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Adiabatic quantum optimization has been proposed as a route to solve NP-complete

problems, with a possible quantum speedup compared to classical algorithms. However,

the precise role of quantum effects, such as entanglement, in these optimization

protocols is still unclear. We propose a setup of cold trapped ions that allows one to

quantitatively characterize, in a controlled experiment, the interplay of entanglement,

decoherence, and non-adiabaticity in adiabatic quantum optimization. We show that,

in this way, a broad class of NP-complete problems becomes accessible for quantum

simulations, including the knapsack problem, number partitioning, and instances of

the max-cut problem. Moreover, a general theoretical study reveals correlations of

the success probability with entanglement at the end of the protocol. From exact

numerical simulations for small systems and linear ramps, however, we find no substantial

correlations with the entanglement during the optimization. For the final state, we

derive analytically a universal upper bound for the success probability as a function

of entanglement, which can be measured in experiment. The proposed trapped-ion

setups and the presented study of entanglement address pertinent questions of adiabatic

quantum optimization, which may be of general interest across experimental platforms.

Keywords: adiabatic quantum optimization, trapped ions, entanglement, NP complete problems, noise

engineering

1. Introduction

Owing to an enormous progress in precise preparation, manipulation, and measurement, col-
lections of trapped ions have become a paradigm system for quantum information processing
[1–5]. The excellent control over external and internal states allows for the quantum simula-
tion of a broad class of spin models, typically with long-range interactions determined by the
structure of the ion crystal [6–13]. Recently, Ising models with disordered long-range interac-
tions have gained interest across research fields because they can represent many NP-complete
optimization problems, which have applications ranging from applied computer science to finan-
cial markets [14, 15]. By encoding their cost function into the spin–spin interactions [16] these
optimization problems could possibly be solved more efficiently by adiabatic quantum opti-
mization (AQO), i.e., adiabatic state preparation of a spin-glass ground state [17–22]. Proce-
dures in this spirit have been implemented in so-called quantum annealers such as the D-Wave
device [23–27] or nuclear magnetic resonance setups [28]. However, an unambiguous evidence
of the effectiveness and performance of these devices is missing [27, 29, 30], both on the
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fundamental side, i.e., the question whether quantum annealing
itself is advantageous over classical algorithms, as well as in view
of the unavoidable decoherence present in actual realizations.
Although the persistence of entanglement under decoherence has
recently been demonstrated in quantum annealing devices [31],
the role of entanglement—and in particular the relation between
entanglement and the efficiency of obtaining the correct ground
state—is far from clear.

The purpose of this paper is twofold: (i) We propose an
experimentally feasible implementation based on trapped ions
for a variety of famous NP-complete problems. We show how
controlled noise can be engineered in such setups. This, in com-
bination with large intrinsic coherence times and precise con-
trol, enables a systematic study of how decoherence influences
entanglement and efficiency in AQO protocols. (ii) We perform
a theoretical analysis of the role of entanglement in AQO. We
numerically study its interrelation with the success probability,
and we analytically show that the entanglement entropy provides
an upper bound for the success probability.

A key question that becomes accessible in the proposed
trapped-ion setup is how entanglement, decoherence, and non-
adiabaticity on the one side connect to the efficiency on the other
side. Our findings, obtained from exact numerical calculations,
suggest that entanglement in the final state can reveal informa-
tion about the efficiency of the protocol. We derive a universal
upper bound that allows for an efficient estimation of the suc-
cess probability from the final-state entanglement. Moreover, we
find that the maximal entanglement during the sweep is rather
uncorrelated with the success probability. Note that the goal of
this paper is not to suggest a scalable quantum-annealing device
that could compete with system sizes of a D-wave machine [30],

FIGURE 1 | (A) In the adiabatic quantum optimization protocol, the system

(depicted: four spins represented by their Bloch spheres) is prepared in a

known ground state of the simple Hamiltonian Hinit (orange arrows pointing

to the left). The system is then transferred to the final Hamiltonian Hfinal with

the ground state, given by the green arrows, that is the solution of the

optimization problem. (B) If the transformation is performed adiabatically and

shielded from decoherence effects, the system remains in the instantaneous

ground state (thick blue) protected by the gap 1. (C) Evolution of the state

vectors of four spins (indicated by different colors) on the Bloch sphere for a

typical choice of interactions Jij . For slow annealing (ta = 512/J, bottom), the

protocol does reach the final ground state at the poles of the Bloch sphere,

while it fails to do so for fast annealing (ta = 64/J, top).

but rather a well-controlled implementation that allows one to
study the fundamentals of AQO.

The basic idea behind AQO is to utilize quantum adiabatic-
ity for solving hard optimization problems that can be encoded
in couplings Jij and weights hzi of a classical Ising Hamiltonian
[17–20]

Hfinal =
∑

i 6= j

Jijσ
z
i σ

z
j +

∑

i

hzi σ
z
i , (1)

where σ νi , i = 1 . . .N, denote Pauli matrices. The interaction
matrix Jij and the magnetic fields hzi are chosen such that the
ground state ofHfinal is the optimal solution of the original prob-
lem. To arrive at the final ground state, AQO employs an adi-
abatic sweep starting from a simple to prepare ground state of
some Hinit (e.g., Hinit = hx

∑

i σ
x
i with all spins initially polar-

ized along the x direction). The Hamiltonian is then deformed
adiabatically such that H(t = ta) = Hfinal after the annealing
time ta. This protocol can be described by the time dependent
Hamiltonian

H(t) = A(t)Hinit + [1− A(t)]Hfinal , (2)

where A(t) is ramped from initially A(t = 0) = 1 to A(t = ta) =
0. If the ramp is sufficiently slow, according to the adiabatic the-
orem, the system will remain at all times in the ground state and
the state at t = ta is the solution of the optimization problem.
This procedure is sketched in Figure 1. It is in spirit very sim-
ilar to adiabatic state preparation, where one seeks to reach the
ground state of a quantum many-body Hamiltonian via a ramp
as Equation (2). First steps in this direction have already been
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done in a trapped-ion setup [11]. Here, in contrast one seeks to
employ quantum fluctuations for solving a classical optimization
problem.

The AQO scheme becomes particularly appealing for com-
plex problems where Hfinal is characterized by a high roughness
of the free-energy landscape. Such problems are equivalent to
spin glasses, where classical annealing is known to experience a
dramatic slow down at low temperatures because energy barri-
ers become exponentially large [32]. By overcoming the barriers
via quantum tunneling [33] instead of thermal activation, quan-
tum annealing as defined in Equation (2) offers the prospect of
outperforming classical annealing [18]. However, the speed-up
of quantum annealing has been only shown for certain classes
of problems [19, 20] and for devices running at finite temper-
ature AQO has been put into question entirely [30, 34]. In all
of this, the precise role of quantum effects during the sweep is
an open question, although the presence of entanglement dur-
ing quantum annealing at finite temperature has recently been
demonstrated in superconducting qubits [31].

A measure for the efficiency of AQO protocols is the suc-
cess probability P, defined as the overlap between the final state
|ψ(ta)〉 with the actual ground state |ψgs〉 of Hfinal. Note that this
measure can only serve as a benchmark, since it requires a priori
knowledge about the solution of the problem. In addition, we also
consider the instantaneous success probability P(t), which moni-
tors the overlap of the state at time t with the desired final ground
state, i.e.,

P(t) = | 〈ψ(t)|ψgs〉|2. (3)

At the end of the protocol at time t = ta, this quantity coincides
with the success probability, P(ta) = P.

