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We report a phase transition model for the onset of fast magnetic reconnection. By

investigating the joint dynamics of streaming instability (i.e., current driven ion acoustic

in this paper) and current gradient driven whistler wave prior to the onset of fast

reconnection, we show that the nonlinear evolution of current sheet (CS) can be

described by a Landau-Ginzburg equation. The phase transition from slow reconnection

to fast reconnection occurs at a critical thickness, 1c ≃ √2 vthe de, where vthe is
π vc

electron thermal velocity and vc is the velocity threshold of the st

∣

ream

∣

ing instability. For

current driven ion acoustic, 1c is ≤ 10de. If the thickness of the C

∣

∣

S is

∣

∣

narrower than 1c,

the CS subcritically bifurcates into a rough state, which facilitates breakage of the CS,

and consequently initiates fast reconnection.

Keywords: magnetic reconnections, fast reconnection, current sheets, bifurcation analysis, plasma waves

1. Introduction

Critical behavior is ubiquitous in magnetic reconnection related phenomena, e.g., Ôflux transfer
event at magnetopause [1, 2], solar flare, etc. A universal property in these phenomena is that there
is always a long development or slow reconnection phase before its transition into fast reconnection
phase [3]. It is found that the formation of microscopic current sheets (CSs) is a necessary condi-
tion for the transition from slow collisional reconnection to fast collisionless reconnection [3–5].
The idea that (whistler)wave can catalyze fast reconnection has been explored both theoretically
[6–8] and experimentally [9]. It has been found by Drake et al. [6] that a thin CS can be broken into
small scale vortices by whistler wave turbulence and hence facilitate the fast reconnection. They also
showed that prior to breakup of the CS, the critical thickness of the CS is smaller than the electron
skin depth. Generation of fractal CS structure is also thought to be a way that links the microscopic
and macroscopic scales in reconnection [10]. One approach to induce a fractal CS is via a series of
macroscopic MHD instabilities, such as secondary tearing mode, Rayleigh-Taylor instability [11],
etc. It is a “top-down” process, cascading from macro-scales to micro-scales. Another approach
is a “bottom-up” process, i.e., formation of the fractal CS is initiated via microscopic instabilities.
This process is plausible when the thickness of the CS shrinks into a very thin level (e.g., a hybrid
width of ion skin depth and electron skin depth). By then, microscopic instabilities (e.g., streaming
instability, whistler wave, etc.) tends to be excited. In this paper, we study the precursor of the fast
reconnection, where the nonlinearity is weak and hence a perturbation analysis is applicable. By
investigating the dynamics of the CS prior to the fast reconnection, we give an estimation of a pos-
sible process of the interaction of electron- and ion-beam-driven instabilities during their passage
through a CS.

The onset of fast reconnection usually happens in a violent way, which is quite analogous
to critical-phase-transition phenomena. In general critical phenomena, the state of the system is
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measured by its order parameter. As the system approaches to its
critical point of phase transition, the order parameter undergoes
a sudden increase, so that the system evolves into a new state.
For the evolution of a CS, the amplitude of the current density
disturbance is a natural order parameter. In laminar reconnec-
tion scenario, the amplitude of the disturbance is small. Once
the phase transition occurs, the order parameter will acquire
a finite amplitude transiently. So that the CS becomes rough,
which tends to facilitate the formation of fractal CS structure,
and hence the fast reconnection is induced. The normal for-
malism, describing critical-phase-transition/subcritical bifurca-
tion, is Landau-Ginsburg theory [12]. For a narrow CS, the
two typical microscopic modes are streaming instability and and
whistler mode, which are driven by the strength of current inten-
sity and the gradient of current density, respectively. An caveat:
for “narrow,” we mean a CS with a thickness between ion skin
depth and electron skin depth, thus both the ions’ and electrons’
dynamics should be incorporated. As a paradigmatic model, we
choose current-driven-ion-acoustic (CDIA) as the representa-
tive of the streaming mode. The CDIA is an electrostatic mode,
and it occurs when electron temperature is much higher than
ion temperature [13]. The current gradient driven whistler wave
(CGDW) is an electromagnetic mode and has been observed
experimentally in the electron diffusion regime [14, 15]. We find
that, under the joint interactions of CDIA and CGDW, the CS
evolution is governed by a Landau-Ginsburg type equation. Once
the CS is narrower than a critical thickness, the order parameter
of the CS will acquire a finite value via subcritical bifurcation, and
then the CS evolve into a rough state (but keep its topology). The
roughened CS can be easily broken up by various instabilities,
e.g., micro-tearing mode, KH mode [6], and hence accelerate the
corresponding magnetic reconnection. We also make an estima-
tion of the critical thickness of the CS, which is about 10de and
is larger than that in Drake et al. [6]. The physics picture dis-
cussed in this paper is consistent with the results given by other
approaches [6, 16].

