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We present an operator formalism for the recently developed kinetic information theory,

construct Poisson brackets between the Liouville L̃ and information Ĩ operators in µ

space, proposing its quantum version. Making use of the universal quantum of time, the

Planck time τp, a pseudo-energy-time uncertainty relation is constructed. It suggests that

tiny amounts of information production may cause large variations in energy. The Hubble

time τH sets an upper bound on information in the universe.
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In Treumann and Baumjohann [1] we have put forward the principles of a physical kinetic theory
of information starting from the idea that information is based in the dynamics of many particle
N ≫ 1 systems encountered in physics as well as in other domains of nature and society. The
basic equation governing the N-particle (Boltzmann-Shannon-) information IN(FN) = FN log FN
turned out to be the exact N-particle Liouville equation in Gibbs’ 6N-dimensional Ŵ phase space

LNIN = 0, with Liouville operator LN = ∂t + [HN , . . . ] (1)

and HN the N-particle classical Hamiltonian. (In Equation 6 of that work a typo occurred: log IN
should be replaced with log FN , and the sentence following it can be dropped.) We also conjectured
that it can be reduced by the methods of the BBGKY hierarchy construction to a one-particleN = 1
kinetic equation in Boltzmann’s 6-dimensional (no index) µ phase space

LI = C, with L = ∂t + [H, . . . ] (2)

Its non-vanishing right-hand side C 6= 0, an information-production term, we related to the
Kolmogorov [2] entropy rate C = K(I), with I ≡ I1.

Effectively, the classical Liouville operator L = d/dt ≡ ˙{ } is a total, not a partial time derivative
in µ-space yielding

LI ≡ İ = K(I) (3)

Preference for use of the total time derivative is justified by the equivalence to kinetic theory. For
small information production rates, one hasK(I) ≈ K0I, and theµ-space Liouville equation yields
the exponentially growing solution I(t) ≈ I(0) exp[K0t], where 0 < K0 =

∑

i λi is the total
sum of all positive Lyapunov exponents λi ≥ 0 of the parts of which the system is constituted.
Generally, any exponential growth of I(t) with time t, as inferred in low-dimensional systems,
holds only for this linear dependence of K on information. Saturation of information at a value
Isat ≈ −2K0/K

(2) > 0 becomes possible for negative second derivative K(2) = d2K/dI2 < 0,
when including the quadratic term in the expansion of K(I) ≈ K0I + 1

2K
(2)
I
2 + . . . .

We tentatively interpret L and I as operators L̃, Ĩ acting to the right on some phase space
density function F(p, q). Formally applying the commutator [L̃, Ĩ] to the phase space density
function, keeping in mind that we are dealing with a total time derivative, yields
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L̃ĨF − ĨL̃F = ( ˙̃I)F + Ĩ Ḟ − Ĩ Ḟ = K(I)F (4)

and hence
[

L̃, Ĩ
]

= K(I) (5)

with the right-hand side as usual understood as multiplied
by a unit operator. The Kolmogorov entropy rate appears as
the commutator of the Liouville and information operators
in µ-phase space, thus describing the kinetic evolution of the
Boltzmann-Shannon information operator together with the
phase space density.

Applying the same argument to theN-particle Gibbs’ Ŵ-phase
space, we have LNIN = 0. Hence, in Ŵ space the commutator of
the Liouville and information operators vanishes identically:

[

L̃N , ĨN
]

= 0 (6)

due to conservation of Shannon information in Ŵ-space. Other
definitions of information than Shannon’s, introducing a non-
vanishing right hand side in Ŵ-space, a N-particle Kolmogorov
entropy rate KN , will result in non-vanishing commutators.

There is an important difference between the Liouville and
information operators. The former is a differential operator. The
latter, instead, refers to the sum over all states of the system; it is
thus a (properly normalised) integral operator

Ĩ9 ∼

∫

d3p d3q
{

F(p, q) log F(p, q)
}

9(p, q) (7)

acting on any function9(p, q) that depends on theµ-phase space
coordinates.

