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Recent theories of Sr2RuO4 based on the interplay of strong interactions, spin-orbit

coupling and multi-band anisotropy predict chiral or helical ground states with strong

anisotropy of the pairing states, with deep minima in the excitation gap, as well

as strong phase anisotropy for the chiral ground state. We develop time-dependent

mean field theory to calculate the Bosonic spectrum for the class of 2D chiral

superconductors spanning 3He-A to chiral superconductors with strong anisotropy.

Chiral superconductors support a pair of massive Bosonic excitations of the

time-reversed pairs labeled by their parity under charge conjugation. These modes are

degenerate for 2D 3He-A. Crystal field anisotropy lifts the degeneracy. Strong anisotropy

also leads to low-lying Fermions, and thus to channels for the decay of the Bosonic

modes. Selection rules and phase space considerations lead to large asymmetries in

the lifetimes and hybridization of the Bosonic modes with the continuum of un-bound

Fermion pairs. We also highlight results for the excitation of the Bosonic modes by

microwave radiation that provide clear signatures of the Bosonic modes of an anisotropic

chiral ground state.

Keywords: superconductivity, strontium ruthenate, collective modes, chirality, broken time-reversal, microwave

spectroscopy, superfluid 3He, anisotropic pairing

Introduction

Superfluid 3He and unconventional superconductors share a common and fundamental property
that the ground state breaks one or more symmetries of the normal Fermionic vacuum in
conjunction with the usual U(1)gauge symmetry associated with BCS condensation. In the case of
Sr2RuO4 the connection with superfluid 3He may be stronger. The theoretical proposal for a spin-
triplet, p-wave ground state in Sr2RuO4 was motivated by similarities between Sr2RuO4 and liquid
3He, particularly the existence of exchange enhanced paramagnetism in a strongly correlated Fermi
liquid [1]. In liquid 3He long-lived ferromagnetic spin fluctuations (“paramagnons”) are believed
to be the mechanism responsible for the BCS pairing instability to a spin-triplet, p-wave ground
state [2, 3]. The Balian-Werthamer (BW) state [4], identified as the B-phase, with total angular
momentum J = 0 fully gaps the 3D Fermi surface, and as a result minimizes the free energy
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in the weak-coupling limit. The BW state is time-reversal
invariant, but spontaneously breaks relative spin-orbit rotation
symmetry. However, spin-triplet correlations, which differentiate
between the Anderson-Morel (AM) state and BW states,
feedback to modify the spin-fluctuation exchange interaction,
leading to stabilization of the AM state at high pressures [5,
6]. This is the chiral A-phase which breaks time-reversal (T)
symmetry and reflection symmetry in any plane containing the
chiral axis (P2), but preserves T× P2 (chiral symmetry).

Similarly, Rice and Sigrist argued that for Sr2RuO4, which
is a layered perovskite belonging to the D4h point group, the
likely pairing state, in analogy with 3He, would be the planar
state, the 2D analog of the BW state. In weak-coupling theory,
and neglecting spin-orbit coupling, the planar state, which
belongs to the one-dimensional A1u representation of D4h, is
degenerate with the 2D chiral AM state, which belongs to the
2D E1u representation. Thus, if spin-fluctuation exchange is
also the mechanism for pairing in Sr2RuO4, we expect the
strong-coupling feedback effect will stabilize the chiral AM state.
However, in addition to the near two-dimensionality of the
Fermi surface of Sr2RuO4, incommensurate spin-density-wave
(SDW) fluctuations connected with the quasi-one-dimensional
α and β bands co-exist with ferromagnetic fluctuations at lower
temperatures [7]. Spin-orbit coupling, and the possibility of
pairing on multiple Fermi surface sheets likely play important
roles in determining the pairing symmetry class, ground state
order parameter [8–12] as well as the Bosonic excitation
spectrum in Sr2RuO4.