The rest of the paper is organized as follows. In Section 2,
the linear dynamics of CDIA and CGDW is analyzed. Section 3
gives a heuristic discussion of the nonlinear dynamics of CDIA
and CGDW. Combining the conclusions in Sections 2 and 3, a
Landau-Ginsburg evolution equation for the current density dis-
turbance is obtained, and its bifurcation property is discussed in
Section 4. Section 5 is a summary.

2. Linear Dynamics of CDIA and CGDW

Since electrons are the primary carriers of the current density,
for simplicity, we assume the CS being purely composed of elec-
trons, and hence all the free energy of the CS is stored in the
electrons current sheet. The evolution of the electron distribution
function is

∂

∂t
fe + Eve ·

∂

∂Ex fe + (− eEE
me

− eEv× EB) · ∂

∂ Eve
fe = 0 (1)

where the collision effect in neglected. Integrating Equation (1)
over Eve,⊥(⊥ means perpendicular to the guide field in ẑ) yields a

drift-kinetic equation

∂

∂t
Fe + ve,z

∂

∂z
Fe −

eEz

me
· ∂

∂ve,z
Fe + Ve,⊥ · ∂

∂Ex⊥
Fe = 0, (2)

where Fe =
∫

fedEve,⊥ and EVe,⊥ =
∫

Eve,⊥fedEve,⊥. In Equation
(2), the parallel and perpendicular kinetic of Fe are linearly cou-
pled, so evolution of Fe can be decomposed into the following two
processes

∂

∂t
Fe|‖ = −ve,z

∂

∂z
Fe +

eEz

me
· ∂

∂ve,z
Fe, (3)

and

∂

∂t
Fe|⊥ = −Ve,⊥ · ∂

∂Ex⊥
Fe. (4)

For the parallel kinetics, the evolution of the CS is driven by the
free energy stored in the strength of the current intensity. A sim-
plest, nontrivial choice for the relevant mode is CDIA, which
transfers the momentum of electrons to that of ions [17]. The
perpendicular kinetics is determined by the evolution of the per-
pendicular collective velocity Ve,⊥, which is in turn determined
by the EMHD equation. Therefore, the relevant mode to perpen-
dicular dynamics of the CS is CGDW, which is driven by the free
energy stored in the spatial gradient of the CS and is a whistler-
like instability and is related to electron momentum transport
[18, 19]. A consistent and complete treatment of the CS dynamics
must deal with these two modes, simultaneously. Under the driv-
ing of inflow, the CS shrinks to a thin layer, and both the strength
and the inhomogeneity of the current density tends to increase,
so that both CDIA and CGDW modes may appear. An caveat:
the realistic motions of particles inside a CS are extreme complex
[16] and could invalid the use of drift-kinetic equation. However,
the full kinetic 3D simulations indeed observed efficient particle
acceleration inside a reconnecting CS and hence streaming insta-
bilities (e.g., two electron beam instability) tend to occur inside a
CS [16]. In the purpose of having a general view (not going the
details of full kinetics of particles) of interaction between particle
beams, we employ the drift-kinetic equation.