Before presenting the results, we give a short overview of the
structure of this paper. In Section 2, we present feasible imple-
mentations of various NP-complete problems in trapped ions and
show how noise can be engineered in a controlled manner. In
Section 3, we introduce relevant entanglement measures that we
use in this work. Analytical results on the relation between entan-
glement after the sweep and the success probability are presented
in Section 4. Numerical results for closed and open systems are
discussed for a model problem, the Coulomb glass, in Section 5.
We close by presenting our conclusions in Section 6.

2. Quantum Adiabatic Optimization with
Trapped Ions

In this section, we present how current trapped-ion technology
[6–13] can be extended to implement several well-known NP-
complete problems [14, 15]. The main challenge is to encode
these problems in Hfinal Equation (1), which requires a cer-
tain degree of programmability of interactions Jij and fields hzi .
Below, we present several models where a local variation of laser
power is sufficient to obtain this programmability—as opposed
to a much more difficult programming by, e.g., an extensive
number of laser frequencies [35] or specially designed trapping
potentials [36–39]. We also describe how engineered noise can

be generated in order to study the interplay between decoher-
ence, non-adiabaticity, and entanglement in the well-controlled
architecture provided by trapped ions.

2.1. Ion Hamiltonian
We consider a chain of ions confined in a linear Paul trap. The
spin-1/2 Ising variables appearing in Hfinal can be encoded by
restricting the internal atomic dynamics to only two hyperfine
sublevels. Single-qubit rotations allow for a preparation with
high fidelity of any desired initial product state [13], includ-
ing the completely polarized ground state of Hinit [6–8, 10–13].
Similarly, the projection of the spin-1/2 variable on any coordi-
nate direction can be measured to high precision by appropriate
single-qubit rotations followed by stimulated fluorescence mea-
surements, allowing the reconstruction of arbitrary correlation
functions [7, 13]. The synthetic magnetic fields hzi and h

x appear-
ing in Hfinal and Hinit can also be simulated in a straightforward
fashion via AC-Stark shifts or by resonantly driving the transition
between the two sublevels [40].

Ising interactions can be simulated by coupling the ions via
laser [40–42] or microwave radiation [43] to the collective vibra-
tional modes. In the limit of off-resonant radiation, one can dis-
entangle the collective vibrations and the atomic Ising variables
via a canonical transformation and obtain an effective Hamilto-
nian for the Ising variables alone. For example, when employing a
Mølmer–Sørensen scheme [42], the Ising spins are subject to the
effective interactions (see Appendix A)

Jij = −h̄
|�i||�j|

4

∑

q

ηiqηjq

δq
, (4)

where ηiq is Lamb–Dicke parameter including the amplitude of
vibrational mode q at ion i, δq is the detuning of the laser relative
to the vibrational mode q, and |�i| is the absolute value of the
laser’s Rabi frequency at ion i. For the derivation of Equation (4),
we assumed the off-resonance condition ηiq|�i| ≪ δq. The addi-
tion of a transverse field, required for our choice ofHinit, induces
additional couplings to the phononmodes in higher order, which,
however, can be neglected as long as hνi ≪ h̄δq, ν = x, z. The
precise form of the interactions depends on the coupling scheme
used, but the qualitative behavior is similar for other schemes
[40, 43].

As shown, e.g., in Britton et al. [10], Islam et al. [8], Jurcevic
et al. [13], when transmitted via the transverse phononmodes the
Ising interactions follow an approximate power law as a function
of the distance, Jij ∼ 1/|i− j|α , with a decay coefficient 0 ≤ α ≤ 3
that can be adjusted using the detuning δq (where larger detun-
ing entails larger α). When employing the longitudinal phonon
modes, the large spacing of vibrational frequencies restricts the
range to α ≈ 0. By expressing the local Rabi frequencies as mul-
tiplies of a reference frequency |�|, i.e., |�i| = Fi|�|, we can thus
write

Jij = J
Fi Fj

|i− j|α , (5)

with J setting the overall energy scale. Note that the power-law
decay is exact only in the limits α = 0 and α = 3. As shown
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recently in Karp [44], the interactions in the intermediate regimes
are better described by an exponential tail added to a dipolar
decay. Additional modifications may arise from an uneven spac-
ing of ions as is usual in linear Paul traps or from inhomogeneous
laser profiles. For small chains, a general power-law behavior is,
however, a good approximation of the system dynamics [13].

Until now, we considered a coupling to a single set of vibra-
tional modes. However, richer models can be quantum simu-
lated by employing the fact that in a linear Paul trap the three
orthogonal directions of vibration decouple [40]. In this case,
by using different lasers to couple to each orthogonal set of
modes, it is possible to generate three independent Ising inter-
action terms, which we label ℓ = 1, 2, 3. Additionally, one may
induce synthetic fields hzi in an ion-dependent fashion by, e.g.,
resonantly driving the qubit transitions with beams derived from
an acousto-optic deflector [13]. It is thus possible to realize in
trapped ions—using available technology—the following Ising
Hamiltonian:

Hfinal =
∑

ℓ= 1,2,3

J
∑

i 6= j

F
(ℓ)
i F

(ℓ)
j

∣

∣i− j
∣

∣

α(ℓ)
σ z
i σ

z
j +

∑

i

hzi σ
z
i . (6)

2.2. NP-Complete Models Realizable with
Available Trapped-Ion Technology
Experiments thus far—aiming at mimicking translationally
invariant many-body models—made great efforts to engineer

systems as homogeneous as possible, i.e., F
(ℓ)
i = 1 and hzi =

hz , ∀ i [7, 8, 10, 12, 13]. For the same reason, few theoretical
works have considered a site-dependent tunability of couplings
[38, 45–47] or fields [48]. In contrast, our purpose of engineering
NP-complete problems in Hamiltonian Equation (1) requires a
certain degree of programmability of the interaction matrix ele-
ments Jij and fields h

z
i (see e.g., Lucas [16]). InTable 1, we present

several NP-complete problems that can be implemented with
interactions of the form given in Equations (5) and (6), i.e., with-
out requiring a full programmability of interactions. These prob-
lems thus become amenable to current trapped-ion technology
by adjusting the local laser intensities |�i|2.

The NP-complete problems implementable in this way
include the number-partitioning problem, the integer knapsack
problem [16], and the Coulomb glass problem, which—as shown
in Anjos et al. [49]—can be mapped to a class of opti-cut prob-
lems. We summarize the description of the necessary Hamilto-
nian parameters in Table 1. In the numerical studies presented in
Section 5, we focus on the example of the Coulomb glass problem,
since it is closest to current experiments [12, 13]. The Coulomb
glass [51] contains a random magnetic field hzi ∈ [−ǫz, ǫz] and
Ising interactions that are homogeneous and long-ranged, α(1) =
1 and F

(1)
i ≡ 1. Usually, one imposes the constraint of vanish-

ing total magnetization, which can be realized by mean-field-like

interactions (α(2) = 0) with F
(2)
i ≡ F(2)≫1. Defining the strength

of the constraint asV ≡ J(F(2))2≫J, the total Hamiltonian is then

Hfinal = J
∑

i 6= j

σ z
i σ

z
j

|i− j| +
∑

i

hzi σ
z
i + V

∑

i 6= j

σ z
i σ

z
j , (7)

TABLE 1 | NP-complete problems encodable via Hamiltonian Equation 6.

