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A kinetic approach to the notion of information is proposed, based on Liouville kinetic

theory. The general kinetic equation for the evolution of the N-particle information IN

in a Hamiltonian system of large particle number N >> 1 is obtained. It is shown

that the N-particle information is strictly conserved. Defining reduced particle number

information densities in phase space should be possible to obtain a kinetic equation

for the ordinary one-particle information I1 ≡ I following the Bogoliubov prescription.

The kinetic equation for I is a kind of generalized Boltzmann equation with interaction

term depending on the hierarchy of reduced informations. This term in its general form

is the most general expression for the Kolmogorov entropy rate of evolution of the

information.
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1. Introduction

The internal information content of a physical system is its entropy S which, in classical Hamil-
tonian systems with one-particle (index 1) Hamiltonian H1(q, p) =

∑
i(p

2
i /2m) +

∑
j /= i U(qj),

is a function of the particle coordinate vectors p, q in Boltzmann’s 6-dimensional (3 time depen-
dent momentum vector p(t) and 3 space vector q(t) coordinates, with t time) one-particle µ-phase
space, mass m and potential energy U(qj), respectively, with i, j particle number. It depends on
the complete dynamics of all indistinguishable particles on the kinetic level under the action of the
interparticle forces (accounted for in the potentialU) which contribute toH1 and are defined by the
Hamilton equations of motion q̇ = ∂H1/∂p, ṗ = −∂H1/∂q. This internal information is, accord-
ing to Boltzmann and Shannon, given as the product of the µ-phase space density F1(p, q, t), the
one-particle distribution function, and its logarithm log F1, with F1 satisfying the Boltzmann equa-
tion ∂tF1 + [H1, F1] = CB, with [. . . , . . . ] ≡ (∂pH1)(∂qF1)− (∂qH1)(∂pF1) the one particle Poisson
bracket, and CB Boltzmann’s collision integral.

In any realistic classical physical system composed of N subsystems (particles) of very large
number N >> 1, the Boltzmann equation is replaced by the Liouville equation

LNFN = 0, with LN =
∂

∂t
+ [HN, ...] (1)

which holds in the 6N-dimensional Gibbs’ Ŵ-phase space (for a general reference cf., e.g., 1, includ-
ing a discussion of quantum systems). The operator LN is the N-particle Liouville operator. It
contains theN-particle HamiltonianHN(pN , qN), which in classical theory is not an operator. Here
the brackets [..., ...] are N-particle Poisson’s brackets.
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This Liouville equation, unlike the Boltzmann equation, is
exact. It acts on the exact phase space density, which for classical
point particles is defined as

FN(q, p, t) =

N∏
i

δ[q− qi(t)]δ[p− pi(t)] (2)

All dynamics is contained in the time-dependent phase space
coordinates of the N particles (subsystems) qi(t), pi(t) via Hamil-
ton’s equations. FN , being a phase space (probability) density,
must be normalized accordingly. In this sense, Liouville’s and
Hamilton’s equations are tautologies. However, the former offers
the advantage of a probabilistic approach which avoids the neces-
sity of solving for all N fully dynamical Hamilton equations
q̇N = ∂HN/∂pN , ṗN = −∂HN/∂qN .

The Liouville equation describes the flow of the N parti-
cles through N-particle phase-space under the action of the N-
particle Hamiltonian, explicitly exhibiting the conservation of
particles. Its (formally known) solution FN though exact is rather
impractical. It requires knowledge of all N exact particle orbits
at all times t. The Liouville equation can, however, be reduced to
a one-particle Boltzmann-like equation holding in one-particle
phase space (with all particles identical distinguished only by
mass, charge, and energy) following a complicated procedure of
reductive integration known as the BBGKY hierarchy (after N. N.
Bogoliubov, M. Born, H. S. Green, J. G. Kirkwood, and J. Yvonne)
[for reference cf., e.g., 2, 3]. We will refer to an equivalent of this
approach below in Section 3.