In what follows we develop a field theory for the Bosonic
modes based on the Ginzburg-Landau theory (TDGL) for spin-
triplet, odd-parity pairing that allows one to compare predictions
for 3He and Sr2RuO4, and to examine the roles of crystalline
anisotropy and strong correlation effects on the Bosonic modes.
The Bosonic modes are excitations of a condensate of Cooper
pairs for which the parent state is the Fermionic vacuum. Thus,
although the TDGL field theory provides insight into the Bosonic
excitation spectrum, it misses key features of a more complete
theory of the low-lying excitations of the BCS pair condensate.
Notably, (i) polarization effects of the underlying Fermionic
vacuum on the excitation energies (masses and dispersion) of
the Bosonic modes, (ii) finite lifetimes of the Bosonic excitations
due to coupling to the Fermionic continuum and (iii) selection
rules and matrix elements for the coupling of the Bosonic
modes to the electromagnetic (EM) field. Key predictions of a
microscopic theory of interacting Fermionic and Bosonics modes
are summarized, including microwave spectroscopic signatures
of the Bosonic excitation spectrum.

Order Parameter
The mean-field order parameter for spin-triplet Cooper pairs,
1αβ (p) = dµ(p)(iσµσy)αβ , where α, β label the projections of
fermion spins of the Cooper pair, {iσµσy |µ = x′, y′, z′} is the
spin-triplet basis of 2× 2 matrices, is expressed as

dµ(p) =
∑

i= x,y,z

Aµi (p̂i) , µ ∈ {x′, y′, z′} (1)

where dµ(p) is a vector under rotations in spin space, and is a
function of the vector basis of p-wave orbital basis functions,
(p̂x, p̂y, p̂z), for bulk

3He. Thus, the amplitudes Aµi provide a
bi-vector representation of SO(3)S × SO(3)L. For quasi-two-
dimensional Sr2RuO4, the orbital basis, (Yx(p),Yy(p)), provides
a 2D vector representation in which Yx,y(p) transforms as
px,y under the point group D4h. These basis functions reflect
anisotropic pairing on the Fermi surface.

The chiral AM state is the stable equilibrium phase in a narrow
temperature window TAB ≤ T < Tc of bulk

3He at pressures
P ≥ Pc = 21 bar. However, if we confine 3He as a thin film or
within a thin cavity of thickness D ≤ Dc ≈ 1µm the quasi-

2D A-phase with Ed (p) = 1√
2
ẑ

(

p̂x ± ip̂y
)

is the ground state

for all pressures and temperatures [13]. We refer to this order
parameter as the “Anderson-Morel (AM) state,” the “chiral state”
or the “A-phase order parameter.”

However, in the weak-coupling limit the chiral AM phase is

degenerate with the 2D planar phase, Ed (p) = 1√
2

(

x̂ p̂x + ŷ p̂y
)

.

In the context of Sr2RuO4 the 2D planar state is referred to as the
“helical state” [11]. The degeneracy between the chiral and helical
ground states is lifted by strong-coupling corrections to weak-
coupling theory, or spin-orbit coupling. For 3He strong-coupling
effects dominate the nuclear spin-orbit coupling, with the spin-
triplet feedback effect on the ferromagnetic spin-fluctuation
exchange interaction favoring the chiral AM state over the
helical state. Recent NMR experiments on 3He confined in thin
slabs imply that the chiral AM state is stable relative to the
helical state down to P ≈ 0 bar [14]. If superconductivity
in Sr2RuO4 is also driven by ferromagnetic spin-fluctuations
then we expect the chiral phase to be favored. However, recent
theoretical calculations based on RG analysis that includes spin-
orbit coupling within a multi-band pairing model also find
both helical and chiral phases, depending upon the interaction
parameters defining the lattice pairing Hamiltonian [11]. For the

chiral state the pairing gap, |1(p)| ≡ |Ed (p)|, is found to be
strongly anisotropic on all three bands with deep gap minima
over a wide range of material parameters [11]. Thus, the main
observations are: (i) there are competing low energy scales that
determine the ground state for Sr2RuO4, (ii) it is not currently
settled whether or not Sr2RuO4 is a chiral superconductor [15],
or even if the order parameter for Sr2RuO4 belongs to a two-
dimensional representation [16], and (iii) whatever the ground
state—e.g., chiral or helical—low-energy Bosonic excitations may
provide unique signatures of the ground state based on their
symmetry and selection rules.