Optimization Parameters for Hamiltonian Equation 6

problem

Constrained

Coulomb

glass

α(1) = 1 , F
(1)
i

≡ 1

α(2) = 0 , F
(2)
i

≡ F (2) ≫ 1

hz
i
∈ [−ǫz, ǫz] random ; ǫz = O(J)

Number

partitioning

α(1) = 0 , F
(1)
i

= ni

hz
i
≡ 0

Integer

knapsack

α(1) = 0 , F
(1)
i

=







i , i = 1 . . .C

wi , i = C+ 1 . . .N

α(2) = 0 , F
(2)
i

=







1 , i = 1 . . .C

0 , i = C+ 1 . . .N

hz
i
= J







2(C− 2)+ i
[

C(C+ 1)− 2
∑N

j=C+1 wj

]

, i = 1 . . .C

2ci J
′/J+ wi

[

C(C+ 1)− 2
∑N

j=C+1 wj

]

, i = C+ 1 . . .N

(a) Coulomb glass problem, which can be mapped to a class of opti-cut problems [49].

(b) Number-partitioning problem: Given a set N of positive integers ni ∈ N, i = 1, . . . ,N,

find a subset R ⊂ N such that the sum over all numbers in N and the remainder N\R
is equal, i.e.,

∑

i∈R ni =
∑

i∈N \R ni . (c) Integer knapsack problem: Given a set M of

objects k = 1, . . . ,M, with associated weights wk ∈ N and values ck ∈ R, and a con-

tainer (a “knapsack”) with maximal capacity C ∈ N, how full can the knapsack be filled

without making it overflow? That is, find the subsetR ⊂ M that maximizes the total cost

ctot ≡
∑

k∈R ck (or the total weight wtot ≡
∑

k∈R wk ), subject to the constraint wtot ≤ C.

To encode this problem, the first C spins represent the obtained integer filling (only one

of these spins is in state +1), and the remaining M = N − C spins encode if an item is

included in the knapsack (−1) or not (+1). The cost function is only encoded in the local

field term 2 ci J
′, while the rest of the terms serve to enforce the constraint wtot ≤ C on

the container, for which we require 0 < J′maxk (ck ) < J. More details for the encoding of

the knapsack problem in Ising interactions can be found in Lucas [16]. It may be advan-

tageous to restrict the weights to an interval, since this can increase the hardness of the

instances [50] while simultaneously reducing the spread of interaction strengths J.

with J,V > 0. The large frustration of the Ising interactions
counteracts ordering tendencies and, for ǫz = O(J), leads to
a strong competition between the interactions and the random
local fields. This competition signs responsible for its computa-
tional complexity. Currently, it is not clear whether the Coulomb
glass exhibits a spin-glass transition at nonzero temperature.
This, however, does not necessarily imply a reduced complexity
of the ground state of themodel. Certain random Isingmodels on
Chimera graphs, such as implemented in the D-Wave device, for
example, do not show spin-glass transitions at nonzero temper-
ature, but finding the ground state of the model is still NP-hard.
Additionally, it may be that a non-perfect power-law decay, for
example the more realistic dipolar plus exponential shape [44]
affects the complexity of the model.

2.3. Noise Engineering
A fundamental question in AQO is how the optimization of prob-
lems such as given in Table 1 performs in the presence of deco-
herence. This question is of particular importance for current
implementations of AQO devices such as the D-Wave machine
where decoherence rates are large compared to the annealing
times. Current trapped-ion setups are able to suppress noise to
very low values, currently with time scales around 10/J [13]. This
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opens the possibility to systematically study the performance of
AQO under varying degrees of purposefully engineered decoher-
ence. A scheme to engineer different types of classical noise in a
controlled fashion has recently been discussed and implemented
in Soare et al. [52].

Here, we describe how classical white noise can be engi-
neered by a conceptually simple extension of the steps leading
up to Equation (4). Detailed derivations can be found in the
Appendix C. Here, we sketch the main idea, which is based on
the addition of randomly fluctuating synthetic magnetic fields.
We assume that the rate of these fluctuations is much larger than
any other parameter in the Hamiltonian, so that we can treat the
annealing parameter A as quasi-constant. The total Hamiltonian
then takes the form

H = AHinit + (1− A)Hfinal +
∑

i

[

ξ xi (t)σ
x
i + ξ zi (t)σ z

i

]

, (8)

where we choose the noise in two spin directions ν = x, z, and
we take ξ νi (t), to be independent Ornstein–Uhlenbeck processes,

u ξ νi (t)ξ
µ
j (0)z = h̄Ŵδν,µδi,jh̄be

−b|t|. Here, u · z denotes the aver-
age over noise realizations, and for simplicity we take the rate Ŵ
and the bandwidth b to be independent of ν = x, z. The fluctuat-
ing fields can be realized using the same experimental techniques
as for their quasi-static counterparts described at the beginning
of Section 2.1. The additional requirement of fast fluctuations
that are uncorrelated between different sites could be solved via a
simultaneous addressing of the individual ions using several laser
beams derived from an acousto-optic deflector [13].

If the bandwidth b of the fluctuations is much larger than
the internal energy scales of the ions and the coupling to the
phonon modes, b≫ hνi /h̄, ηiq|�i|, we can average over the noise
and obtain a master equation describing classical white-noise
dephasing,

∂ρ

∂t
= − i

h̄
[H, ρ]+ Ŵ

∑

i

D[σ
(x)
i ]+ Ŵ

∑

i

D[σ
(z)
i ] , (9)

where D[X] = 2XρX† − ρX†X − X†Xρ is the Lindblad super-
operator. In the derivation of Equation 9, we neglected addi-
tional couplings to the phonon modes that appear in higher
order and can be dropped provided b ≫ ηiq|�i|, hνi /h̄. These
conditions complement the requirements for the derivation of
AHinit + (1 − A)Hfinal, which read δq ≫ ηiq|�i|, hνi /h̄. In the
Appendix C, we discuss that they can all be fulfilled for realistic
experimental parameters.

Hence, adding fluctuating fields with bandwidth much larger
than other relevant energy scales allows to systematically engi-
neer white noise in trapped ions. By inducing such fluctuations
on the longitudinal or transversal fields, it is possible to study
different types of Lindblad super-operators.

3. Entanglement Observables

AQO aims at solving classical problems using a quantum device,
prompting the fundamental question of the role and importance
of quantum effects within such a computational scheme. One

particular feature of quantum as opposed to classical systems is
entanglement, a theoretical study of which is the second central
aim of this work. For that purpose, we use different quantifiers for
quantummany-body correlations: the entanglement entropy, the
logarithmic negativity, an optimal local entanglement witness,
and the Fisher information. All of these quantifiers are sensitive
toward different forms of entanglement and thus allow to address
different aspects of entanglement.

In a perfect adiabatic protocol, entanglement vanishes in the
initial and the final state, but it is finite during the sweep. The
intermediate entanglement is due to avoided crossings between
the ground state and excited states. In an optimal sweep, the final
state shows no entanglement at all, as the true ground state is that
of a classical Ising model. Therefore, entanglement in the final
state is an indication for imperfections during the sweep. This
mechanism of build-up and release of entanglement during an
adiabatic optimization is the focus of the remainder of this work.