Since the CDIA and CGDW have been extensive studied in
literatures [18–21], we provide a brief and heuristic discussion of
the linear and nonlinear features of the CDIA and the CGDW
modes, and focus on the evolution of the CS under the physics
consequence of the joint interactions of these two modes.

2.1. Linear Instability of CDIA
CDIA belongs to a kind of electron streamingmode, which serves
to generate anomalous resistivity. The CDIA occurs when the
electron temperature, Te, significantly exceeds the ion temper-
ature, Ti, e.g., in flare environment [20, 22]. Or else, it will be
strongly suppressed by the ion Landau damping. Nevertheless, if
Te ≃ Ti, a different streaming instability, Buneman instability,
might occur, which has a higher velocity threshold in the order of
electron thermal velocity, vthe. CDIA and Buneman instabilities
only differ in details, and they share the common physical basis
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of a streaming instability triggered by electron streaming veloc-
ity that exceed critical values [13]. In fact, it leads to a similar
conclusion if we replace the CDIA with Buneman instability.

The initial current sheet is assumed in a laminar state. The
maximum of current density is at the mid-plane (x = 0) of the
CS, and decays to zero at the edge in a linear way (Figure 1). (x, y)
is the reconnection plane with ±ŷ the direction of outflows. A
strong guide field is in the out-of-plane direction, so the lower
hybrid drift instability is excluded in the present paper [23]. We
choose this profile for simplicity and a more realistic CS con-
figuration can be chosen, but it is expected that the qualitative
conclusion will not change. CDIA is well studied in literatures
[17, 21, 24], so we directly write its dispersion relation as follows

ωCDIA
k = kzvc, (5)

γ CDIA
k = π

2
|ωCDIA

k | (〈ve〉 − vc) f̄e

(

ωCDIA
k

kz

)

, (6)

where ωCDIA
k

is the real frequency and γ CDIA
k

is the linear growth
rate of the CDIA. kz is the wavenumber in z direction, 〈ve〉 is
the mean electron streaming velocity in ẑ, and vc is the thresh-
old velocity. Neglecting the effect of a mean electric field, which
is small in the precursor of fast reconnection, vc is just the ion
acoustic speed. Though a mean electric field may slightly shift
the value of the threshold velocity [21], the structures of the dis-
persion relations, Equations (5) and (6), will not change. In the
Appendix, we present a derivation of γ CDIA

k
in the existence of

a weak mean electric field, and show that only is the threshold
velocity slightly shifted. As an illustration, we use the results of
Bychenkov et al. [21]:

vc = acs, (7)

where cs = (Ti + Te/mi)1/2 is the ion acoustic speed, mi is the
ion mass, and a = 2.14. The equilibrium distribution function of
electrons is

f̄e(vz) =
1√

πvthe
e
− (vz−〈ve〉)2

v2
the .

Without losing of generality, the electron streaming velocity at
the center of the CS is taken to be marginal, i.e., 〈ve〉(x = 0) = vc.
We also assume 〈ve〉(x) varying linearly, 〈ve〉(x) = vc + 〈ve〉′x,

FIGURE 1 | Sketch of the initial configuration of the CS.

with current shear 〈ve〉′ < 0 (here we take x > 0). Then the
general form of γ CDIA

k
(x) for a inhomogeneous CS follows as

γ CDIA
k ≃

√
π

2

∣

∣ωCDIA
k

∣

∣ 〈ve〉′
vthe

x, (8)

where f̄e

(

ωCDIA
k
kz

)

= f̄e (vc) ≃ 1√
πvthe

. γ CDIA
k

has been assumed to

be marginal in the middle plane of the CS, it becomes more and
more negative as approaching the edge.