Ginzburg-Landau Theory

Consider the Ginzburg-Landau theory for the class of equal-spin
pairing (ESP) states of confined superfluid 3He in 2D. A simple
generalization also describes spin-triplet superconductivity on
a 2D cylindrical Fermi surface, i.e., pairing on the γ band in
Sr2RuO4 within the E1u representation of D4h. The general form
of the order parameter is then given by

Ed (p) = d̂
(

Ax Yx(p)+ Ay Yy(p)
)

(2)
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where {Yi(p)|i = x, y} are basis functions for the 2D irreducible
representation, E1u, of D4h, and A = Axx̂ + Ayŷ is a complex
vector describing pairing in this generalized “p-wave” orbital
basis. In what follows we consider the class of ESP states in which
the direction d̂ along which the Cooper pairs have zero spin
projection is fixed, either as a spontaneously broken symmetry
direction, or by spin-orbit coupling. The general form of the
GL free energy functional is constructed from invariants of the
maximal symmetry group from products of Ai and A∗

i through
4th order [17],

F [A] =
∫

V
dV

{

α(T) |A|2 + β1 |A|4 + β2 |A · A|2

+β3

[

|Ax|4 + |Ay|4
]

}

(3)

where α(T) determines the onset of pairing in the E1u
representation, i.e., α(Tc) ≡ 0, and thus, α(T) ≈ α′(T − Tc).
The fourth order coefficients, β1,2,3, determine the magnitude
of the condensation energy density and the relative stability of
phases belonging to the E1u symmetry class. The first three terms
in Equation (3) are invariant under the larger group, i.e., U(1)×
SO(2)Lz × Zorbit2 × P × T, while the last term is an additional
invariant that is allowed in the case of Sr2RuO4 by the lower
symmetry, U(1)× D4h.

It is convenient to express the bulk order parameter in terms
of an amplitude and a normalized complex vector, A = 1 a,
with |a|2 ≡ a · a∗ = 1. The normalized order parameter is then
parametrized by two angles, a =

(

cosϑ x̂+ eiϕ sinϑ ŷ
)

/
√
2 The

resulting GL functional is then

F [1, a] =
∫

V
dV

{

α(T)12 + β̃[a]14
}

, with

β̃[a] ≡ β1 + β2|a · a|2 + β3[|ax|4 + |ay|4] . (4)

For T < Tc, minimization with respect to 1 leads to 12
min = −

α(T)/2β̃[a], and a condensation energy given by F [a] = −
α(T)2/4β̃[a], with β̃[a] > 0 for global stability. The ground
state is then determined by the normalized order parameter
that minimizes β̃[a] = β1 + β2(1 − sin2 ϕ sin2(2ϑ)) + β3(1 −
1
2 sin

2(2ϑ)). In the case of 2D 3He we have β3 = 0, in which
case there are two possible ESP ground states; for β1 > 0 and
β2 > 0 the chiral AM state which breaks time-reversal and
2D parity is preferred. There are two degenerate chiral ground
states which are time-reversed partners of one another, a± =
(x̂ ± iŷ)/

√
2. However, for −β1 < β2 < 0 the in-plane polar

state with a = cosϑ x̂ + sinϑ ŷ , for , ϑ ∈ [0, 2π] minimizes
the GL functional. This phase has a continuous degeneracy with
respect to orientation of polar axis in the x− y plane. Tetragonal
anisotropy lifts the continuous degeneracy of the in-plane polar
state. For β2 < 0 and β3 > 0 the polar state aligns along a [110]
direction, e.g., a = (x̂ + ŷ)/