A full study of the many-body entanglement, which would
require a full state tomography, is computationally and experi-
mentally not feasible for all but very small systems. However, one
can gain insight into different aspects of the problem from the
combination of several entanglement measures and witnesses. In
this chapter, we will give an overview of the various entanglement
observables that we use. We also introduce a novel witness that
can be efficiently measured in experiment.

3.1. Entanglement Entropy
A convenient, well-established measure for entanglement of
closed systems is the entanglement entropy, which is defined
between two subsystems A and B. The entanglement entropy
is the von Neumann entropy of the reduced density matrix
ρA = trBρ of A obtained by tracing out the complement B,

SA = −tr
[

ρA log(ρA)
]

. (10)

In this work, we study themaximum of the entanglement entropy
considering all possible pairs of particles as subsystem A and the
remaining N − 2 particles as subsystem B. This pair-block entan-
glement entropy maximized over all pairs is denoted as Smax

2 (t).
The largest pair-block entanglement entropy reached during the
sweep is Smax

2 = maxt
[

Smax
2 (t)

]

.

3.2. Logarithmic Negativity
A convenient mixed-state entanglement measure is the logarith-
mic negativity between two parts C and D of a larger subsystem
A (A = C ∪ D). It is defined as [53, 54]

EN = log ||ρTCA || , (11)

where ||X|| = tr
√
X†X is the trace norm. ρ

TC
A is the partial trans-

pose of the reduced density matrix ρA with respect to subpart C,

given by 〈dc|ρTCA |d′c′〉 = 〈dc′|ρA|d′c〉 where the c’s and d’s form a
basis for C and D, respectively. In the following, we consider the
logarithmic negativity between subsystems C and D consisting of
a single site each, and maximize again over all combinations.
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3.3. Fisher Information
While entropy and negativity are measures for the entangle-
ment between two subblocks of the system, we are also interested
in multi-particle entanglement. This can be measured with the
Fisher information FQ, which not only quantifies entanglement,
but also provides a lower bound on the number of particles that
are entangled [55, 56]: if a state is k-producible—meaning that it
can be written as a product of states involving less than or equal
to k particles each—the Fisher information satisfies

FQ ≤ ⌊N
k
⌋k2 +

(

N − ⌊N
k
⌋k

)2

. (12)

Here, N is the total number of spins and ⌊·⌋ denotes the floor
operation. If FQ > N, this inequality implies entanglement
between an increasing number of particles with increasing FQ,
where FQ close to the maximal value of N2 corresponds to
N-particle entanglement. In quantum annealing devices, the
multi-particle nature of entanglement may be a crucial aspect,
since in a spin glass, for example, the lowest-energy configura-
tions are typically vastly different. Thus, many spin flips should
be necessary to tunnel from one local energy minimum to the
next. If one assumes that all of these spins have to be coherent
during the tunneling process, multi-particle entanglement may
become the critical phenomenon for the efficiency of AQO
protocols.

3.4. Optimal Local Entanglement Witness
While the above entanglement observables are powerful tools to
theoretically understand the nature of entanglement, they require
elaborate measurements in experiment. Therefore, it is desirable
to find entanglement witnesses that can be deduced from simple
observables.

Here, we introduce an optimal local entanglement witness W
that allows one tomeasure entanglement in closed as well as open
systems. It can be obtained from two-point spin correlations,

W = max

{

0,−min
Ef

[

WEf
]

}

, (13)

with

WEf =
1

2
〈ĈEf 〉 − 1, ĈEf =

N
∑

i,j= 1

∑

ν= x,y,z

f ⋆i fjσ̂
ν
i σ̂

ν
j , (14)

where fi ∈ C is subject to the normalization
∑

i |fi|2 = 1. This
constitutes a generalization of the witnesses introduced in Kram-
mer et al. [57], Cramer et al. [58], De Chiara and Sanpera [59],
Hauke et al. [60]. Going beyond Hauke et al. [60], we analyze
here the “optimal” witness, obtained by minimizing WEf over

all Ef . In practical terms, this minimization is extremely simple:
by introducing a Lagrange multiplier for the condition of nor-
malization

∑

i |fi|2 = 1, it becomes equivalent to finding the
smallest eigenvalue of the correlation matrix Cij =

∑

ν 〈σ̂ νi σ̂ νj 〉.
This procedure can be done via post-processing of the measured

two-point correlation functions, which are simple observables
in trapped-ion experiments [6–13]. Thus, it is straightforward
to determine the optimized entanglement witness experimen-
tally. Since no cross-correlations of the form 〈σ̂ x

i σ̂
y
j 〉 are required,

it needs only three series of measurements for the x, y, and z
correlations respectively, and is therefore easily scalable.

The above entanglement witness gives a lower bound on the
best separable approximation (BSA) [58], an entanglement mea-
sure that is applicable also to mixed states. The ease of measuring
this witness, both in theory and experiments, may make it an
important entanglement quantifier, especially for large systems.

4. Upper Bound on the Efficiency from
Entanglement

At the end of an ideal adiabatic protocol, the system arrives at the
desired solution of the classical problem with vanishing entan-
glement. In presence of imperfections such as a non-adiabatic
transfer of state population to higher energies, however, the final
state will contain contributions from several eigenstates of Hfinal

and in consequence a nonzero entanglement. It is the aim of this
section is to show that it is possible to quantify this connection
between entanglement and success probability in terms of the
following bound

Sendl ≤ −P log(P)− (1−P) log(1−P)+ (1−P) log(2l−1), (15)

valid for P > 1/e with e Euler’s number. Here, Send
l

denotes the
final entanglement entropy of an arbitrary subsystem containing
l spins. Remarkably, although Send

l
and P depend on the micro-

scopic details of the system, the bound itself is independent of any
microscopic parameters and as such completely universal. Below,
we will show numerical data demonstrating that in most cases
there is at least one subblock of l = 2 spins where the bound is
closely approached as long as the sweep is sufficiently adiabatic.

We now prove the bound Equation (15). Let us denote the
desired solution of the ideal problem by the spin configuration

|s∗〉 = |s∗As∗B〉 , (16)

where |s∗A/B〉 denotes the spin configurations in the respective
subsystems A and B. This product form of the desired solution
is always possible because the ground state |s∗〉 of the classical
Hamiltonian Hfinal is a separable state.

In a non-adiabatic sweep, the final reduced density matrix
ρA of subsystem A will contain diagonal as well as off-diagonal
elements. Let us denote by ρdA the diagonal part of the original
density matrix ρA, i.e., where all off-diagonal elements in the σ z-
basis are set to zero. The associated so-called diagonal entropy SdA
satisfies the inequality [61]

SA ≤ SdA = −tr[ρdA log(ρdA)] = −
dA
∑

µ= 1

pµ log(pµ) . (17)
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Here, pµ denote the eigenvalues of ρdA and dA = 2l is the size of
the Hilbert space of the subblockA consisting of l spins. Themag-
nitude of the diagonal elements can be estimated in the following
way. Consider the matrix element p1 defined as

p1 = 〈s∗A|ρdA|s∗A〉 =
∑

ν

〈s∗Aν|ρ|s∗Aν〉 ≥ P . (18)

The matrix element p1 is the probability to be locally in the
ground state, i.e., all spins of the blockA are oriented in the direc-
tion of the desired solution, Equation (16), and ν sums over all
spin configurations of the complement B. The inequality in the
above Equation (18) follows because all diagonal elements of the
density matrix ρ are nonnegative. When P ≥ 1/e, i.e., for not
too small success probabilities, Equation (18) gives−p1 log(p1) ≤
−P log(P), and inequality (17) becomes

SA ≤ −P log(P)−
dA
∑

µ= 2

pµ log(pµ). (19)

The contribution to the diagonal entropy from the states other
than the local ground state assumes its maximum for the case of
equipartitioned probabilities, pµ = C/(dA − 1), with µ ≥ 2 and
C a constant. The normalization of the density matrix imposes

the constraint
∑dA
µ=1 pµ = 1 = p1 + C. Using p1 ≥ P, this gives

C ≤ 1− P, which implies

− C log(C) ≤ −(1− P) log(1− P). (20)

For a subblock A consisting of l spins, this directly gives the
desired upper bound in Equation (15) by denoting SA as Send

l
.