2.2. Linear Instability of CGDW
CGDW is an electromagnetic mode and can be described by
EMHD equation [25]

∂

∂t
B+ d2e

∂

∂t
∇ × je = −d2e∇ ×

(

ve · ∇je − d−2
e ve × B

)

, (9)

where de is the electron skin depth, je = −eneve = ∇ × B is the
electron current density, and B is the total magnetic field with
a strong guide component in ẑ. The linear growth rate of the
CGDW is proportional to the gradient of the CS. By extracting
the free energy terms in linearizing Equation (9), one has

∂
∂t B̃+ d2e

∂
∂t∇ × j̃e =

−d2e
(

〈je〉′∇ ṽex × ẑ + ∇〈ve〉 × ∂z j̃e
)

− 〈ve〉′B̃xẑ, (10)

where the terms with higher spatial derivatives(〈ve〉,′′ 〈ve〉′′′...) are
ignored. Employing the transformations of ∂t → γ CGDW

k
,∇ →

ik yields

γ CGDW
k

(

1+ k2d2e
)

B̃ =
−d2e

(

i〈je〉′ṽexk× ẑ + ikz〈ve〉′x̂× j̃e
)

− 〈ve〉′B̃xẑ. (11)

γ CGDW
k

is solved as

γ CGDW
k = |ky|de

1+ k2d2e
|〈ve〉′|, (12)

In the above derivation, we have assumed that the current den-
sity shear is caused by electron drift velocity, other than density
inhomogeneity [26, 27].

Though CGDW is driven by gradient of current density, it is
not electron Kelvin-Helmholtz (KH)mode. The real frequency of
CGDW is in the order of the whistler frequency, while the elec-
tron KH mode is a purely growing mode. CGDW is driven pre-
dominantly by the gradient in the out-of-plane current density,
while electron KH mode is driven by shears of the in-plane elec-
tron flows [9, 28, 29]. Therefore, CGDW and electron KHmodes
are two different types of instabilities. Whistler wave has been
confirmed in laboratory experiments and satellite observations,
and is considered to be important in initiating fast reconnection
[6, 14, 15]. In simulations, a current gradient driven mode with
similar features has also been observed [30].
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3. Nonlinear Dynamics of CDIA and CGDW
Modes

Prior to the onset of fast reconnection, the nonlinearities of
the parallel and perpendicular dynamics are weak, so that a
perturbation analysis of the nonlinear dynamics of the CS is
applicable.

3.1. Nonlinear Instability of CDIA
To the first order, f̄e is adiabatically shifted [31] by a finite
perturbation of electron drift velocity in ẑ (See Figure 2), ṽe,z , i.e.,

f̄e(vz) → 1√
πvthe

e
− (vz−〈ve〉−ṽe,z)

v2
the . (13)

Depending on the sign of ṽe,z , the nonlinear change of the free
energy in the intensity of the current density is positive (ṽe >

0, the red one in Figure 2) or negative (ṽe,z < 0, the blue
one in Figure 2). For the positive change, the CDIA is nonlin-
early unstable, or else it is nonlinearly stable. Substituting Equa-
tion (13) into Equation (6), the nonlinear growth rate is readily
derived as

γ CDIA
NL = π

2
|ωCDIA

k |ṽe,z f̄e
(

ωCDIA
k

kz

)

≃ αkṽe,z, (14)

where αk =
√

π

2 |ωCDIA
k

|/vthe.
Combining Equations (8) and (14), the evolution of |ṽe,z|

driven by CDIA is (i.e., Equation 3)

(

∂

∂t
|ṽe,z|

)

CDIA

≃ γCDIA|ṽe,z| + αṽe,z|ṽe,z|, (15)

where γCDIA = ∑

k γ CDIA
k

and α = ∑

k αk.
∑

k αkṽez,k ≃ αṽe,z
is used in deriving Equation (15), because the spectrum width
of CDIA modes is narrow in the initial nonlinear stage. For a
positive perturbation (the case of interest), the CS is nonlinearly
unstable and hence, to reach a saturated state, one needs con-
sider higher order nonlinear interaction. For acoustic turbulence
[32], three-wave coupling is lacked, and the next-to-order non-
linear interaction scales asO(|ṽe,z|3). Therefore, for the nonlinear

FIGURE 2 | Sketch of nonlinear shift of fe.

dynamics of CDIA, only the lowest nonlinear interaction needs to
be included.