The question which interests us here concerns the nature of
entropy/information on the N-particle level in N-particle Gibbs’
Ŵ-phase space. Answering this question should provide an evo-
lution theory for the information of a physical system. In other
words, one may hope obtaining a Boltzmann-like one-particle
µ-phase space kinetic equation for the information.

This question is not purely academic. Interest in the physics
of information arose primarily with the advent of chaos theory in
the early sixties [for a collection of different approaches in differ-
ent fields the reader is referred to the Santa Fe proceedings vol-
ume 4]. Indeed, information is one of the central quantities not
only in physics but also in several other fields like communica-
tion, biology etc. all referring in one or the other sense to informa-
tion theory. Information theorymakes use of a physical definition
of information that is exploited for instance inmaximum entropy
methods of data analysis as also in various applications to the
determination of probability measures, chaotic behavior, as well
as quite practical problems like weather prediction in meteorol-
ogy, climate research, prediction theory in the evolution of time
series, in space physics in general and space weather in particular
(in the latter respect see e.g., the comprehensive review in Bala-
sis et al. 5 and references therein) where low-dimensional chaotic
approaches have found wide application. Thermodynamics pre-
dicts that information cannot be lost. Under stationary condi-
tions it enters thermodynamics respectively statistical mechanics
being the central quantity in the first and second thermody-
namic laws where it relates directly to internal energy and exter-
nal work done on the system. Under non-stationary conditions

its evolution is barely known while being of utmost importance.
Since thermodynamics is rooted in kinetic theory it is reasonable
to ask whether information cannot be subject to kinetic theory as
well.

So far, chaos theory of low-dimensional systems provides tools
already to infer about generation of information and its effects
on the system. However, most physical systems are composed of
very many subsystems the interaction of which should be taken
into account when considering information, inferring about its
evolution, production and accumulation. Such a theory should
be rooted in first physical principles, i.e., for systems consisting
of many subsystems and having large numbers of degrees of free-
dom it should be based on Liouville theory in order to make
information accessible to well known physical methods, technical
treatment and providing a deeper understanding of its evolution
and distribution throughout the system and sharing by the var-
ious subsystems. Since information, once generated, cannot be
lost, such distribution processes are of importance in particular
in view of processes which, like information spread in societies,
so far are not subject to any treatment in physics. In such systems
apparently very small amounts of energy are involved causing
large effects by information transfer. In the following we briefly
sketch how a time-dependent physical information theory could
be developed.

2. N-particle Information

Let us define an equivalent N-particle phase-space information
density IN following the Boltzmann-Shannon prescription

IN(FN) = FN log FN (3)

assuming that it is also normalized (for instance to Boltzmann’s
constant kB). Via the phase space density FN it depends on the
complete phase space dynamics of the system contained in the
Hamiltonian and Hamilton’s equations. The question is then,
which equation does the exact N-particle information satisfy?

In order to answer this question we tentatively apply the above
Liouville operator LN to IN keeping in mind that it applies
strictly only to the N-particle phase space distribution function
FN . Before doing this we rewrite IN using the definition of the
exact phase space density Equation (2)

IN(FN) =
∏
i

δ(q− qi)δ(p− pi) log
∏
j

δ(q− qj)δ(p− pj) (4)

the logarithm of the product becomes a sum
∑

j log δ(q−qj)δ(p−

pj). Mathematically the logarithm of a distribution—the delta
function—must be taken with care; this is a weakness in the Shan-
non definition on the microscopic level. Hence the expression is
to be considered as a formal representation only. Formally, how-
ever, the delta functions take care for that all mixed products
vanish. Hence one finds the obvious result that

IN =

N∑
i

Ii with Ii = Fi log Fi (5)
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is the sum of all single particle informations. In other words,
the N-particle information is additive (extensive). This is a con-
sequence of the logarithmic dependence imposed by the Shan-
non prescription to which we restrict here. Other definitions as,
for instance, the generalisations available in the literature [for
instance 6–8] or that given recently in Treumann and Baumjo-
hann [9] may destroy the extensivity already on the Liouville level
by adding correlations in the last expression.