An important application of the bound is an estimation of the
success probability from entropy measurements with polynomial
effort in system size. A direct measurement of the success prob-
ability requires knowledge of the desired solution, the exponen-
tially hard problem we set out to solve in the first place. However,
the entanglement entropy of a subblock of small size, l = 2 say,
only requires mapping out the reduced density matrix of l spins.
This can be performed efficiently even though the total number
of spins N might be very large. The maximization over all sets of
fixed size l = 2 leads to an additional increase of measurement
resources, but it remains polynomial because the total number of
partitions into subblocks of e.g., size l = 2 is N(N − 1)/2.

5. Numerical Results

We now study numerically the interrelation between entangle-
ment, success probability, and decoherence in the Coulomb-glass
problem, Equation (7). In particular, we show that the bound
Equation (15) is a useful measure for the success probability. As
initial state of the AQO protocol, we choose the ground state of
Hinit = hx

∑

i σ
x
i , a classical product state, andwe employ a linear

ramp, i.e., A(t) = 1 − t/ta. Note, that possible optimized non-
linear ramps may improve the performance of the AQO protocol
[19, 62]. We use ǫz/J = 1/2 and V/J = 10 as system parameters.
Before turning to open systems described by the master Equa-
tion (9), it is instructive to understand the decoherence-free case,
which is the subject of the following section.

5.1. Closed Quantum Systems
For computing the dynamics in closed systems, we employ exact
diagonalization with Krylov time evolution [63] for N = 16
spins, and with about 100 disorder realizations of hzi for each
value of ta. Note, that the focus of this work is the entangle-
ment during the optimization with restricts the number of spins
to relatively small sizes.

Let us first illustrate the dynamics of the entanglement in
typical sweeps. Figure 2 depicts the entanglement dynamics and
success probability of a few instances of randomly chosen mag-
netic fields hzi . In these examples, the annealing time is fixed
to a moderate value ta = 500/J, such that for most instances
the sweep is nearly adiabatic (here, as in what follows, we set h̄
to unity). Starting from the separable initial state, entanglement
gradually increases up to a maximum around t/ta ≈ 0.6 − 0.7,
i.e., in the vicinity of the equilibrium magnetic phase transition
of the homogeneous system. During the final stages of the proto-
col, the quantum fluctuations introduced via the transverse fields
hx

∑

i σ
x
i become weaker; the entanglement decays while simul-

taneously the success probability increases. There exist, however,
particular “hard” instances where the system is not capable to
disentangle, and thus ends up in a superposition of various eigen-
states with a lower success probability. The optimal local entan-
glement witness, which is not an entanglement measure, shows
stronger oscillations than the other observables, which results in
a peculiar additional peak in the hard instance of Figure 2.

FIGURE 2 | Success probability (A) and entanglement dynamics (B–D)

during the adiabatic quantum optimization protocol, for a few

instances (shown in different color) of randomly drawn magnetic fields

hz
i

∈ [−ǫz, ǫz], with ǫz/J = 1/2. System size is N = 16, for which the chosen

annealing time ta = 500/J is a moderate value. (A) The instantaneous success

probability, i.e., the overlap with the solution of the optimization problem,

increases strongly in the vicinity of the equilibrium magnetic phase transition of

the homogeneous system. (B) Dynamics of the entanglement entropy Smax
2 (t)

of two spins with the rest, (C) the optimal local entanglement witness W, and

(D) the logarithmic negativity Emax
N

(t) between pairs of spins. Both Smax
2 (t) and

Emax
N

(t) have been obtained by maximization over all possible permutations of

two sites on the chain. Easy instances [large P(ta )] are able to reduce the

entanglement obtained around the equilibrium phase transition, while hard

instances (blue) remain strongly entangled even toward the end of the protocol.
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5.1.1. Final-State Entanglement
We will now quantitatively analyze these observations, starting
with the final entanglement at t = ta. Figure 3, upper row,
depicts the final entanglement Send2 ≡ Smax

2 (ta) as a function of
P for various annealing times ta. The smaller ta the more exci-
tations are created during the sweep. The result is an effective
heating that leads to an increased entanglement entropy at the
end of the protocol. At the same time, the generated excitations
induce a substantial loss of success probability.

At small annealing times, the qubit pair with maximal entan-
glement entropy approaches Send2 = 2 log 2, the von Neumann
entropy of an infinite-temperature state.

For larger annealing times ta = 500/J, on the other hand, the
maximally entangled qubit pair approaches the bound in Equa-
tion (15) for many instances, implying that the system achieves
the maximally possible success probability given the entropy of
the state. Thus, in this regime it is possible to estimate the suc-
cess probability, an exponentially hard problem, from purely
local measurements involving only resources scaling polynomi-
ally with system size, as discussed in Section 4. But notice that
even for these moderate annealing times there are still hard
instances with a small success probability and an associated large
final entanglement.

In Figure 3, lower row, we compare the optimal local entan-
glement witness with the entanglement entropy. The witness
Wend reproduces the features of the entanglement entropy of
typical subsystems but not of the maximized entanglement

FIGURE 3 | Success probability as a function of final entanglement for

different annealing times ta, in a closed system (parameters as in

Figure 2). Top: Final entanglement entropy Send2 of exemplary subsystems of

size 2 (crosses). The different colors denote entanglement of the following

subsystems with the rest of the chain: {1,2} (black), {1,3} (blue), {1,16} (red),
and {12,14} (green). When maximized over all possible subsystems containing

two sites (black squares), the entanglement entropy lies close to the theoretical

upper bound Equation (15) (blue dashed line). The thin black dashed line is the

bound for a subsystem of length l = 1. Bottom: The optimized entanglement

witness shows a qualitatively similar behavior as the entanglement entropy

Send2 of typical subsystems. Compared to the maximized Send2 , however,

Wend shows a larger number of instances with small entanglement, indicating

that it does not capture all entanglement present in the system. As a result,

correlations between success probability and Wend are washed out.

entropy Send2 . For fast sweeps, the optimal witness in the final
state approaches W ≈ 1/2, which corresponds to its infinite-
temperature value, suggesting a strong heating of the system.
Increasing the sweep time reduces the final entanglement for
most instances. These findings are analogous to the behavior of
the entanglement entropy.

For the logarithmic negativity, we find a behavior that is qual-
itatively similar to the optimal witness. As seen in Figure 4, the
optimal witness provides a rough lower bound for the logarith-
mic negativity: a largeW results in a large EN , but not necessarily
vice versa. Although the entanglement witness Wend, therefore,
can provide a useful operational measure to evaluate the entan-
glement in the annealing procedure, it shows quantitative differ-
ences to more complex entanglement measures. Its shortcomings
are clearly seen in some instances that fail to disentangle the
state toward the end of the time evolution, where we find strong
oscillations in the witness (see Figure 2), which, however, are
not accompanied by a further feature in either the entanglement
entropy or the logarithmic negativity.