Wishfully the above commutator should serve as starting
point of a quantum theory of information. However,K(I) is not a
fixed constant; it is a variable that depends upon the information
itself and thus upon the full dynamics in µ space. One way of
generalisation to a quantum version may be via defining

[

L̃q, D̃
]

= ih̄ (8)

where, with H̃q the quantum Hamiltonian, we introduced von

Neumann’s quantum Liouville operator L̃q = h̄ ∂t + i [H̃q, . . . ]

which acts on the phase-space density matrix ρ̂. Here D̃ ≡ ĨK−1,
obtained by multiplication with the inverse scalar K−1 from the
right, plays the role of a “duration operator” (or time operator),
with time not the life-time of a particle, however, as in ordinary
quantum mechanics. This expression applies to the quantum
evolution of information or, otherwise, duration, the “dynamics
of time.” Since information cannot be erased, duration cannot
be erased either. It can only accumulate increasing time elapsed.
K(I) ≡ K(p, q) is a function of (p, q); thus the operator Ĩ in
the duration operator D̃ = ĨK−1 acts on the product K−1ρ̂.
The above commutator equation should give rise to an integro-
differential equation instead of a partial differential equation.

Returning to İ = K(I), again referring to L as a total time
derivative and writing it as 1I = K1t, with 1t = 2π/1ω =

2π h̄/1ǫ, yields 1I · K−11ǫ = 2π h̄. The meaning of energy
ǫ in this expression remains unclear thus preventing calling it

an energy-information uncertainty relation. On the other hand,
(arbitrarily) introducing the universal quantum of time, the

Planck time τP =
√

h̄G/c5 as the shortest (physically motivated)
time element, yields

1I · K−1 = 1t ≥ τP (9)

Re-introducing energy, this expression can be written as

(1I/K) · 1ǫ > 2π

√

h̄3G/c5 (10)

which, formally, is an information-energy uncertainty relation

with right hand side a universal constant though again undefined
meaning of energy. Physical motivation for the use of the
Planck time is based on τP being the natural limit of validity
of quantum electrodynamics where it merges into quantum
gravity. So far the above commutator does not contain any
gravity. The appearance of the gravitational constant G in the
last expression thus suggests that a proper quantum theory
of information (respectively time/duration) cannot be expected
prior to a consistent formulation of quantum gravity.

The Planck time, in our choice, imposes an absolute lower
bound on the ratio of information change and Kolmogorov
entropy rate. In this interpretation, “physical time in information
production” can be “generated at the smallest” in τP quanta only.
We repeat [1] that K = 0 implies 1I = 0, no production of
information (nor time, in this interpretation), while K → ∞ is
non-physical.

In order to give the above assertion another twist, one may
square the second last expression to obtain

(1I/K) · (c51I/GK) ≥ h̄ (11)

Here, with explicit expression for the energy differential 1ǫ =

(c5/G)(1I/K) and 1t = 1I/K, the energy-time uncertainty
relation 1ǫ1t ≥ h̄ is formally reproduced. However, since both
its terms on the left contain the ratio 1I/K as the sole variable,
this is not a genuine uncertainty relation. This version of the
former relation suggests that, due to the huge factor c5/G ≈ 1052

J s−1 in the energy factor 1ǫ, small information changes 1I/K
may imply large energy variations—an interesting notion in view
of the enormous practical effects any dispersion of information is
observed to cause.

Duration is also strictly bound from above by the Hubble
time τH ≥ 1I/K(I), which in the universe with accelerated
expansion is itself a function of time. For fixed (average universal)
production rate KU(I) this bound limits the total amount of
information production in the visible universe. Knowledge of the
total universal entropy1IU provides an estimate of the (average)
universal entropy/information production rate (assuming that no
information is lost to higher dimensional space—by generation
of Klein-Kaluza particles in the bulk of D-brane cosmologies,
for instance). Assuming, in particular, exponential growth of
the universal entropy throughout its entire evolution (implying
KU ∼ KU0IU) yields that KU0 & τ−1

H log{IU(τH)/IU0}, with
index 0 referring to the beginning.
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