3.2. Nonlinear Dynamics of CGDW
It has been demonstrated that a sharpening CS can be flattened
via a (nonlinear)hyper-diffusion [33, 34], which corresponds to
the electronmomentum transport perpendicular to the CS. There
are also accumulated numerical evidence that point to the plau-
sibility of a hyper-diffusion process in broadening the CS [18].
Here we focus on the general structure of the current density
evolution equation in the impact of the CGDW turbulence. The
nonlinearity of Equation (9) comes from the two terms on the
RHS of Equation (9). Since both ṽe and B̃ are functions of j̃, the
strength of the nonlinear interaction of Equation (9) is ∼ j2.
Keeping minimal algebras, we write the nonlinear evolution of
a “test” mode (j̃z,k) as

(

∂

∂t
j̃z,k

)

nl

=
∑

k′
C(k, k′)j̃z,−k′ j̃z,k′+k, (16)

where C(k, k′) is the nonlinear coupling coefficient given by
Equation (9). The three components of j̃k are related with each
other via Equation (9) and incompressibility condition, ∇ · j̃ = 0.
So, the nonlinear coupling on the RHS of Equation (16) can be
expressed in the form of self-coupling of j̃z,k. With direct interac-
tion approximation [35], the nonlinear coupling in Equation (16)

is approximated as j̃z,−k′ j̃z,k′+k ≃ j̃z,−k′ j̃
(2)
z,k′+k

, and the coherent

response j̃(2)
z,k′+k

is given by Equations (9) and (16):

j̃
(2)
z,k′+k

= Rωk′+k,k
′+kC(k, k

′)j̃z,−k′ j̃z,k, (17)

where the response function Rωk′+k,k
′+k takes the form of

Rωk′+k,k
′+k =

1

−i
(

ωk′+k − ωwhistler − (kz + k′z)〈ve〉
)

+ γ CGDW
k′+k

. (18)

Here ωwhistler is the whistler frequency, and (kz + k′z)〈ve〉 is
the effect of Doppler shift. In the resonance condition ωk′+k −
ωhistler − (kz + k′z)〈ve〉 = 0), Rωk′+k,k

′+k is simplified as

Rωk′+k,k
′+k =

1

γ CGDW
k′+k

(19)

Combining Equations (17) and (19), Equation (16) yields

(

∂

∂t
j̃z,k

)

nl

≃
∑

k′

C(k, k′)
γ CGDW
k+k′

∣

∣j̃z,k′
∣

∣

2
j̃z. (20)

Since the spectrum of j̃z,k is narrow, one has j̃z,k′ ≃ j̃z,k.
Equation (20) is further approximated as

(

∂

∂t
j̃z,k

)

nl

≃ −βk

∣

∣j̃z,k
∣

∣

2
j̃z,k, (21)

where
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βk = −
∑

k′

C(k, k′)
γ CGDW
k+k′

.

The “test” mode j̃z,k is stabilized by the nonlinear term in Equa-
tion (21), so βk should be a positive coupling coefficient [36].
Combining Equations (12) and (21), one obtains the evolution
of |ṽe,z| driven by CGDW (i.e., Equation 4)

(

∂

∂t
|ṽe,z|

)

CGDW

≃ γCGDW |ṽe,z| − β|ṽe,z|3, (22)

where γCGDW = ∑

k γ CGDW
k

and
∑

k βk

∣

∣j̃z,k
∣

∣

2
j̃z,k ≃ β|ṽe,z|3

with β =∑

k βk(en0)
3 > 0.

