of neurons, glial cells, and microves-
sels. The CTRW framework is rooted in the statistical properties
of the diffusion process in order to offer a physical description
of the random motion, and therefore, in the biological context,
subdiffusion, for example, can be envisaged as proton spin popu-
lations trapped by the restrictions of neurons and glia (Figure 3)

TABLE 1 | Mean and standard deviation of α, KMLF , Kapp, DMLF , DK , and ADC values for selected regions of interest (ROI) in the white matter (WM), gray

matter (GM), ischemic tissue (IT), and cerebrospinal fluid (CSF) of a chronic ischemic stroke patient’s brain.

ROI α KMLF Kapp DMLF DK ADC

(A) WM 0.49± 0.04 1.75± 0.12 0.99± 0.07 0.72± 0.03 0.75± 0.03 0.68± 0.02

(B) GM 0.77± 0.03 0.75± 0.09 0.58± 0.05 0.97± 0.02 1.02± 0.02 0.93± 0.01

(C) IT 0.94± 0.03 0.18± 0.09 0.35± 0.03 3.12± 0.12 3.26± 0.11 2.97± 0.10

(D) CSF 0.97± 0.01 0.12± 0.03 0.29± 0.05 3.27± 0.11 3.46± 0.12 3.12± 0.08

The estimated diffusion coefficient values are reported with units × 10−3 mm2/s.
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FIGURE 7 | Semilog plots of typical voxel fits to Equation (24) in the (A) WM, (C) GM, and (E) CSF ROIs and Equation (22) in the (B) WM, (D) GM, and (F)

CSF ROIs. Each equation’s estimation of D (mm2/s) is shown to visualize a monoexponential fit and therefore the deviation from Gaussian diffusion.

whereas superdiffusion, can be envisaged as proton spin popula-
tions carried by microvesicular transport (Figure 4). Typically, in
MRI experiments, the diffusion weightings are selected such that
b > 500 s/mm2 in order to minimize the influence of bulk flow in
the diffusion measurement [42]. Therefore, in such experiments,
it is appropriate to consider a model which allows for the sensi-
tization of sub- and Gaussian diffusion behaviors, as proposed in
Equation (22).

For diffusionMRI, it should be highlighted here that the direct
relationship between the Fourier transform of the diffusion prop-
agator and the diffusion weighted signal holds in the limit of the
short pulse approximation (i.e., δ << 1). Preclinical imaging
spectrometers are able to produce very small δ, however most
clinical MRI systems are not equipped to meet this relationship,
though new advances in gradient hardware have become avail-
able in the most advanced systems to approach δ << 1 [23].
Therefore, the estimates of kurtosis in this study, using either

Equations (24) and (32), approach the true kurtosis of the pdf
for the diffusion propagator in the limit that δ << 1. In current
standard clinical implementation of the diffusion-weighted SE-
EPI experiment, MRI systems are programmable to select a par-
ticular b-value, however the specific values of δ and 1 are depen-
dent on the magnitude of b as well as the available maximum
gradient amplitude, G. As a best practice, one would want to tune
δ and 1, such that different time and length scales are probed
in order to characterize the properties of the tissue microstruc-
ture. However, in this study, to achieve a maximum b-value of
4000 s/mm2, the scanner software set 1 = 41.2ms, δ = 30.6ms,
which gives an effective diffusion time of 31ms. At this effec-
tive diffusion time, the sampled q-values are sensitive to length
scales from ∼ 2.8 − 7.9µm. Considering water is diffusing at a
rate of ∼ 0.6 − 1.0 s/mm2 in the WM and GM, the effective net
water displacement (using ∼

√
2Dt) is ∼ 6 − 8µm. Therefore,

depending on the microstructural heterogeneity and tortuosity
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in the biological tissue, the choices made to sample q−space can
result in Gaussian diffusion (due to spatial averaging) for small
values of q or exploit the non-Gaussian dynamics if q is large
enough. As a result, higher order modeling of the diffusion atten-
uation signal (i.e., α, KMLF , and Kapp) are only “effective” values
and are dependent on the measurement scheme of q, 1, and δ

[22, 24]. Ideally, one would tailor the specifics of the diffusion
experiment to exploit the typical length scales of the particular
biological structure of interest (e.g., axon, astrocyte, soma, etc.).