√
2. However, for − 2

3 (1 + β2/β1) <

β3/β1 < 0 the polar state aligns along a [100] direction, e.g.,
a = x̂. The phase diagram is shown in Figure 1. Note that the
weak-coupling prediction for the β parameters favor a chiral
ground state independent of the measure of anisotropy, i.e., β3.
Furthermore, substantial corrections to weak-coupling theory are

required to stabilize an in-plane polar state. In fact the helical
state, which belongs to a different irreducible representation
(A1u), is a more likely competitor to the chiral state since these
two states are degenerate in the weak-coupling limit without
spin-orbit coupling. In addition, AFM spin-fluctuations can lead
to attractive, sub-dominant, pairing interactions in even parity,
“d-wave,” channels. Here we consider fluctuations within the E1u
representation, and neglect possible low-lying fluctuations of the
“helical” phase (A1u) or even-parity, B1g or B2g, “d-wave” states.

Time Dependent GL Theory—Fluctuations

Consider the Bosonic excitations of the chiral AM ground state
with a+ = (x̂+ iŷ)/

√
2. Space-time fluctuations of the E1u order

parameter, A (r, t) = A− 1a+, are represented by two complex
amplitudes,

A (r, t) = D(r, t) a+ + E(r, t) a− (5)

There are two classes of excitations—modes with chirality
Lz = +1 represented by the field D(r, t) and modes with
the time-reversed chirality, Lz = −1, represented by the field
E(r, t)—and altogether four orbital collective modes within the
E1u representation. We construct an effective Lagrangian by
expanding the GL free energy functional about the ground state.
Time-dependent fluctuations introduce an additional invariant,
K =

∫

V dV 1
2µ ȦiȦi

∗, where µ is the effective inertia of the

Cooper pair fluctuations and Ȧ = ∂tA. The effective potential
is obtained by expanding the GL functional to 2nd order in the
fluctuations A(r, t): U[A] = F[A] − F[1a+]. The Lagrangian,
L = K − U, takes a simplified form when expressed in
amplitudes for the normalmodes:D± = D±D∗ and E± = E±E∗,

L =
∫

V
dV

{

1

2
µ

[

(Ḋ+)2 + (Ḋ−)2 + (Ė+)2 + (Ė−)2
]

−412
[

β1(D
+)2 + β2((E

+)2 + (E−)2)

+1

2
β3((D

+)2 + (E+)2)
]

}

. (6)

The Euler-Lagrange equations reduce to four uncoupled mode
equations,

D̈C +M2
+ C DC = 0 and ËC +M2

- C EC = 0 , (7)

where MLz C is the excitation gap (“mass”) of the Bosonic mode
with quantum numbers Lz,C, and C is the parity under charge
conjugation (particle-hole) symmetry [18, 19]. The amplitude
D−, which is a cyclic coordinate in the Lagrangian, is a Goldstone
mode associated with the broken U(1) gauge symmetry. Indeed
for small amplitude and phase fluctuations of the chiral ground
state, A(r, t) = 1(r, t) eiθ(r,t) a+ ≈ 1 a+(1 + δ(r, t) + iθ(r, t)),
we identifyD− = i1θ(r, t) with the phase fluctuation andD+ =
1δ(r, t) with the amplitude fluctuation. The amplitude mode
of the ground-state order parameter is the Higgs mode for the
chiral ground state. In particular,D+ corresponds to an excitation
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FIGURE 1 | Left: Ginzburg-Landau phase diagram for E1u pairing. The

weak-coupling BCS theory predicts the β parameters lie on the

dotted red line depending on the degree of anisotropy of the E1u
basis functions, implying the chiral AM state is stable. Right:

Anisotropy of the GL β parameters in the weak-coupling limit based

on the anisotropic pairing model defined in Equation (14) as a

function of the anisotropy parameter ǫ calculated from Equations

(11–13).

with the same quantum numbers (Lz = +1 and C = +1) as
those of the ground state. In the weak-coupling limit the mass of
the amplitude mode is determined the pair-breaking energy for
dissociation into two Fermions, i.e., M++ = 2mF where mF =
1 is the gap (mass) in the Fermionic spectrum of the broken
symmetry phase [20, 21]. Furthermore, since the amplitudemode
has the same quantum numbers as the condensate, the mass
of the amplitude mode is unshifted, relative to that of two
dissociated Fermions, by polarization effects of the underlying
Fermionic vacuum. We use this to fix the inertia term in the
effective Lagrangian as µ = (2β1 + β3), and thus the mass scale
for all the Bosonic modes of the effective Lagrangian.