5.1.2. Maximal Entanglement
From the entanglement entropy, and in particular the bound
given in Equation (15), we found a small entanglement in the final
state is crucial for the efficiency. However, the maximal entan-
glement achieved during the sweep does not seem to be much
correlated with the success probability, as can be seen in Figure 5,
where we display the behavior of the entanglement entropy
Smax
2 = maxt

[

Smax
2 (t)

]

(again maximized over all subblocks with
l = 2) as well as the witnessWmax = maxt W(t).

FIGURE 4 | Logarithmic negativity EN compared to the optimized

entanglement witness W, for different annealing times ta in a closed

system of N = 16 sites. Top: Comparison of maximal values during the

annealing procedure. Bottom: final values. W provides a rough lower bound

for EN . While the tendency for these entanglement observables, is to become

smaller with increasing ta, in particular for the final values, correlations to the

success probability are difficult to find: for all considered annealing times, both

quantities have a broad available range of maximal and final values.
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FIGURE 5 | Maximal entanglement reached during the optimization

algorithm in closed systems of N = 16 sites for different annealing

times taJ = 50 (black squares), 200 (green diamonds) and 500 (blue

lozenges). (A) Entanglement entropy between two sites and the rest of the

system, maximized over all pairs of sites, and (C) optimized entanglement

witness, both as a function of success probability. The measured

entanglement occupies a broad range, making it difficult to find correlations to

the success probability. The maximal entanglement entropy shows only a

slight anticorrelation with the success probability P, which is inherited from the

bound Equation (15) and the fact that the final-state entropy for unsuccessful

sweeps remains close to the maximal one (B). This behavior is less prominent

for the entanglement witness (D).

For large annealing times, the maximal entanglement entropy
and witness are spread over a large range of values. This makes
it difficult to draw a correlations with the success probability. For
faster sweeps, there is a slight anticorrelation between Smax

2 and
P, but this derives from the bound Equation (15), since then the
maximal entanglement is retained at the end of the protocol. This
can be appreciated in Figures 5B,D, where it is seen that, for fast
annealing, the entanglement at the end is similar to the maximal
entanglement. In these figures, one can also see that for slower
sweeps, i.e., for more successful instances, the final entanglement
is considerably lower than the one attained at the maximum. The
logarithmic negativity presents a qualitatively similar behavior
(not shown).

In conclusion, we find no useful correlations between maxi-
mal entanglement during the sweep and success probability. In
particular, instances that experience a large entanglement during
the sweep do not show a larger success probability—contrary to
what one might expect when considering the popular picture of
spin configurations that quantum tunnel through energy barriers.

5.2. Open Quantum Systems
In an ideal, closed system, the only mechanism to lower the suc-
cess probability is non-adiabaticity due to finite sweeping times.
However, in many current implementations of AQO, the effi-
ciency is also reduced by decoherence in the system. In particular,
in the D-wave device, decoherence is orders of magnitude faster
than annealing times. Trapped ions, on the other hand, operate
in a regime where, as we have shown in Section 2, decoherence
can be systematically tuned. This ability allows one to study the
complex interplay between non-adiabaticity and decoherence in

AQO. In this section, we numerically analyze entanglement wit-
nessW, negativity EN and the Fisher information FQ in the AQO
protocol. We present numerical data from a relatively small sys-
tem with N = 6 sites where considerable statistics is achievable
also for numerically exact open-system calculations. In current
experiments, the number of ions can go up to N = 20 [5], which
represents an example of a quantum simulator reaching system
sizes that cannot be sampled numerically.

We compare various annealing times ta, ranging from ta =
4/J to ta = 256/J, and decoherence rates ranging from Ŵ = 0 to
Ŵ = 0.01J, depicted in Figure 6. For fast sweeps (ta = 4/J), the
results are independent of Ŵ, as can be expected since the con-
sidered rates are too low to have any effect in this case. In this
regime, the final state remains close to the initial equal superpo-
sition of all eigenstates of the final Hamiltonian, and the success
probability approaches the limit of P = 1/2N , independent of
the rate of decoherence. The entanglement in the final state is
then rather uncorrelated from the success probability, which is
always low.

In the opposite extreme of slow sweeps (ta = 256/J), the suc-
cess probability P is governed almost solely by the decoherence
rate, and, contrary to the case of closed systems, has little relation
to the final-state entanglement. In fact, in this case of extremely
slow sweeps, only at small decoherence does any entanglement
as measured through EN and FQ survive, while the witness W
vanishes for all studied instances. In the regime of intermediate
annealing times, for small decoherence rates the success prob-
ability and entanglement are related in a similar fashion as in
the fully coherent case, but a large decoherence suppresses both
entanglement and success probability.

The optimal witness is rather sensitive to decoherence and
does not allow one to obtain detailed information about the pro-
cess. In contrast, the Fisher information shows rich features and
offers additional insight into the nature of the entanglement of
the final state. The cases of slow sweeps (ta = 256/J) and small
decoherence rates are particularly interesting for the AQO pro-
tocol, since these allow for a large success probability. In these
cases, we find that the Fisher information approaches FQ ≈ N,
which indicates entanglement with k ≈ 1, i.e., between individ-
ual particles. For faster annealing, FQ can increase slightly, but
still remains much below FQ = N2. We find a similar behav-
ior for the maximum of FQ assumed during the AQO sweep.
This means entanglement between large numbers of particles as
measured through FQ is rare for the studied system sizes.

State-of-the-art trapped-ion experiments have intrinsic deco-
herence rates on the order ofŴ ∼ 0.1J, but predominantly only in
one quadrature [13]. We have performed numerical tests also for
dephasing only and found an improvement of a factor of about
2 compared to the results presented in Figure 6, where we con-
sidered the worst case of equal noise in σ x and σ z . Thus, for
a systematic study of the influence of noise on AQO in such
setups, further improvements in terms of decoherence still seem
necessary. Also, as is usual with AQO protocols, larger problem
instances will show smaller gaps and thus require larger anneal-
ing times to achieve similar degrees of success probability. On
the other hand, non-linear ramps may improve the performance
of the AQO protocol [19, 62].
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FIGURE 6 | Scatter plot of success probability P against the witness

(top), logarithmic negativity (middle), and Fisher information (bottom)

for N = 6 spins. Colors indicate the decoherence rate, ranging from Ŵ = 0

(black), Ŵ = 0.0001J (red), Ŵ = 0.001J (green), to Ŵ = 0.01J (blue). For small

ta, the final state is always close to an equal superposition of all eigenstates

with a small success probability. Fisher information and logarithmic negativity

show some residual entanglement. At large ta, the success probability

decreases with increasing decoherence rate, which also suppresses

logarithmic negativity and Fisher information. The dashed line marks FQ = N,

above which the system hosts entanglement.

