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quantum gravity?
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Quantum gravity is often expected to solve both the singularity problem and the

information-loss problem of black holes. This article presents an example from loop

quantum gravity in which the singularity problem is solved in such a way that the

information-loss problem is made worse. Quantum effects in this scenario, in contrast

to previous non-singular models, do not eliminate the event horizon and introduce a

new Cauchy horizon where determinism breaks down. Although infinities are avoided,

for all practical purposes the core of the black hole plays the role of a naked singularity.

Recent developments in loop quantum gravity indicate that this aggravated information

loss problem is likely to be the generic outcome, putting strong conceptual pressure on

the theory.
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1. Introduction

There is a widespread expectation that quantum gravity, once it is fully developed and understood,
will resolve several important conceptual problems in our current grasp of the universe. Among the
most popular ones of these problems are the singularity problem and the problem of information
loss. Several proposals have been made to address these questions within the existing approaches
to quantum gravity, but it is difficult to see a general scenario emerge. Given such a variety of pos-
sible but incomplete solution attempts, commonly celebrated as successes by the followers of the
particular theory employed, it is difficult to use these models in order to discriminate between the
approaches. In this situation it may be more fruitful to discuss properties of a given approach that
stand in the way of resolving one or more of the big conceptual questions. Here, we provide an
example regarding the information loss problem as seen in loop quantum gravity.

Loop quantum gravity [1–3] is a proposal for a canonical quantization of space-time geometry.
It remains incomplete because it is not clear that it can give rise to a consistent quantum space-time
picture (owing to the so-called anomaly problem of canonical quantum gravity). Nevertheless, the
framework is promising because it has several technical advantages compared to other canonical
approaches, in particular in that it provides a well-defined and tractable mathematical formulation
for quantum states of spatial geometry. The dynamics remains difficult to define and to deal with,
but there are indications that a consistent version may be possible, one that does not violate (but
perhaps deforms) the important classical symmetry of general covariance. These indications, found
in a variety of models, lead to the most-detailed scenarios by which one can explore large-curvature
regimes in the setting of loop quantum gravity.

The word “loop” in this context refers to the importance attached to closed spatial curves in
the construction of Hilbert spaces for geometry according to loop quantum gravity [4]. More pre-
cisely, one postulates as basic operators not the usual curvature components on which classical
formulations of general relativity are based, but “holonomies” which describe how curvature
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distorts the notion of parallel transport in space-time. If we pick
a vector at one point of a closed loop in curved space and move it
along the loop so that each infinitesimal shift keeps it parallel to
itself, it will end up rotated compared to the initial vector once we
complete the loop. The initial and final vectors differ from each
other by a rotation with an angle depending on the curvature in
the region enclosed by the loop. Loop quantum gravity extends
this construction to space-time and quantizes it: It turns the rota-
tion matrices into operators on the Hilbert space it provides. An
important consequence is the fact that (unbounded) curvature
components are expressed by bounded matrix elements of rota-
tions. Most of the postulated loop resolutions of the singularity
problem [5–11] rely on this replacement.

Classical gravity, in canonical terms, can be described by a
HamiltonianH that depends on the curvature. IfH is to be turned
into an operator for loop quantum gravity, one must replace the
curvature components by matrix elements of holonomies along
suitable loops, because only the latter ones have operator analogs
in this framework. One has to modify the classical Hamiltonian
by a new form of quantum corrections. The classical limit can be
preserved because for small curvature, the rotations expressed by
holonomies differ from the identity by a term linear in standard
curvature components [12, 13]. At low curvature, the classical
Hamiltonian can therefore be obtained. At high curvature, how-
ever, strong quantum-geometry effects result which, by virtue of
using bounded holonomies instead of unbounded curvature, can
be beneficial for resolutions of the singularity problem.

Given the boundedness, it is in fact easy to produce
singularity-free models. But one of the outstanding problems
of this framework is to show that the strong modification of
the classical Hamiltonian can be consistent with space-time
covariance. This question is not just one of broken classical
symmetries (which might be interesting quantum effects).
Covariance is implemented by a set of gauge transformations
which eliminate unphysical degrees of freedom given by the
possibility of choosing arbitrary coordinates on space-time.
When these transformations are broken by quantum effects, the
resulting theory is meaningless because its predictions would
depend on which coordinates one used to compute them. Show-
ing that there are no broken gauge transformations (or gauge
anomalies) is therefore a crucial task regarding the consistency
of the theory. The problem remains unresolved in general, but
several models exist in which one can see how it is possible to
achieve anomaly-freedom, constructed using operator methods
[14–18] or with effective methods [19–23].