If we apply the Liouville operator to Equations (3) and (5), it
is easy to demonstrate for any conservative system that

LNIN = (1+ log IN)LNFN = 0 (6)

which holds for any physically reasonable log IN /= − 1 and
because of Equation (1). For this reason the exact N-particle
information satisfies the exact N-particle Liouville equation

LNIN(FN) = 0 (7)

The N-particle information thus follows Liouville dynamics in
phase space with the dynamic equations prescribed by the N-
particle Hamiltonian function. We may note here that this is
a classical and no quantum theory. Generalisation to quantum
theory is by no means obvious. The nonlinear nature of the infor-
mation inhibits the simple replacement of Poisson’s brackets with
commutators/anti-commutators.

Within Shannon theory we therefore find an exact kinetic
equation for the exact classical N-particle Shannon information
IN , and that this equation is the Liouville Equation (7) acting on
the full N-particle phase space. In principle, this is an expected
result.

However, like in the case of exact kinetic particle theory, this
equation is an identity and not yet an equation with that one
could operate. It just says that in the exact N-particle phase space
the N-particle information is conserved and behaves like a phase
space information density which corresponds to an information
flow through phase space. In fact this is not such a surprise. Since
no averaging has been done when following the exact orbits of
all particles, no overall disorder of the phase space is produced.
The total information content which has been there in the total
phase space volume at the beginning is still there; it is simply con-
served. Information could not have gone anywhere from the total
volume.

It is again noteworthy that this conclusion is strictly valid only
for the N-particle Shannon information. Other definitions might
not reproduce Liouville’s equation in its known form with van-
ishing right hand side. In the general case one expects that an
N-particle diffusion term occurs on the right in this case being
responsible for the dispersion of the generalised information in
N-particle phase space and violating the extensivity of the N-
particle information expressed in Equation (7). If this is the case,
there must be some physical reason imposed from the outside
for the definition of information at variance. Non-conservation
of information then means that loss or gain of total information
is attributed to this reason. One may, for instance, think of inter-
action with some external field which, on the global level, extracts
information from the system or adds information to it. We will
not consider this case here.

3. Hierarchy

Physical reality as experienced in practice does, however, not take
place on the microscopic level of N-particle phase space. The
path to a practical kinetic theory of (Shannon) information is
in principle prescribed by the analogy to kinetic theory. There
a hierarchy of average n = (N − j)-particle distributions Fn, with
j ∈ N, j ≤ N − 1 is prescribed as the suitably normalized integral
over the phase space coordinates of all particles j. This procedure,
known as BBGKY hierarchy, ultimately reduces the phase space
to the one-particleµ-phase space of the now undistinguishableN
particles. It in this case produces the average one-particle phase
space distribution function f (q, p) ≡ F1 and, from Liouville’s
equation, the ultimate one-particle kinetic equation describing
the evolution of f (q, p) under the action of the reduced one-
particle HamiltonianH1(q, p). This final one-particle Boltzmann-
like kinetic equation contains a non-vanishing right-hand side
which collects all correlations between the particles and their
mutual interaction fields [cf., e.g., 1, 10, 11, for their explicit clas-
sical and quantum forms]. In case of merely hard-core binary
collisions, this term reduces further to Boltzmann’sµ-space equa-
tion which, in the total absence of any collisions and just for
purely classical field interactions, becomes the zero-right hand
side Vlasov equation [12, Ch. 3] or, including quasilinear interac-
tions with self-excited field fluctuations in the one-particle kinetic
equation, the Fokker-Planck equation [for a rigorous and lucid
derivation of the Fokker-Planck equations cf., e.g., 10].