Utilizing the moment expansion of the time-fractional form
of the MLF in Equations (29) and (31) provides an intimate link
between kurtosis and subdiffusion through the Ŵ function and
α. However, this link does not mean that Equations (22) and (24)
are interchangeable, as each mathematical approach is a means to
estimate the true kurtosis of the pdf for the diffusion propagator.
In Table 1, if we compare the estimated values for KMLF and Kapp

in the ROIs, there is a consistent trend in which the WM exhibits
higher kurtosis than the GM, and the IT and CSF have the lowest
values. However, KMLF estimates a wider dynamic range of kur-
tosis values for the ROIs compared to Kapp such that the ratio for
the mean values of WM to GM is ∼ 2.25 for KMLF and ∼ 1.71
for Kapp. For the IT and CSF ROIs, the kurtosis estimated by
KMLF is approximately half of the values as determined by Kapp.
In consideration of the estimated values for the diffusion coeffi-
cient, both DMLF and Dk are consistently greater than the ADC
values (determined from the b = 1000 s/mm2 data) for all ROIs,
however it appears that DK is more sensitive to overestimating
the ADC.

The typical signal fits for WM, GM, and CSF voxels can be
visualized in Figure 7. The parabolic form of Equation (24) is
apparent in A, C, and E with the estimations in the WM and GM
data fitted to the decreasing side of the parabola and the CSF data
fitted to both the decreasing and increasing sides of the parabola.
Clearly, for the b = 3000 and 4000 s/mm2 CSF data, the noise
floor has been reached and both Equations (24) and (22) fitted
the higher b-value data points poorly, however it appears that
Equation (24) is more sensitive to converging to spuriously high
kurtosis estimates in the ventricles and necrosed tissue due resid-
ual signal noise. Nevertheless, over a limited range of b-values,
Equations (22) and (24) can produce similar, but not identical,
estimations of kurtosis. As Equation (22) is not bounded by a
maximum b-value, the MLF provides the opportunity to more
completely sample q-space in order to more accurately estimate
the true kurtosis of the diffusion propagator, which is an advan-
tage as very high strength (300 mT/m) gradients have recently
become available for diffusion imaging [23]. For example, by
removing the b = 4000 s/mm2 data and fitting to Equation (24),

estimates forKapp in theWMROI increase by 11.8± 4.9% and, in
the GM ROI, Kapp increases by 5.8 ± 6.0%, in comparison to the
estimates based on the fits including the b = 4000 s/mm2 data.
In contrast, by removing the b = 4000 s/mm2 data and fitting to
Equation (22), estimates of KMLF in the WM ROI only decrease
by 4.2 ± 6.4% and, in the GM ROI, KMLF only slightly decreases
by 1.2 ± 4.9%. Therefore, with respect to Kapp estimates using
Equation (24), this suggests that not only is Equation (22) able
to fit a wider range of b-values due to its complete monotonicity,
but also that estimations (from Equation 32) of the true kurtosis
are more stable and less susceptible to change due to one’s choice
of the b-value sampling scheme in the diffusion experiment.

5. Conclusions

We have presented new, simplified fitting forms for the MLF as a
three-parameter model in Equation (21) (for potential subdiffu-
sion and superdiffusion) and a two-parameter model in Equation
(22) (for potential subdiffusion only). The concepts of subdiffu-
sion, superdiffusion, and Brownian motion have been simulated
to illustrate the physical consequences of the movement of a par-
ticle in the statistical context of the CTRW theory, which poten-
tially can have biological correlates in diffusion MRI. We have
computed the kurtosis (KMLF) for time-fractional form of the
MLF, which provides a context to relate subdiffusion (α) to dif-
fusion kurtosis imaging (Kapp). Finally, this approach has been
demonstrated on diffusion MRI measurements in the brain of a
chronic ischemic stroke patient in which the true kurtosis of the
diffusion propagator was estimated by fitting the data both to the
MLF and the Taylor-series expansion about the argument for the
logarithm of the exponential function. Current work is under-
way to apply Equation (32) to extract physical properties of tissue
microstructure (e.g., surface-to-volume ratio). Due to limitations
on scan time for the stroke patient protocol, this study only con-
sidered an isotropic analysis to compare KMLF with respect to
Kapp. Future work will expand the scan protocol on healthy sub-
jects to characterize the directional dependence of estimations for
α and KMLF with respect to Kapp in tensor representations, which
require additional diffusion weighting directions.
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