2. A model of Deformed Canonical
Symmetries

As a simple, yet representative, example, we consider a model
with one field-theoretic degree of freedom φ(x) and momen-
tum p(x). There is no room for gauge degrees of freedom in
this model, and therefore we use it only to consider the form of
symmetries of gravity, not the way in which spurious degrees of
freedom are removed.

2.1. Algebra of Transformations
For the example, we postulate a class of Hamiltonians

H[N] =

∫

dxN

(

f (p)−
1

4
(φ′)2 −

1

2
φφ′′

)

(1)

with a function f to be specified, and with the prime denoting a
derivative by the one spatial coordinate x. As in general relativity,
the Hamiltonian depends on a free function N(x) because there
is no absolute time. The freedom of choosing N corresponds to
choosing different time lapses and directions along which H[N]
would generate translations. Also the dependence of H[N] on
the canonical fields is modeled on gravity, where f (p) would be
a quadratic function (p standing for extrinsic curvature), and the
derivative terms of φ present a simple version of spatial curva-
ture (a function quadratic in first-order and linear in second-
order derivatives of the metric). The main formal features of
gravitational Hamiltonians are therefore captured by this model.
One can indeed check that the general results of [19–23] follow
from the structure of derivatives in Equation (1) in combina-
tion with a function f (p) which modifies the classical momentum
dependence. (Compare with Equation (A4) in Appendix A).

The Hamiltonian, as a generator of local time translations,
is accompanied by a second generator of local spatial transla-
tions, the form of which is more strictly determined: It is given by
D[w] =

∫

dxwφp′ with another free function w(x). It generates
canonical transformations given by

δwφ = {φ,D[w]} = −(wφ)′ and δwp = {p,D[w]} = −wp′ , (2)

as they would result from an infinitesimal spatial shift by−w(x):

p(x− w(x)) ≈ p(x)− w(x)p′(x) = p(x)+ δwp(x) .

(The transformation of φ is slightly different owing to a formal
density weight).

Of special importance is the algebra of symmetries, which
can be computed by Poisson brackets (as a classical version of
commutators). We obtain

{H[N],H[M]} = D[ 12 (d
2f /dp2)(N′M − NM′)] . (3)

Two local time translations have a commutator given by a
spatial shift. (The numerical coefficients chosen in Equation (1)
ensure that the bracket (Equation 3) is closed). Although our
model is simplified, the result (Equation 3) matches well with
calculations in models of loop quantum gravity, constructed
for spherical symmetry [18, 20, 23] and for cosmological per-
turbations [21, 22]. (See Equation (A4) in Appendix A). The
same type of algebra has also been obtained for H-operators in
2 + 1-dimensional models [14]. Since our choice (Equation 1)
extracts the main dynamical features of loop models, it serves to
underline the genericness of deformed symmetry algebras when
f (p) is no longer quadratic.

2.2. Geometry
For the classical case in which f (p) = p2 is a quadratic function
of p, half the second derivative in Equation (3) is a constant equal
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to one and the spatial shift is simply N′M − NM′. This relation
agrees with the result obtained in general relativity (except that in
the latter case one would have to use the spatial metric to turn the
1-formN′M−NM′ into a vector). It has an interesting interpreta-
tion if we use linear functions of the form c1t+ (v/c)x for N and
M (with the speed of light c). The constant1t amounts to a rigid
shift in time. The linear term can be understood if one thinks of
Minkowski diagrams in special relativity: a Lorentz boost tilts the
x-axis into a new position by an angle given by the boost veloc-
ity v. (The new x-axis is the set of points where the new time
coordinate

t′ =
t − vx/c2

√

1− v2/c2

is constant). The commutator of Lorentz boosts and time transla-
tions can be derived from Equation (3) with linear N andM: For
N = c1t + (v/c)x and M = −(v/c)x (undoing the boost after
time 1t), we have N′M − NM′ = v1t. The commutator simply
amounts to a spatial shift

w = 1x = v1t , (4)

as expected. (It may not be possible to have globally linear func-
tions N and w on a general manifold, but local Poincaré transfor-
mations, with N and w linear in some neighborhood, can always
be realized).