A similar procedure should go along the lines of an analo-
gous definition of phase-space-averaged “reduced” informations
In forming a descending in n chain. The philosophy behind this
approach is that the Shannon information is understood as the
average of the logarithm of the distribution function itself. Thus,
any reduced information is given as

In =

∫
d3(n+1)qd3(n+1)pFn+1(q, p, t) log Fn+1(q, p, t)∫

d3(n+1)qd3(n+1)pFn+1
(8)

The problem consists in finding the kinetic equation that governs
the evolution of In with n → 1 from the exact Liouville equation
for IN . This step is substantially more complex and less trans-
parent than in the case of the BBGKY hierarchy of the n-particle
distribution function which results in the Boltzmann equation.
There the nonlinearity is provided by the Hamiltonian, while in
the case of the information the n-particle information itself is
intrinsically nonlinear, and care must be taken in each step when
applying the reduced Hamiltonians.

Carrying through this program is a formidable task though
being quite straightforward. In every step of the reduction pro-
cedure one has to take care of the reduced Liouville operator, the
hierarchy equation of the former step for the reduced distribution
function. Already in the BBGKY hierarchy a non-vanishing and
rather complicated term on the right-hand side of the reduced
kinetic equation is produced to which each reduction step adds
further terms. This will also happen in the case of the reduction
of the Liouville Equation (7) for the information. In this note we
refrain from performing all these steps leaving it to someone else
who can explicit it. The present paper is just a perspective paper
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that intends to present the basic idea of constructing a viable
physical theory of the dynamics of information. However, some
simple arguments can be given what the reduction procedure, the
information hierarchy, will lead us to.

In the case of the BBGKY hierarchy the form of the Liouville
equation on the left hand side of the equation reproduces in each
step with descending subsystem (particle) number n from n = N
down to n = 1, the wanted final form of the kinetic equation. All
correlations and subsystem (particle) interactions become rele-
gated to form an ever more complicated interaction term on the
right hand side of these equations. Because the structure of the
N-subsystem Liouville equation for the N-subsystem informa-
tion IN is identical to that of theN-particle Liouville equation for
FN , we expect that this behavior will reproduce also in the case
of the information hierarchy. We conjecture that the final one-
subsystem (particle) kinetic equation for the information will be
of the form

L1I1(p1, q1) = C{q1, q2 . . . qN; p1, p2 . . . pN} (9)

where L1 ≡ L = ∂t + [H1(p, q), . . . ], with p ≡ p1, q ≡ q1
and H1(p, q) the one-particle Hamiltonian, is the one-particle
Liouville operator, and C, as indicated by the braces {. . . }, func-
tionally contains all coordinates and correlations. It results in the
reductive procedure leading from the N- to the one-subsystem
kinetic equation. All the dynamics that causes the evolution of the
information in the interaction between the particles is contained
in C. Since the Hamiltonian also contains collisionless interac-
tions with external and self-consistent fields, such interactions are
taken care on the left-hand side of the above kinetic equation. It
is, however, questionable whether neglect of the right-hand side
can be justified in the case of information as is done in Vlasov
and Klimontovich [12] theory. Presumably, since information
(entropy) cannot be erased but can only grow, no comparably
simple argument can be found for dropping C in the case of infor-
mation unless the system is in thermodynamic equilibrium when
its dynamics and evolution is obsolete.

4. Discussion

Presumably, the dynamical theory of Boltzmann-Shannon infor-
mation will result in a Boltzmann-like kinetic equation for the
one-subsystem information I1 with, however, very complicated
non-vanishing correlation term on its right. It is clear that
this is particular only to the Boltzmann-Shannon information.
Other definitions of entropy-information found in the literature
might not lead to similar kind of reductions. Having conjectured
the form of the one-subsystem kinetic equation for the one-
subsystem information and determined the implicit functional
form of the correlation term on the right of the above equation,
will provide a full kinetic theory of the evolution of information
in an N-subsystem configuration. This is most interesting for a
number of obvious reasons and may apply not only to physics
but also to other sciences and engineering where information
generation and evolution plays an important role. Here we have
restricted ourselves to physics alone.