Collectivemodes of the Cooper pair condensate with quantum
numbers distinct from those of the ground state were discussed
soon after the formulation of BCS theory by Anderson [22],
Bogoliubov et al. [23], Tsuneto [24], Vaks et al. [25], Bardasis
and Schrieffer [26], and Vdovin [27]. Generalizations of the
amplitude mode were discovered theoretically in the context
of superfluid 3He by Maki [28], Wölfle [29], Sauls and
Serene [30]. The observation of these Bosonic modes using
acoustic spectroscopy played an important role in identifying
the symmetries of the superfluid phases of 3He [31, 32]. In this
context the collective modes for E1u pairing symmetry with the
time-reversed chirality (Lz = −1), both of which are massive,
correspond to the “clapping modes” of superfluid 3He-A in the
weak-coupling limit of an isotropic 2D chiral AM state (See Table
III in Wölfle [29]). In particular, the masses of the E± modes in
the effective Lagrangian are given by

M- + = 21

(

2β2 + β3

2β1 + β3

)
1
2 β3=0−−−−−→

β2/β1= 1
2

√
21, (E+mode) , (8)

M- - = 21

(

2β2

2β1 + β3

)
1
2 β3=0−−−−−→

β2/β1= 1
2

√
21, (E−mode) . (9)

Note that in the weak-coupling limit (β2/β1 = 1
2 ) for an isotropic

(β3 = 0) 2D chiral ground state the time-reversed modes are

degenerate, and lie well below the Fermionic continuum edge
at 21. However, the degeneracy of the E± modes is lifted by
tetragonal anisotropy of the Fermi surface and pairing basis
functions, which leads to β3 6= 0. The crystal field splitting of
the E± modes is shown in Figure 2. In the left panel the splitting
of the modes in the weak-coupling limit (β2/β1 = 1

2 ) is plotted
as a function of β3/β1. The soft E+ mode, i.e., M- + → 0 for
β3 → −2β2, is the dynamical signature of the boundary of the
unstable region of the GL phase diagram shown in Figure 1.

Weak-Coupling GL Theory for Anisotropic
E1u Pairing

For quantitative predictions of the effects of anisotropy of the
Fermi surface and pairing interaction on the collective mode
spectrum we require the angle-resolved density of states on
the Fermi surface, n(p), and the anisotropy of the pairing
basis functions, {Yx(p),Yy(p)}, that define the E1u orbital order
parameter in momentum space, 1(p) = Ax Yx(p) + Ay Yy(p).
For a single-band Fermi surface the GL functional for ESP states
in the weak-coupling limit can be expressed in terms of Fermi-
surface averages of themean-field order parameter defined on the
Fermi surface [33, 34],

Fwc =
∫

V
dV

{

α(T)
〈

|1(p)|2
〉

+ β0

〈

|1(p)|4
〉}

, (10)

where α(T) = ln(T/Tc), β0 = 7ζ (3)Nf /(4πTc)
2, Nf is the

single-spin density of states at the Fermi energy, and 〈. . .〉 ≡
∫

d2p n(p)(. . .) is the angle-average over the Fermi surface.
The pairing basis functions are normalized with respect to
the anisotropic Fermi surface, 〈Y∗

i (p)Yj(p)〉 = δij for i, j ∈
{x, y}. Evaluating the angular averages in Equation (10) gives the
following results for the GL material parameters in the weak-
coupling limit,
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FIGURE 2 | Left: Masses of the E± modes vs. the GL anisotropy

parameter, β3/β1, in the weak-coupling limit, β2/β1 = 1
2 . Right: E±

masses based on the weak-coupling β parameters defined in Equations

(11–13) for the anisotropic E1u basis functions defined in Equation (14).