Holonomy effects of loop quantum gravity can be modeled by
using a bounded function f (p) instead of a quadratic one. (A pop-
ular choice in the field is f (p) = p20 sin

2(p/p0) with some constant
p0, such as Planck-sized curvature). The number of classical sym-
metries remains intact because the relation (Equation 3) is still
a closed commutator. But the structure of space-time changes:
we can no longer think in terms of local Minkowski geometry
because the spatial shift in Equation (3) with 1

2d
2f /dp2 6= 1 vio-

lates the relation 1x = v1t found classically in Equation (4).
The deviation from classical space-time is especially dramatic
at high curvature, near any maximum of the holonomy func-
tion f (p): Around a maximum, the second derivative is negative,
d2f /dp2 < 0. For the popular choice of f (p) = p20 sin

2(p/p0), we
have 1

2d
2f /dp2 = cos(2p/p0) which is equal to −1 at the max-

imum of f (p). The counter-intuitive relation 1x = −v1t can
be interpreted in more familiar terms: the change of sign means
that the classical Lorentz boost is replaced by an ordinary rota-
tion. (An infinitesimal rotation by an angle θ in the (x, y)-plane
and a spatial shift by1y commute to1x = −θ1y). At high cur-
vature, holonomy-modified models of general relativity replace
space-time with pure and timeless higher-dimensional space, a
phenomenon called signature change [24–26].

2.3. Field Equations
At the level of equations of motion, signature change means
that hyperbolic wave equations become elliptic partial differential
equations (in all four dimensions, or two in the model). Indeed,
if one computes equations of motion from the Hamiltonian
Equation (1), one obtains

1

N

(

φ̇

N

)•

−
1

2

d2f (p)

dp2

(

φ′′ +
N′

N
φ′ +

N′′

N
φ

)

= 0 , (5)

where d2f (p)/dp2 is a function of φ̇ via φ̇ = Ndf (p)/dp. This par-
tial differential equation, which is hyperbolic for 1

2d
2f (p)/dp2 >

0, becomes elliptic for 1
2d

2f (p)/dp2 < 0.
In the latter case, the equation requires boundary values for

solutions to be specified; it is not consistent with the familiar evo-
lution picture implemented by an initial-value problem. Instead
of specifying our field and its first time derivative at one instant of
time, once curvature (or φ̇ in the model) becomes large enough
to trigger signature change we must specify the field on a bound-
ary enclosing a 4-dimensional region of interest—including a
“future” boundary in the former time direction.We can no longer
determine the whole universe from initial data given at one time1.

Although our specific model is simplified, the main conclu-
sion about signature change agrees with the more detailed ver-
sions cited above, which latter directly come from reduced mod-
els of loop quantum gravity combined with canonical effective
techniques. (See Appendix A for an example with spherical sym-
metry). Our model presented here shows that the main reason
for signature change is the modified dependence of gravitational
Hamiltonians on curvature components when holonomies are
used to express them, together with the general structure of cur-
vature terms. (Especially the presence of spatial derivatives seems
crucial for derivatives of the modification function to show up in
the symmetry algebra after integrating by parts). The rest of our
discussions does not rely on the specific model but rather on the
general consequence of signature change.

2.4. General Aspects of Signature Change
As shown in Bojowald and Brahma [27], the structure of con-
straint algebras or gauge transformations, of which Equation (3)
provides a model, is much less sensitive to details of regulariza-
tion effects or quantum corrections than the precise dynamics
implied. Even if there may be additional quantum corrections in
Equation (5) in a fully quantizedmodel, structure functions of the
algebra, such as 1

2d
2f /dp2 in Equation (3), provide reliable effects

of a general nature. For details, the reader is referred to the above
citation or Appendix B, but the crucial ingredient in this observa-
tion is the definition of effective constraints CI = 〈ĈI〉 as expec-
tation values of constraint operators ĈI (or symmetry generators
H and D in the model here), and their brackets as {CI,CJ} =

〈[ĈI, ĈJ]〉/ih̄. A regularization of a constraint operator ĈI leads
to corresponding modifications of the effective constraint 〈ĈI〉.
For any consistent operator algebra, the bracket of effective con-
straints mimics the commutator of constraint operators. Even
if 〈ĈI〉, computed to some order in quantum corrections, may
give a poor approximation to the quantum dynamics, the con-
sistent forms of effective constraint algebras restrict the possible