To close this perspective article we point out that the above
conjectured kinetic equation for the one-subsystem information
can also be understood differently. The reduced (one-subsystem)
Liouville operator on the left can be written as the total time
derivative in the one-subsystem phase space. The kinetic equa-
tion then reads

L1I1(p1, q1) ≡
d

dt
I1(t) = C{q1(t), . . . qN (t); p1(t), . . . pN (t)} (10)

The formal solution of this version is

I1(t) =

∫ t

−∞

dt C{q1(t), . . . qN(t); p1(t), . . . pN(t)} (11)

which yields the time evolution of the one-subsystem informa-
tion. The difficulty here lies not only in the necessity to know
the explicit functional form of C which follows from the hierar-
chy approach, it is relegated in addition to the knowledge of time
dependence of the one-, two-, . . . subsystem trajectories in phase
space, which strictly spoken implies the knowledge of the full par-
ticle dynamics in phase space which are not known a priori. Thus,
the above formal solution is a tautology, and one has to apply
some kind of approximation like perturbation methods to treat
the perturbation of an initial state. This resembles the situation
encountered in kinetic theory. Nevertheless, though this is not
completely satisfactory, the above form shows that the total time
derivative of the one-subsystem information is determined by the
functional C. Conventionally, in the theory of chaotic interactions
of a small number of particles this is taken to be the so-called
Kolmogorov entropy rate K [13, 14] which originally appeared
as a metric entropy rate in Kolmogorov-Arnold-Moser (KAM)
theory of chaotic processes [for reference cf., e.g., 15]. Hence, per-
forming the derivation of the hierarchy leads in a straight way to
the physical definition of the Kolmogorov K entropy rate for an
N-subsystem configuration as

K(t) ≡ C{q1(t), . . . qN(t); p1(t), . . . pN(t)} (12)

as an implicit function of time and the number of subsystems
(particles). For any non-stationary system C /= 0 for the simple
reason that entropy/information can only grow. Since C itself
depends implicitly on the higher order informations, the Kol-
mogorov entropy rate is also a functional of information. More-
over, t = I

−1 is the (properly normalized) inverse functional of
the information. One thus writes

dI/dt = K{I} (13)

where, for simplicity, we dropped the index 1. From here we
obtain the interesting expression

dt = d I/K{I} (14)

with its formal solution

t − t0 =

∫
I

I0

d I/K{I} (15)
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yielding the time elapsed during the evolution of the information
from state I0 to I. This solution suggests that for K = C = 0 the
elapsed time is infinite, which is nothing else but another expres-
sion for that the information does not change but is conserved.
Otherwise, for K → ∞ the system seems to evolve at a diverging
rate. However, inspection of the second last equation reveals that
dt = 0 in this case, and the entire expression becomes obsolete.
This case corresponds to complete stochasticity with no produc-
tion nor evolution of information at all, the final thermodynamic
equilibrium state of maximum information.

The important case is the intermediate one where K is finite,
corresponding to a state of nonlinear non-stochastic (chaotic)
interactions. They cause the information to evolve in finite time.
Speculatively, this expression can be taken as an equation for the
“production of time.” In such an interpretation, time is “gen-
erated” under circumstances when information is produced—
a physically not unreasonable assertion. In this interpretation
there is more room left for speculation. The case K = 0 cor-
responds to stationarity with no time evolution of information.
Information can only be redistributed convectively then. K = ∞

means complete stochasticity. Hence, stochastic systems do, in
this interpretation, not produce any time at all. Time, again in

this interpretation, is attributed to the nonlinear, non-stochastic

action that generates information in a complex system.
Though these remarks are intriguing, the sound physical result

is contained in the one-subsystem (particle) kinetic equation of
information which forms the basic equation for the evolution of
information in an N-particle system with N >> 1. We have not
given an explicit derivation of its right hand side, the correlation
functional C = K, the Kolmogorov entropy rate. This is left as
an exercise for future research until the hierarchy equations have
been constructed. Rigorous construction of the hierarchy equa-
tions is inhibited in this communication by restriction of space.
We have also neither invested effort into any quantum mechan-
ical nor field theoretical formulation which both are of utmost
interest in applications, nor have we envisaged investigation of
any different more general definition of information than the
classical Boltzmann-Shannon information.
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