4. Subcritical Bifurcation of the CS

Combining Equations (15) and (22) yields the full evolution
equation of |ṽe,z|

∂

∂t
|ṽe,z| = γL|ṽe,z| + αṽe,z|ṽe,z| − β|ṽe,z|3, (23)

where the total linear growth rate γL is

γL = γCDIA + γCGDW

=
∑

k

√
πvc

2vthe
|kz| (xc − x) |〈ve〉′|, (24)

and its marginally stable position is

xc =
2√
π

de

1+ k2d2e

∣

∣

∣

∣

ky

kz

∣

∣

∣

∣

∣

∣

∣

∣

vthe

vc

∣

∣

∣

∣

. (25)

Since the edge of the CS is relatively themost stable point, we take
it as an indicator of the global state of the CS. In other words,
if phase transition occurs at the edge, the whole CS will transit
into the new state, too. The bifurcation property of Equation (23)
is determined by the sign of ṽe,z . For a positive perturbation,
ṽe,z > 0, the CS is subcritical bifurcation, or else it is supercritical
bifurcation. In the supercritical bifurcation case, both the nonlin-
ear terms tend to stabilize the linear term, so that the amplitude of
the order parameter is constrained to a relative small value.While
in the subcritical bifurcation case, the first nonlinear interaction
on the RHS of Equation (23) is nonlinearly unstable, so that ṽe,z
can acquire an finite value after the phase transition. Therefore,
the subcritical bifurcation is more relevant to the onset of fast
magnetic reconnection, and it is the case of interest in the present
paper.

In the subcritical bifurcation scenario, ṽe,z = |ṽe,z| and
Equation (23) becomes

∂

∂t
|ṽe,z| = γL|ṽe,z| + α|ṽe,z|2 − β|ṽe,z|3, (26)

which is a real Landau-Ginzburg equation [12]. The correspond-
ing free energy is

F
(

|ṽe,z|
)

= −γL

2
|ṽe,z|2 −

α

3
|ṽe,z|3 +

β

4
|ṽe,z|4 (27)

In the steady state, one has δF/δ|ṽe,z| = 0. |ṽe,z| is solved as

|ṽe,z|I =
α +

√

α2 + 4βγL

2β
, x ≥ 0 (28)

|ṽe,z|II =
α −

√

α2 + 4βγL

2β
, x ≥ xc (29)

|ṽe,z|III = 0. x ≥ 0 (30)

Figure 3 provides a schematic illustration of the three types of
solutions and their stabilities.

Themost remarkable feature of these solutions is their subcrit-
ical bifurcation. At the beginning, the nonlinearity (the 2nd term
on the RHS of Equation 26) of the CDIA starts to drive the cur-
rent density perturbation (i.e., ṽe,z) to grow in an explosive way.
Transiently, the hyper-diffusion induced by the nonlinearity (the
3rd term on the RHS of Equation 26) of the CGDW comes into
effect and saturates the explosive growth. Via the above process,
the order parameter acquires a finite value instantly and the CS
evolves into a rough state.

The subcritical bifurcation occurs at

xb =
∑

k |kz|xc
∑

k |kz|
+ α

4β

≃ xc +
√

πvc

8vthe
C
∑

k

|kz|
|ky|

(1+ k2d2e )

de|〈ve〉′|
, (31)

with C = −∑k,k′ C
(

k, k′
)

(en0)3. The 2nd term on the RHS

of Equation (31) scales as ∼ (me/mi)
1/2 de. Compared with

xc(∼ (mi/me)
1/2 de), it is negligible. For isotropic turbulence,

substituting Equation (7) into Equation (25) yields the critical
thickness of the CS,

1c ≃ 2xc ≃
2

a
√

π

(

Te

Ti + Te

)1/2 (mi

me

)1/2

de

1+ k2d2e
∼ 10

1+ k2d2e
de, (32)