1A region of signature change can be seen as a barrier to propagation and might

resemble tunneling in some respects. However, there is a crucial difference between

these two phenomena: In the barrier of a tunneling problem in quantum mechan-

ics, there is a change of sign of a term in the relevant partial differential equation,

given by the potential minus the total energy. This term plays the role of a source

term in the partial differential equation and does not affect the highest deriva-

tive orders. In a region of signature change, by contrast, the coefficients of highest

derivative orders are affected as for instance in Equation (5). Therefore, signature

change has important implications for well-posed initial/boundary data and causal

structures, which are absent in standard tunneling problems. Our discussion in the

next section relies on these new features.
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versions of quantum commutators. If effective constraints of a
certain form, such as those obtained with holonomy modifica-
tions, always lead to a change of sign of structure functions, the
same must be true for operator algebras.

As the preceding discussion has made clear, there are no
assumptions in this effective method other than the form of
modifications of constraints and that the theory can be consis-
tent at all. In particular, the phase space or symplectic structure
is not assumed but derived from quantum commutators. The
method therefore provides reliable evaluations of loop models
which otherwise could be analyzed only with difficulties, or in
very special circumstances that provide solvability. Certain pro-
ponents of loop quantum gravity often refer to a ready-made
argument in their defense of the theory. If the effective method
shows that there is signature change and corresponding indeter-
minacy, they say, then there must be something wrong with this
method [28]. It is therefore important to realize that the effec-
tive method is merely used to evaluate loop models. It does make
assumptions, but only of general type: it assumes that it is possi-
ble to have some anomaly-free realization of constraint algebras,
and that sufficiently general semiclassical states exist which allow
one to derive mode equations with quantum corrections. (The
latter assumption is necessary in background-independent theo-
ries, but not only for their effective analysis). It is also important
that the effective method is the only one so far that has pro-
vided results on the off-shell constraint algebra of loop quantum
gravity. The constructions by Henderson et al. [15], Henderson
et al. [16], Tomlin and Varadarajan [17] are only partially off-
shell at isolated points, in such a way that they do not show
deformations of the constraint algebra by holonomy corrections,
which are responsible for signature change. The constraint anal-
ysis of black-hole models by Gambini and Pullin [11] makes use
of a simple Abelianization which is available only in this spe-
cific situation, and only for the classical constraints. Although
these models implement holonomymodifications after the classi-
cal constraints have been Abelianized, they do not allow conclu-
sions about quantum space-time as given by holonomy-modified
constraints.

As noted also in Mielczarek [25], Barrau et al. [29], equations
of the form Equation (5) sometimes appear for matter systems
with instabilities, in cosmology but also in other areas such as
transonic flow. An instability would normally not be interpreted
as signature change as long as a standard Lorentzianmetric struc-
ture remains realized, as is the case in all the known matter
examples. The present context, however, is different, because the
instability affects the geometry of space-time itself, and not just
matter propagating in space-time. (In models of loop quantum
gravity, φ in Equation 5 stands for metric inhomogeneities). Such
an instability is more severe, and at the same time more inclu-
sive because it affects all excitations—matter and geometry—in
the same way. Indeed, the most fundamental structure where it
appears is not the equation of motion Equation (5) but the sym-
metry algebra Equation (3). If matter is present, its Hamiltonian
would be added to the gravitational one, the resulting sum satis-
fying a closed algebra of the form (Equation 3). (If adding matter
terms would break the algebra, there would be anomalies making
the theory inconsistent). Matter and geometry are then subject to

the same modified symmetries, and correspondingly to a modi-
fied evolution picture with a boundary rather than initial-value
problem at high density.