The maximum and minimum of the pair-breaking edge, 2|1(p)|, bound

the gray shaded region.

βwc
1 = 2β0

〈

|Yx(p)|2|Yy(p)|2
〉

, (11)

βwc
2 = β0

〈

|Yx(p)|2|Yy(p)|2
〉

, (12)

βwc
3 = β0

〈

|Yx(p)|4 − 3|Yx(p)|2|Yy(p)|2
〉

. (13)

These results are obtained by using the transformation properties
of the basis functions under the group operations of D4h:

specifically, Yx
C4−→ Yy, Yy

C4−→ −Yx, Yx

5yz−−→ −Yx, Yy

5yz−−→ Yy.

A key result is that the ratio of GL parameters, βwc
2 /βwc

1 = 1
2 ,

is independent of anisotropy [17]. Thus, the chiral AM ground
state with broken time-reversal symmetry is favored independent
of the anisotropy of the E1u basis functions and Fermi surface
anisotropy in the weak-coupling limit.

Cylindrical Symmetry
For cylindrical symmetry, e.g., a Fermi disk for 2D 3He-A, we
have n(p) = 1

2πpf
and d2p = pf dφ. The normalized p-wave

basis functions are then Yx =
√
2p̂x =

√
2 cosφ and Yy =√

2p̂y =
√
2 sinφ, where φ is the azimuthal angle defining the

unit vector p̂ normal to the edge of the Fermi disk. Thus, for the
chiral ground state the excitation gap (Fermion mass), |1(p)| ≡
1
2 |Yx(p) + iYy(p)| ≡ 1, is also isotropic. These basis functions
also lead to the following results for the E1u GL β parameters,
β1 = β0, β2 = 1

2β0, and β3 = 0, the latter as expected for an
isotropic Fermi surface with pure p-wave basis functions. These
values give the weak-coupling, isotropic results for the E± modes
reported in Table 1, i.e., the degenerate “clapping” modes of 2D
3He-A with M-,+ = M-,- =

√
21. Note that the Nambu-Sum

rule,
∑

C M
2
Lz,C

= (21)2, is obeyed for both classes (Lz = ±1) of

Bosonic modes for 2D 3He-A in the weak-coupling limit [35].

Phase Anisotropy
Recent calculations of pairing instabilities for odd-parity pairing
in Sr2RuO4 starting from lattice models based d-band electrons

TABLE 1 | Bosonic Mode Spectrum for the 2D Chiral Ground State a+.

Mode Symmetry Mass Name EM active

D+ Lz = +1 C = +1 21 Amplitude No

D− Lz = +1 C = −1 0 Phase mode No

E+ Lz = −1 C = +1
√
21 E+ Mode Yes

E− Lz = −1 C = −1
√
21 E− Mode Yes

The masses of the E± modes are those for an isotropic 2D chiral condensate in the weak-

coupling limit. Also indicated is whether or not the mode can be excited by absorption of

microwave photons.

and holes with on-site and near neighbor Hubbard interactions
and spin-orbit coupling lead to a helical or chiral ground state,
but with strong anisotropy. For the chiral state obtained from
pairing on hybridized, quasi-1D α and β bands [9], the phase of
1(p) changes rapidly upon crossing the [110] planes, leading to a
low-energy collective mode [36]. To illustrate the effects of strong
phase anisotropy on the collective modes consider an extreme
limit in which the E1u basis functions are constant within each
quadrant of the Fermi surface, but change sign abruptly upon
crossing any of the [110] planes, i.e., Yx = sgn(p̂x− p̂y) and Yy =
sgn(p̂y + p̂x). These basis functions have constant amplitude,
but are discontinuous in phase (±π) across the [110] planes.
They give the following results for the E1u GL β parameters,
β1 = 2β0, β2 = β0, and β3 = −2β0. For the E

± modes this leads
M- - → 21 and M- + → 0. The soft E+ mode is a dynamical
signature of the approach to the unstable region of the GL phase
diagram for β3 → −2β2 as shown in Figure 1.