FIGURE 3 | Bifurcation diagram: solid lines represent unstable points,

and dashed lines represent stable points. The red lines represents the

solutions, |ṽe,z |I and |ṽe,z |II, and black line represents the solution, |ṽe,z |III.
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FIGURE 4 | Sketch of the formation of rough CS and the following filamentation.

where Te ≫ Ti is used and de < |k−1| < di. Equation (32)
indicates that the mass ratio of ion and electron plays an impor-
tant role in determining the critical thickness [37]. The above
crude estimation is also comparable with experimental observa-
tions [37, 38]. As is pointed out earlier, the specific value of the
critical thickness is very sensitive to the type of streaming insta-
bility. For example, if the streaming instability is Buneman insta-
bility, which has a much higher threshold velocity in the order
of electron thermal velocity [13], putting vc ≃ vthe into Equa-
tion (25), the corresponding critical thickness is approximately
1c ∼ de. It should be pointed out that the proceeded calculation
can only give a simple estimation. For more precise and complete
description of the CS dynamics, first principle 3D simulations are
needed [16].

The phase transition of the CS proceeds in an explosive way.
We can see this by observing the temporal behavior of |ṽe,z|. In
the early nonlinear stage, the 1st and 3rd terms on the RHS of
Equation (26) are ignorable, and one has

∂

∂t
|ṽe,z| ≃ α|ṽe,z|2. (33)

Thus, |ṽe,z| scales as |ṽe,z| ∼ (t0 − t)−1 and time t0 is deter-
mined by initial conditions. Near the phase transition point, the
CS grows so fast that other instabilities (e.g., tearing mode) have
no time to make a significant impact on the transition process.
Under the driving of the inflow, the CS shrinks along the sta-
ble line (state |ṽe,z|III , solid, black line in Figure 3) to a thick-
ness equaling to 1c, and then it subcritically bifurcates into the
state, |ṽe,z|I , where the order parameter |ṽe,z| acquires a finite
value, instantly. Consequently, the CS is deformed and becomes
rough, but its topology is not changed. The newly induced rough
structures will facilitate the occurrence of micro-instabilities,
e.g., micro-tearing mode, and hence induce fast reconnection.
Figure 4 provides a diagrammatic sketch of this process.

5. Summary

In this paper, we study the nonlinear dynamics of a CS prior
to the onset of fat reconnection. We show that under the joint
interactions of the CDIA and CGDW, the CS can transmit into
a rough state from a laminar state via subcritical bifurcation.
The thickness of the CS is a “controller” of the phase transi-
tion. The phase transition occurs once it is narrower than a
critical value. The rough CS can facilitate the formation of a
fractal CS, and hence induce fast reconnection. Through the
critical thickness is predicted as 1c ∼ 10de/(1 + k2d2e ), the
model proposed here is only paradigmatic. As we stressed in
the paper, the type of streaming instability is very important
in giving a quantitative prediction of 1c. Also, in this work
we focus on the CS dynamics below the ion skin depth, and
the kinetic effect [e.g., kinetic Alfvén wave (KAW)] of ions
is ignored [39, 40]. In the KAW dominant regime (character-
istic scale of fluctuations is order of ion’s skin depth/Lamor
radius), the nonlinear dynamics of the CS will be determined
by the joint interactions of streaming instability and KAW
instability. However, since the dispersion relation of whistler
wave and KAW are similar, it can expect that the CS will also
undergo subcritical bifurcation process at some other critical
width. The qualitative physics picture proposed in this paper
is testable in numerical studies dedicated to the onset of fast
reconnection [41].
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Appendix

Linear CDIA instability with a weak mean
electric field

Constitutive equations for CDIA with a mean electric field are

∂

∂t
fe + ve,z

∂

∂z
fe −

eE

me

∂

∂ve,z
fe = 0; (A1)

∂

∂t
ni +

∂

∂z

(

nivi,z
)

= 0; (A2)

mini

(

∂

∂t
vi,z + vi,z

∂

∂z
vi,z

)

= −Ti
∂

∂z
ni

+eniE; (A3)

Equation (A1) is the 1D kinetic equation for electron. Equa-
tions (A2) and (A3) are ion’s continuity and momentum equa-
tion, separately. In deriving the dispersion relation, we write all
quantities into a mean piece and a fluctuation piece, i.e., fe =
〈fe〉 + f̃e, ni = ni,0 + ñi, vi = ṽi and E = 〈E〉 + Ẽ.

f̃e is composed by a adiabatic part, eφ̃
Te
, and a non-adiabatic, g.