Solutions might exist for elliptic partial differential equations
with an initial-value problem. However, such solutions are unsta-
ble and depend sensitively on the initial values; therefore, initial-
value problems for elliptic partial differential equations are not
well-posed. Sometimes, a physical model of this form may just
signal a growing mode which is increasing rapidly in actual time.
In quantum gravity and cosmology, however, instabilities from
signature change in Equation (3) or Equation (5) are much more
debilitating. In this context, one does not perform controlled lab-
oratory experiments in which one can prepare or directly observe
the initial values.When signature change is relevant, it happens in
strong quantum-gravity regimes where the analogs of f (p) differ
much from the classical behavior. Not only initial values but also
the precise dynamical equations (subject to quantization ambi-
guities) are so uncertain that an initial-value formulation can
give no predictivity. (In cosmological parlance, instabilities from
signature change present severe versions of trans-Planckian and
fine-tuning problems. For more information on the dynamics of
affected modes see [30]). In contrast to some matter systems in
which elliptic field equations may appear, quantum-gravity the-
ories do not allow initial-value formulations in such regimes but
rather require 4-dimensional boundary-value problems.

Evolution in these models is no longer fully deterministic. In
the remainder of this article, we apply this conclusion to black
holes and show that even low-curvature regions, where observers
have no reason to expect strong quantum-gravity effects, will be
affected by indeterminism. In this context, consequences of sig-
nature change are therefore much more severe than their analogs
in cosmological models.

3. Black Holes

Black holes in general relativity have singularities where space-
time curvature diverges. Loop quantum gravity has given rise
to models in which curvature is bounded, apparently resolving
the singularity problem [31]. As in some other approaches [32–
35], there is then no event horizon but only an apparent horizon
which encloses large curvature but eventually shrinks and disap-
pears. If there is no singularity and information can travel freely
through high-curvature regions, there is no information loss, so
this important problem seems to be resolved too. However, pre-
vious black-hole models of this type in loop quantum gravity did
not consider the anomaly problem. In an anomaly-free version,
curvature may still be bounded, but when it is large (Planckian,
or near the upper bound provided by the models), there can be
signature change, preventing information from travelling freely
through this regime. It is no longer obvious that the information-
loss problem can be resolved in singularity-free models of black
holes.

If the singularity is resolved, there are two scenarios
for Hawking-evaporating black holes: The black-hole region
enclosed by an apparent horizon could reconnect with the
former exterior at the future end of high curvature, or it
could split off into a causally disconnected baby universe.
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The latter case does not solve the information-loss prob-
lem because information that falls into the black hole is
sealed off in the baby universe. The former case resolves
the information-loss problem only if information can travel
through high curvature. (In this article, we leave aside other
problems of such remnant scenarios, as discussed for instance
in Giddings [36], and focus on issues that originate from
the same mechanism that is used to remove singularities).
If signature change happens, nothing travels through the
high-curvature region and the fate of information must be
reconsidered.

The elliptic nature of field equations in the high-curvature
core of black holes requires one to specify fields at the future
boundary, which would evolve into the future space-time after
black-hole evaporation. (The signature-change models analyzed
here may also arise as effective versions of wave-function col-
lapse models proposed in [37, 38]. Free boundary data around
the high-curvature core would then correspond to the unde-
termined wave function obtained by quantum collapse). In
Figure 1, boundary values on the bottom line surrounding the
hashed high-curvature region would be determined by evolv-
ing past initial values forward in time, but boundary data on
the top line around the region would have to be specified,
unrestricted by any field equations. Their values are not pre-
dicted by the theory, and yet they are essential for determin-
ing the future space-time. Once the high-curvature region is
passed by an outside observer, space-time is no longer pre-
dictable. The black-hole’s event horizonH extends into a Cauchy
horizon C: The region above C is affected by undetermined
boundary data. Even if there are no infinities, the classical
black-hole singularity is, for practical purposes, replaced by a
naked singularity, a place out of which unpredictable fields can
emerge.

In terms of information loss, whatever infalling matter hits
the high-curvature core of the black hole determines some part
of the boundary conditions required for the elliptic region, and
thereby influences part of the solution in the core. But it does
not restrict our choice for the future boundary data, or anything
that evolves out of it at lower curvature. Infalling information is
therefore lost even if there is no black-hole singularity in the sense
of infinite curvature. Similar conclusions apply to the alterna-
tive of a baby universe: Infalling information cannot be retrieved
in the old exterior, and it cannot be passed on to the baby
universe.