6. Conclusions

In this work, we presented a feasible way to study the interrelation
between entanglement, non-adiabaticity, and decoherence on
small scales in a well-controlled laboratory setting. In particular,
we proposed several NP-complete problems that can be imple-
mented with straightforward extensions of existing trapped-ion
architectures.We described how fluctuating synthetic fields allow
to engineer well-controlled, artificial decoherence sources that
take advantage of the low levels of natural decoherence. Further,
we introduced an entanglement witness that is simple to measure
in a scalable way, yet reproduces some of the main features of
more complex entanglement measures, such as the entanglement
entropy and the logarithmic negativity.

Using extensive numerically exact studies on small closed and
open systems, we analyzed the dynamics of entanglement dur-
ing adiabatic quantum optimization. We found that, contrary
to popular assumption, a large entanglement during the opti-
mization has little significance for its success probability. On the
other hand, in clean systems, a large final entanglement after not
too fast sweeps indicates that the sweep generated a superposi-
tion state as its outcome, with decreased probability to arrive in
the separable ground state that solves the optimization problem.
Decoherence diminishes this anticorrelation between final-state
entanglement and success probability.

Thus, it seems that the simple presence or absence of entan-
glement does not allow to conclude on the efficiency of a machine
performing adiabatic quantum optimization—at least in the case
of the entanglement quantifiers and the systems considered in
this article. It will be interesting to study whether such correla-
tions appear for larger systems, optimized ramps, or other opti-
mization problems. More work is clearly needed to understand
if and how entanglement may sign responsible for a quantum
speedup of adiabatic quantum optimization.
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Appendix A: Generation of noisy transverse
Ising Models in Trapped-ion Setups

The purpose of this Appendix is to identify the assumptions
about energy scales entering the derivations of Equations (4)
and (9) of the main text. We will state them along the way and
summarize them in a final section, where we will also provide
comparison to the experimental state of art.

A. Generating Ising Interactions Using Trapped
Ions
In trapped-ion experiments, pseudo-spin degrees of freedom
can be quantum simulated by choosing two internal elec-
tronic states as |↑〉 and |↓〉 of a Pauli-spin operator σ̃ . The
energy splitting between these spin states is h̄ω0. When sev-
eral ions are confined in an electromagnetic trap, they form—
due to their mutual Coulomb repulsion—a regular Wigner-
like crystal with collective vibrational modes. In a linear
trap, the three spatial directions decouple, and the collec-
tive ion vibrations are described by three sets of N indepen-
dent harmonic oscillators, Hph = ∑

ν= x,y,z H
ν
ph

= ∑

ν
∑N

q= 1 h̄ω
ν
q â

†
ν,qâν,q. Here, â†

ν,q (âν,q) creates (annihilates) a

phonon in mode q of spatial direction ν. Since these col-
lective modes are extended over all ions, one can use them
as a bus to transmit Ising interactions between different
spins.

A convenient method to do this is by coupling the spins and
phonons in a Mølmer–Sørensen-type configuration [42]. In this
scheme, two laser beams (labeled l = 1 and 2) propagate in the
same direction, which for the moment we take to be the radial
direction x. Since coupling to the orthogonal vibrational modes
can be neglected, we drop the index ν = x in the following when
denoting the phonons. The lasers are detuned symmetrically with
respect to the vibrational sidebands, i.e., ωl=1 = ω0+ωx + δ and
ωl=2 = ω0−ωx−δ, whereωx is the trap frequency in x direction.
The coupling to ion i is then described by the Hamiltonian

HL =
∑

l= 1,2

∑

i

h̄|�i|
2

(σ̃+
i + σ̃−

i ) cos(kxi − ωlt + φl) . (A1)

Here, φl are the phases of the lasers, which we choose as φ1 = 0,
φ2 = π . We neglect differences in the laser wave number k. Fur-
ther, |�i| are the absolute values of the laser Rabi frequencies,
which we assume equal for the two beams, but which can be dif-
ferent for different ions i = 1 . . .N. The tunability of the latter,
to our knowledge so far only considered in Hauke et al. [47], is a
crucial ingredient for some of the NP-complete models discussed
in Table 1.

The coupling to the vibrational modes appears through the

positions xi, which can be expanded as kxi =
∑N

q=1 ηiqa
†
q + h.c.,

where ηiq = Miqk/
√

2Mωq/h̄ is the Lamb–Dicke parameter
with M the ion mass. The matrices Miq, obtained by diagonal-
izing the elasticity matrix of the ion crystal, transform localized
ion vibrations into phonon normal modes. In typical trapped-ion
experiments, ηiq is a small parameter [1], allowing the expansion

of the exponentials in Equation (A1) to first order. Before writ-
ing down the resulting expanded Hamiltonian, we change into an

interaction picture with respect to
∑

i h̄ω0σ̃
z
i +

∑

q(ωx + δ)â†
qâq,

and exploit the hierarchy ω0≫ωx+ δ≫|�i| to make a standard
rotating-wave approximation, yielding

HI =
∑

q

h̄δqâ
†
qâq +

∑

i

h̄|�i|
2

∑

q

iηiqσ̃
x
i (â

†
q − âq) , (A2)

where δq ≡ ωq − ωx − δ describes the detuning relative to
the sidebands. To make better contact to the discussion in the
main text, before proceeding we rotate the spins by π/2 about
the y axis of their Bloch sphere, which sends σ̃ x

i → σ z
i and

σ̃ z
i → −σ x

i .
The spin–phonon coupling contained in Hamiltonian (A2)

transmits an interaction between spins, as can be revealed, e.g., by
considering the canonical transformation H′

I = eSHIe
−S , with

S = ∑

iq g
z
iq(â

†
q+ âq)σ

z
i , where g

z
iq = i

2

|�i|ηiq
δq

. For |�i|ηiq/δq≪1,

we can expand H′
I up to second order, and—neglecting constant

terms—we obtain the promised Ising interactions

H′
I =

∑

q

δqâ
†
qâq +

∑

i 6= j

Jijσ
z
i σ

z
j , (A3)

with

Jij = −h̄
|�i||�j|

4

∑

q

ηiqηjq

δq
. (A4)

In this form of H′
I, spins and phonons are effectively decoupled,

allowing consideration of the spin-only model HIsing as given in
Equation (4) of the main text. Via the detuning δq, the expo-
nent α can be tuned in the range from 0 to 3 [10, 13]. Equations
(A3) and (A4) are (up to small corrections) a standard form
of Ising couplings describing current trapped-ion experiments
[10, 12, 13], but with the additional freedom of choosing local
Rabi frequencies made explicit.

B. Effective Longitudinal and Transverse Fields
To implement the NP-complete models given in the main text,
we require also longitudinal-field terms H‖ = ∑

i h
z
i σ

z
i . In the

Mølmer–Sørensen scheme, these terms can effectively be imple-
mented by resonantly driving the spin transition at ω0 in phase
with the laser beams. Since

[

σ z
i ,S

]

= 0, we have that H‖ is
unaffected by the canonical transformation and it may simply be
added to the final Hamiltonian.