Thus, putting f̃e = eφ̃
Te

+ g into Equation (A1) yields the evolution
equation for g

∂

∂t
g + ve,z

∂

∂z
g − e〈E〉

me

∂

∂ve,z
g = −

(

∂

∂t

eφ̃

Te
+ 〈ve〉

∂

∂z

eφ̃

Te

)

〈fe〉.

(A4)
The characteristic equations of Equation (A4) are

∂

∂t
x(t) = v(t); (A5)

∂

∂t
v(t) = − e〈E〉

me
. (A6)

And their solutions are

x(−t) = −vt − e〈E〉
2me

t2 + x; (A7)

v(−t) = e〈E〉
me

t + v, (A8)

where x(0) = x and v(0) = v. Then the Green function of
Equation (A4) is obtained as

G(ωk, kz) =
∫ ∞

0
e
i
(

ωk−kzve,z−kz
e〈E〉
2me

t
)

t
dt. (A9)

The RHS of Equation (A9) can be seen as Laplace transformation

of exp(−ikz
e〈E〉
2me

t2), i.e., G(ωk, kz) = L

(

exp(−ikz
e〈E〉
2me

t2)
)

.

Using the formula,

L

(

e−iat2
)

= L
(

cosat2
)

− iL
(

sinat2
)

=
√

π

2a

(

1

2
− S

(

p√
2πa

))[

cos
p2

4a
− isin

p2

4a

]

−
√

π

2a

(

1

2
− C

(

p√
2πa

))[

sin
p2

4a
+ icos

p2

4a

]

, (A10)

where p = −i
(

ωk − kzve,z
)

, a = kz
e〈E〉
2me

and S(p),C(p) are Fres-
nel functions, one obtains G(ωk, k) in the weak mean field limit,

1≪
∣

∣

∣

p√
2πa

∣

∣

∣
= 2me

∣

∣

∣

(ωk−kzve,z)2

ekz〈E〉

∣

∣

∣
,

G
(

ωk, k
)

= 1

ωk − kzve,z

[

1+ i
ekz〈E〉

me

(

ωk − kzve,z
)2

]

(A11)

By Equations (A4) and (A11), the Fourier component of g is

gk,ωk
= −ωk − kz〈vz〉

ωk − kzvz

[

1+ i
ekz〈E〉

me

(

ωk − kzve,z
)2

]

eφk,ωk

Te
〈fe〉

(A12)

If the weak mean electric field tens to zero,
∣

∣

∣

ekz〈E〉
me(ωk−kzve,z)

∣

∣

∣
→ 1,

the conventional non-adiabatic response is recovered [17, 24].
Then the total response of electron is

ñe

ne,0
= eφ̃

Te
− eφ̃

Te

[

iπ
ωk − kzve,z

|k|vthe

(

1− ekz〈E〉
meγ

2
k

)]

(A13)

The response of ions’ density is obtained from Equations (A2)
and (A3)

ñi

ni,0
= k2zc

2
s

ω2
k

eφ̃

Te
(A14)

Using the quasi-neutrality condition, growth rate γ CDIA
k

of the
CDIA is obtained as

γ CDIA
k = π

2
|ωk|(〈ve〉 − cs)f̄e−

2ekz

πme|ωk| (〈ve〉 − cs) f̄e
〈E〉, (A15)

where the critical point(γ CDIA
k

= 0) is slightly shifted by themean

electric field, but the basic structure of γ CDIA
k

is not changed.
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