Amplitude Anisotropy
Multi-band models leading to a chiral superconducting state
also exhibit strong anisotropy of the amplitude of the order
parameter, in particular, an excitation gap |1(p)| with nodal,
or near nodal, directions on the Fermi surface [10, 11]. Strong
anisotropy of the Cooper pair amplitudes in momentum space
leads to physical properties that are quite distinct from the
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predictions based on cylindrical symmetry of the γ band of
Sr2RuO4, including the splitting of the E± modes, and in some
cases a low-energy collective mode. To illustrate the effects of
anisotropy of the pairing interaction on the collective mode
spectrum, as well as signatures of a chiral ground state with strong
anisotropy, we consider the following model for the anisotropic
E1u basis functions defined on the γ band, or hybridized α and β

bands,

Yx,y(p) =
√
2 p̂x,y I(p) , with I(p) =

(

1+ ε(|2p̂xp̂y| − 1)
)

/

(

1+ 4ε(1− ε)/π − 2ε(1− 3ε/4)
)
1
2 , 0 ≤ ε ≤ 1 . (14)

Tetragonal anisotropy is parametrized by the function I(p),
which is invariant under D4h. The E1u basis functions are

normalized,
∫ dϕ

2π Y∗
i (p)Yj(p) = δij, and in the limit ε →

1 exhibit strong anisotropy with a minimum excitation gap,
1min ∝ (1 − ε) → 0 as ε → 1 in the [100] directions. The
anisotropy of the excitation gap for the chiral ground state is
shown in the left panel of Figure 3, while the corresponding β

parameters calculated from Equations (11–13) are shown in the
right panel of Figure 1. The amplitude anisotropy has no effect
on the ratio, β2/β1, that determines the stability of the chiral
state, but has a strong effect on the ratio, β3/β1, that determines
the effective potential for the E± modes, and thus the splitting
of the these modes by anisotropy, as shown in the right panel of
Figure 2. Note that in addition to the splitting of the E± modes
the masses of the E± modes cross the continuum edge (21min)
of unbound Fermion pairs. Thus, we expect the E± modes to
become resonances with finite lifetimes for sufficiently strong
gap anisotropy. However, the theory for the lifetimes of the E±

modes is outside the TDGL Lagrangian for the Bosonic spectrum,
and requires a microscopic theory of the correlated Fermionic
vacuum, including the mechanism and effects of spontaneous
symmetry breaking, and most importantly the interaction and
coupling between the Fermionic and Bosonic excitations of the
chiral superconducting phase.

Beyond TDGL

A microscopic formulation of the electrodynamics of the
excitations of p-wave superconductors, including the coupling
of Bosonic modes to a transverse (EM) electromagnetic field,
is developed in Hirschfeld et al. [37] and Yip and Sauls
[38] for 3D isotropic Fermi systems with p-wave, spin-triplet
pairing. For a 3D chiral p-wave superconductor in the clean
limit the coupled set of linearized dynamical equations for the
Bosonic mode spectra, including the reaction of the Fermionic
vacuum to the excitation of Bosonic modes, as well as the
coupling of Bosonic and Fermionic excitations to the EM field
are formulated in Yip and Sauls [38]. We have extended this
theory to 2D chiral superconductors with anisotropic, quasi-
2D Fermi surfaces, multi-band pairing and weak disorder, to
make predictions for signatures of anisotropic chiral and helical
superconductivity based on the Bosonic mode spectrum and
the microwave response for recent theoretical models for the
superconducting state of Sr2RuO4 [39]. Here we summarize
some of the results from the microscopic theory that reflect the
coupling between Bosonic and Fermionic degrees of freedom that
are beyond the TDGL Lagrangian dynamics for chiral ground
states.