The case is a bit different when adding the transverse-field
terms H⊥ = ∑

i h
x
i σ

x
i . In experiment, these terms can be

obtained, e.g., by shifting the detuning of bothMølmer–Sørensen
beams with respect to the pseudospin transition, or by an addi-
tional beam tuned in resonance to the pseudospin transition but
with a phase shift of π/2. Such transverse fields generate an addi-
tional coupling of spins to phonons. The question of the correct
parameter regimes where this coupling can be neglected is a diffi-
cult subject, and has been studied in detail inWang and Freericks
[65]. We give here an estimate for when additional phonon heat-
ing due to effective fields can be neglected. For small effective
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fields, one can incorporate the fields by modifying the canonical

transformation to S = ∑

ν=x,y,z

∑

iq g
ν
iq(γν â

†
iq+γ ⋆ν âiq)σ νi , where

γz = γx = 1, γy = i. To leading order, gziq = i
2

|�i|ηiq
δq

remains

unchanged. However, we also have the additional, lower-order

terms g
y
iq = gziq

hzi
h̄δq/2

and gxiq = gziq
hxi h

z
i

(h̄δq/2)2
. Using this modified

form of the canonical transformation, one obtains, up to second
order in (hxi , h

z
i , h̄ηiq|�i|)/h̄δq, the unchanged effective Hamilto-

nian HIsing +H‖ +H⊥, i.e., as long as h
x,z
i ≪ h̄δq, we can neglect

additional corrections due to the synthetic magnetic fields.

C. Noise Engineering in Trapped Ions
The ion system by itself is subject to a certain decoherence due,
e.g., to (real) magnetic-field fluctuations or spontaneous decay of
the upper pseudospin level. However, it is possible to also engi-
neer a desired noise source, and thus study the effect of designed
decoherence on the adiabatic optimization, as we describe now.
A scheme to engineer noise in a controlled fashion has also been
discussed and implemented in Soare et al. [52].

The basic idea is to subject the spins to fluctuating terms, gen-
erated in the same manner as for the static effective fields, but
with time-dependent fluctuating amplitudes. The full Hamilto-
nian in presence of such classical dephasing is modified to

H = HI +H‖ +H⊥ +
∑

i

[

ξ xi (t)σ
x
i + ξ zi (t)σ z

i

]

. (A5)

We take ξ νi (t), ν = x, z, to be independent Ornstein–Uhlenbeck

processes, u ξ νi (t)ξ
µ
j (0)z = h̄Ŵδν,µδi,jh̄be

−b|t|, where u · z
denotes average over noise realizations. For simplicity, we assume
equal rates Ŵ and bandwidths b for both the ξ xi (t) and ξ zi (t)
noise.

At times t ≪ (ηiq|�i|)−1, we can consider spins and phonons
as uncoupled. The equation of motion for the phonon density
matrix ρph is then ρ̇ph = − i

h̄
[Hph, ρph] and for the spins (up to

second order in ξ νi )

ρ̇(t) = − i

h̄
[H‖ +H⊥, ρ] (A6)

− 1

h̄2

∫ t

0
dt′

∑

i,j

∑

ν,µ

ξ νi (t)ξ
µ
j (t

′)
[

σ νi ,
[

σ
µ
j , ρ(t

′)
]]

.

In the limit where b is much larger than all other relevant time
scales, b ≫ hνi /h̄ , ηiq|�i|, putting the upper integration limit to
infinity and averaging over noise realizations leaves us with the
master equation for the spins

uρ̇z(t) = − i

h̄
[H‖ +H⊥,uρz]− Ŵ

∑

i,ν

[

σ νi ,
[

σ νi ,uρ(t)z
]]

.

(A7)
From here, one can add the spin–phonon coupling and use the
same canonical transformation as in the Hamiltonian case to
arrive at the master Equation (9), where we omitted the double
angle brackets for simplicity.

At larger times, t = O
(

(ηiq|�i|)−1
)

, spins and phonons get
coupled, and we have to consider the master equation for the
density matrix ρf of the full system,

uρ̇fz(t) = − i

h̄
[HI+H‖+H⊥,uρfz]−Ŵ

∑

i,ν

[

σ νi ,
[

σ νi ,uρfz
]]

.

(A8)
Using the above canonical transformation on the non-hermitian
term introduces spin–phonon couplings at the order of
Ŵηiq|�i|/δq. These spin–phonon couplings introduce additional
decoherence for the spin subsystem, but since ηiq|�i| ≪ δq they
are much smaller than the primary decoherence term included in
Equation (A8). Therefore, we can neglect them, and arrive at the
master equation quoted in the main text, Equation (9).

D. Hierarchy of Energy Scales and Rates
In the derivation of Equation (9), several subleading energy scales
have been neglected. We now discuss the validity of the under-
lying assumptions in view of experimental parameters such as
used in the experiments of Richerme et al. [12], Jurcevic et al.
[13]. For the validity of the rotating wave approximation lead-
ing to Equation (A2), one requires ω0 ≫ ωx + δ ≫ |�i|. Typi-
cally, ωx is O(1MHz), and δ and |�i| are chosen on the orders
O(10 − 100 kHz) and O(100 kHz), respectively. The pseudospin
energy splitting is on the order of O(10GHz) for hyperfine tran-
sitions and can attain optical frequencies. Therefore, this first set
of inequalities is safely fulfilled.

Further, the expansion of the canonical transformation eS

requires hx,zi /h̄, |�i|ηiq ≪ δq. Typical values are ηiq ≈ 0.06,
δq = ωq − ωx − δ = O(10− 100 kHz), and |�i| = O(100 kHz).
Considering the example of the Coulomb glass, in Jurcevic et al.
[13] it has been shown that for δq ≈ 40 kHz, the interactions
in a chain of 15 ions can be well approximated by a power law
with exponent α ≈ 1. In this case, a good choice of the Rabi
frequency could be |�i| ≈ 107 kHz, yielding the expansion
parameter |�i|ηiq/δq ≈ 0.16. The resulting interaction strength
would be J/h̄ ≈ 1 kHz. The transverse field at the beginning of
the annealing protocol, of order J, does therefore fulfill hx/h̄ ≈
1 kHz ≪ δq. Let us stress that these are values that are already
used in the laboratory, whichmay be open to improvement in the
future.

Spin–phonon couplings introduced when engineering deco-
herence can be neglected when b, δq ≫ ηiq|�i|. The second
inequality was already required for the expansion of the canonical
transformation. For the above parameter values, the first inequal-
ity implies b ≫ 6 kHz, which also ensures validity of the white-
noise assumption b ≫ hνi . Such a fast and spatially uncorrelated
modulation could be generated, e.g., via acousto-optic deflectors
(AODs) as are employed to achieve single-ion addressing [13].
Since the response time of AODs can be less than 10µs, it is
possible to let the intensity incident on different ions fluctuate
independently and much faster than ηiq|�i|, hνi .

A fast fluctuation (large b) ensures that the noise-generating
fields do not introduce additional spin–phonon couplings in
higher orders of the canonical transformation as the static syn-
thetic fields do. For slower fluctuations, however, phonons could
be excited if the typical fluctuation amplitude does not fulfil the
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condition analog to the static counterpart,
√

u ξ νi (0)ξ
ν
i (0)z/h̄ =

√
Ŵb ≪ δq. For the above parameters and the small noise rates

considered in this work, Ŵ ≤ 0.01J/h̄, however, this condition is
safely satisfied.

We can summarize the required hierarchy of energy scales and

rates as δq, b≫ ηiq|�i|, hνi /h̄ and δq ≫
√
Ŵb. Let us finally stress

that incomplete fulfillment of these hierarchies may actually

not constitute an issue, since we are interested in analyzing

the interplay between non-adiabaticity and decoherence, i.e., we

explicitly desire these detrimental effect, only with the restriction

that they should be tunable. For example, increasing the Rabi fre-

quency to obtain a larger J improves adiabaticity, but may simul-

taneously introduce additional decoherence due to excitation of

phonons.
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