4. Conclusions: A No-Heir Theorem?

Wehave presented here amechanismwhich appears to be generic
in loop quantum gravity and helps to resolve curvature diver-
gence, but makes the information loss problem of black holes
worse. (Interestingly, models of string theory have occasionally
resulted in similar effects of signature change or related phe-
nomena [39, 40]). Black-hole singularities can turn into naked
singularities in this framework, which implies an end to pre-
dictivity. In classical general relativity, there is strong evidence
that cosmic censorship applies: given generic initial data, singu-
larities may form but are enclosed by black-hole horizons; no

FIGURE 1 | Acausality: Penrose diagram of a black hole with signature

change at high curvature (hashed region). In contrast to traditional

non-singular models, there is an event horizon (dashed line H, the boundary

of the region that is determined by backward evolution from future infinity) and

a Chauchy horizon (dash-dotted line C, the boundary of the region obtained by

forward evolution of the high-curvature region). After an observer crosses the

Cauchy horizon, space-time depends on the data chosen on the top

boundary of the high-curvature region and is no longer determined completely

by data at past infinity. Information that falls through H affects field values in

the hashed region, but not on the top boundary or its future; it is therefore lost

for an outside observer. Unrestricted boundary values at the top part of the

hashed region influence the future universe even at low curvature (zigzag

arrow), a violation of deterministic behavior.

naked singularities appear that would affect observations made
from far away. In loop quantum gravity, a stronger version
of cosmic censorship would be required if signature change is
confirmed to be generic. Naked singularities (Cauchy horizons)
could be avoided only if black-hole interiors split off into baby
universes. But even then, information could not be passed on to
the baby universe. From the point of view of observers in this
new universe, the former black-hole singularity would appear
as a true beginning, just as the big bang appears to us in our
universe.

The information-loss problem has turned into a more-severe
problem of indeterminism. Two options remain for loop quan-
tum gravity to provide a consistent deterministic theory with-
out Cauchy horizons. First, one might be able to show that
signature change does not happen under general conditions in
the full theory or that non-perturbative effects in h̄ somehow
allow for deterministic propagation, a question which requires an
understanding of the off-shell constraint algebra and the thorny
anomaly problem, together with the equally difficult problem of
non-perturbative physical observables. All current indications,
however, point in the opposite direction and suggest that signa-
ture change is generic. With signature change, Cauchy horizons
can be avoided only if the high-curvature regions of black holes
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always remain causally disconnected from the universe in which
they formed, that is if black holes open up into new baby uni-
verses. In this scenario, information that falls in a black hole is
still lost even for the baby universe, but at least the more-severe
problem of a Cauchy horizon can be avoided. In either case, a
detailed analysis of possible consistent versions of the constraint
algebra of loop quantum gravity could lead to a “no-heir theo-
rem” if deterministic evolution through the high-density regime
of black holes turns out to be impossible under all circumstances.
Black holes would have no heirs since everything possessed by a
collapsing star, including the information carried along, would be
lost even if space-time did not end in a curvature singularity.

So far, loop quantum gravity is not understood sufficiently
well for a clear model of black holes to emerge from it, but
the mechanism analyzed here shows that, at the very least, sce-
narios obtained from generalizations of simple homogeneous
models, such as the one postulated in Ashtekar and Bojowald
[31], are likely to be misleading. Inhomogeneity can change

the picture drastically, not just because there may be back-
reaction on a homogeneous background but also, and often
more surprisingly, because the non-trivial nature of symme-
try algebras such as Equation (3) or Equation (A4) is much
more restrictive for inhomogeneous models. (The right-hand
side would just be identically zero with homogeneity, hid-
ing the crucial coefficient and its sign which indicates signa-
ture change). Our considerations of black-hole models provide
a concrete physical setting in which loop quantum grav-
ity and its abstract anomaly problem can be put to a clear
conceptual test.
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Appendix A

Anomaly-free Constraint Algebras in Spherically
Symmetric Models
This appendix recalls further details of anomaly-free constraints
derived for spherically symmetric models of gravity. The details
of variables and constraints are more contrived than in the toy
model of Section 2, but the same key features are realized.

Spherically symmetric triad variables and their momenta can
be parameterized by two pairs of fields (Kx,E

x) and (Kϕ,E
ϕ)

depending on a radial coordinate x, with Ex and Eϕ components
of a densitized triad and Kx and Kϕ parameters for extrinsic cur-
vature [41]. The Hamiltonian constraint with potential modifi-
cations from holonomy effects of loop quantum gravity can be
parameterized as [20, 23, 42]

H[N] = −
1

2G

∫

dxN

(

|Ex|−
1
2 Eϕ f1(Kϕ,Kx)+ 2|Ex|

1
2 f2(Kϕ,Kx)

+ |Ex|−
1
2 (1− Ŵ2

ϕ)E
ϕ + 2Ŵ′

ϕ |E
x|

1
2

)

(A1)

with the spin-connection component Ŵϕ = −(Ex)′/2Eϕ and two
functions f1 and f2 of extrinsic curvature (or possibly the triad as
well).

Classically, f1 = K2
ϕ and f2 = KxKϕ , but this is not the only

possibility of anomaly-free constraint algebras, together with the
diffeomorphism constraint

D[Nx] =
1

2G

∫

dxNx
(

2EϕK ′
ϕ − Kx(E

x)′
)

. (A2)

It remains unknown how the linear dependence onKx of the clas-
sical constraint can be modified in an anomaly-free way (which,
as shown in Bojowald et al. [23], would likely involve higher
spatial derivatives). But the dependence on Kϕ is not uniquely
determined by anomaly-freedom alone. As shown by Reyes [20],
if f2 = KxF2(Kϕ,E

x,Eϕ) with F2 related to the free function f1 by

F2 + 2Ex
∂F2

∂Ex
=

1

2

∂f1

∂Kϕ
, (A3)

there is a closed algebra

{H[N],H[M]} = D[βhab(N1∂bN2 − N2∂bN1)] (A4)

with

β =
∂F2

∂Kϕ
(A5)

a function of the canonical variables. In the simple case in which
F2 does not depend on Ex, we have

β(Kϕ) =
1

2

∂2f1

∂K2
ϕ

(A6)

of the form (Equation 3).

The same relations of modification functions and deformed
algebras can be derived at the operator level [18]. Therefore, con-
sequences such as signature change are not restricted to effec-
tive derivations, but they are much easier to see in this way
based on the mode equations implied. (More generally, signature
change and other properties of quantum space-time structure are
reflected abstractly in the structure functions of hypersurface-
deformation algebras such as Equation (A4). Similar results have
been derived for linear perturbations in cosmological models
[22]; see [29] for a detailed comparison with spherically symmet-
ric models.

Field equations generated by a modified constraint Equation
(A1) (with Equation A2) could be used to find explicit solutions
for the model pictured in Figure 1. However, details of solutions
depend on a large set of quantization ambiguities summarized
here in the free function f1(Kϕ). They would also be sensitive
to additional corrections from quantum back-reaction of fluctu-
ations and higher moments. The qualitative model of Figure 1,
on the other hand, is robust: for any bounded f1(Kϕ), as implied
by holonomy modifications, β is negative near a local maximum
of curvature according to Equation (A6). Moreover, as shown in
Bojowald and Brahma [27] and Appendix B, β is not subject to
quantum back-reaction from moments.

Appendix B

Canonical Effective Theory and Constraints
Canonical effective methods [43] evaluate dynamical equations
for expectation values and moments of a state based on alge-
braic properties of quantum operators. No specific Hilbert-space
representation is assumed, implying key advantages especially
for constrained systems where physical Hilbert spaces are often
difficult to derive.

Starting with a ∗-algebra A generated by some basic oper-
ators Âi, i = 1, . . . , n, a state is a positive linear functional
〈·〉 : A → C. That is, 〈Â∗Â〉 ≥ 0 for all Â ∈ A. (The ∗-relation
is abstractly defined, here for simplicity assuming Â∗

i = Âi

for self-adjoint generators. In a Hilbert-space representation, the
∗-relation would be given by taking adjoint operators).

Instead of working with entire states, we can paramaterize
them by an infinite set of numbers given by the expectation values
〈Âi〉 of basic operators and the moments

1(Aa1
1 · · ·Aan

n ) = 〈(Â1 − 〈Â1〉)
a1 · · · (Ân − 〈Ân〉)

an〉symm (A7)

with products taken in totally symmetric ordering so as to remove
redundancies. (For a1 + · · · + an = 2, the resulting moments are
fluctuations and covariances).

The set of basic expectation values andmoments is turned into
a quantum phase space by introducing a Poisson bracket by

{〈Â〉, 〈B̂〉}: =
〈[Â, B̂]〉

ih̄
(A8)

for expectation values and extending it to products as in Equation
(A7) using the Leibniz rule.
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The expectation value of a combination of the basic operators
(in totally symmetric ordering), such as a constraint ĈI = CI(Âi),
can be written as a function on the quantum phase space by a
formal Taylor expansion

〈ĈI〉 = 〈CI(Âi)〉 = 〈CI(〈Âi〉 + (Âi − 〈Âi〉))〉

= CI(〈Âi〉)+
∑

a1,...,an

1

a1 ! · · · an !

∂a1+···+anCI(〈Âi〉)

∂〈Â1〉a1 · · · ∂〈Ân〉an

×1(Aa1
1 · · ·Aan

n ) . (A9)

(For polynomial CI , the sum is finite and an exact representation
of the left-hand side).

Seen as functions of basic expectation values and moments
as per Equation (A9), the condition that 〈ĈI〉 = 0 in a phys-
ical state (ĈIψ = 0 in a Hilbert-space representation) pro-
vides a constraint function on the quantum phase space [44, 45].
Moreover, any expression of the form 〈p̂ĈI〉 = 0 must vanish
in a physical state but generically provides a constraint inde-
pendent of 〈ĈI〉 = 0 if p 6= 1. Every constraint operator
ĈI generates an infinite set of independent constraints on the
quantum phase space, which can be organized by the polyno-
mial degree of p̂ restricted to polynomials in basic operators Âi.
(One can easily see that an infinite set of constraints is necessary
in order to restrict not just the basic expectation value Âi but
also all the Ai-moments if the classical Ai is totally constrained
by CI).

By definition of the Poisson bracket (Equation A8) on the

quantum phase space, the quantum commutators of constraints

ĈI , and therefore the whole constraint algebra, are faithfully

mapped to corresponding Poisson-bracket relations of effective

constraints obtained by applying Equation (A9). It is usually eas-

ier to compute Poisson brackets than commutators, especially
in the presence of ordering and other ambiguities. Moreover, if
one truncates Equation (A9) to finite orders of moments up to
some maximum order, one can obtain order-by-order informa-
tion on the constraint algebra in a semiclassical expansion. (For
a semiclassical state, a moment of order a1 + · · · + an behaves
as O(h̄(a1+···+an)/2), as can be checked explicitly for a Gaussian).
Some key properties of constraint algebras are independent of

the order, and therefore provide information suitable for strong
quantum regimes. In this paper, the main result of Bojowald and
Brahma [27] is important, which states that structure functions in
constraint algebras of the form {CI,CJ} = f KIJ (Ai)CK with phase-

space dependent f KIJ (such as the inverse metric hab in Equation
A4) do not receive quantum corrections by moments.

As a brief justification of this result, one may note that the
effective algebra reads

{〈ĈI〉, 〈ĈJ〉} = 〈f̂ KIJ ĈK〉 (A10)

if f̂ KIJ quantize the classical structure functions. One could expect
moment-dependent corrections of the structure functions if the

right-hand side could be written with a factor of 〈f̂ KIJ 〉 and f is
non-linear in Ai. However, expanding as in Equation (A9) in
such a way that all resulting terms are proportional to effective
constraints 〈p̂ĈI〉 (but not CI(〈Âi〉) which need not vanish for
physical states), we have

{〈ĈI〉, 〈ĈJ〉} = f KIJ (〈Âi〉)〈ĈK〉 +
∑

j

∂f KIJ (〈Âi〉)

∂〈Âj〉
〈ÂjĈK〉 + · · ·

(A11)

with higher-order constraints 〈ÂjĈK〉 and so on, but no moment

corrections in the coefficients f KIJ (〈Âi〉) of 〈ĈK〉. Also the higher-
order constraints which appear due to the additional quantum
degrees of freedom have coefficients such as ∂f KIJ (〈Âi〉)/∂〈Âj〉

independent of moments. In other words, quantum back-
reaction is realized in effective constraint algebras not by
moment corrections in structure functions, but by an exten-
sion of the algebra to quantum degrees of freedom. In spher-
ically symmetric models, β in Equation (A6) is not modified
by quantum back-reaction and holds to all orders in an h̄-
expansion. Effects which depend only on the general form of
constraint algebras as opposed to specific corrections of indi-
vidual constraints are therefore reliable even in strong quan-
tum regimes where moments may be large. Signature change
and possible consequences presented in this paper are the main
example.
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