The dynamics of the order parameter is formulated in terms
of the space- and time-dependent mean-field pairing self-energy,
which for spin-triplet fluctuations is given by

Ed (p; r, t) =
∫

d2p′V(p, p′)
∫

dε

4π i
Ef K(p′, ε; r, t) , (15)

where V(p, p′) = V1

(

Y∗
+(p)Y+(p′)+ Y∗

−(p)Y−(p′)
)

is the

pairing interaction in the spin-triplet E1u channel, Ef K(p, ε; r, t)
is the anomalous Keldysh pair-propagator, the energy integration
is over the bandwidth of attraction near the Fermi level, −�c ≤
ε ≤ +�c with �c ≪ Ef , and the momentum integration is an
average over the Fermi surface defined by the Fermi momentum
p. Belowwe discuss the orbital dynamics for an ESP chiral ground

FIGURE 3 | Left: Anisotropy of the excitation gap, |1(p)|, based on Equations (14), exhibiting deep gap minima along [110] directions in the limit ǫ → 1. Right:

Masses and Linewidths of the E± modes resulting from gap anisotropy calculated from the Equations (20) and (21) at T = 0.
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state of the form Ed (p) = d̂1(p), with 1(p) ≡ 1Y+(p), with
Y±(p) ≡

(

Yx(p)± iYy(p
)

/
√
2, and the spin component of the

order parameter, d̂ , is fixed along the direction ẑ. The orbital
fluctuations of the Cooper pairs are represented by two complex
fields,

d(p; r, t) = D(r, t)Y+(p)+ E(r, t)Y−(p) , (16)

where the notation is equivalent to that in Equation (5) of
the TDGL theory. The solution to the linearized Eilenberger

equations for the non-equilibrium pair-propagator, Ef K(p, ε; r, t),
in terms of the time-dependent order parameter, Ed (p; r, t) =
d̂ d(p; r, t), and the coupling of charge currents to the EM field,
e
cvp · A(r, t) leads to coupled “gap equations” for the orbital
fluctuations of the Cooper pairs [39],

d(p; q, ω) = 1

2

∫

d2p′ Vt(p, p′)
{

− 1

2
λ̄(p′) η′ 1(p′)

[

2e

c
vp · A(q, ω)

]

+
[

γ (p′)+ 1

2
λ̄(p′)(ω2 − 2|1(p′)|2 − η′2)

]

(17)

d(p′; q, ω)− λ̄(p′)1(p′)2 d′(p′; q, ω)
}

,

d′(p; q, ω) = 1

2

∫

d2p′ Vt(p, p′)
{

+ 1

2
λ̄(p′) η′ 1∗(p′)

[

2e

c
vp · A(q, ω)

]

+
[

γ (p′)+ 1

2
λ̄(p′)(ω2 − 2|1(p′)|2 − η′2)

]

(18)

d′(p′; q, ω)− λ̄(p′)1∗(p′)2 d(p′; q, ω)
}

,

where d′(p; r, t) ≡ D∗(r, t)Y+(p) + E∗(r, t)Y−(p), η′ ≡
vp′ · q generates the dispersion of both Fermionic and Bosonic

excitations, and we have expressed the gap equations in terms

of Fourier modes. Note in particular that the cross-coupling

terms between d(p; q, ω) and d′(p; q, ω) are proportional to

the complex amplitudes, 1(p)2 and 1∗(p)2. The Tsuneto

function [40],

λ̄(p;ω, q) ≡
∫ ∞

−∞
dε

2π i

tanh (β|ε|/2)
√

ε2 − |1(p)|2
2(ε2 − |1(p)|2)

×
{

η2 + 2ω(ε − ω/2)
(

4(ε − ω/2)2 − η2
) (

ω2 − η2
)

+ 4η2|1(p)|2

+ η2 − 2ω(ε + ω/2)
(

4(ε + ω/2)2 − η2
) (

ω2 − η2
)

+ 4η2|1(p)|2

}

(19)

determines (i) the coupling of the EM field to the Bosonic modes,
(ii) the mass shifts for the Bosonic modes D± and E±, (iii)
finite lifetimes of Bosonic modes arising from coupling to the
un-bound continuum, i.e., when M ≥ 2min[|1(p)|], and (iv)
coupling of the EM field to the Fermionic spectrum, including
absorption of EM radiation by creation of unbound Fermionic
quasiparticles for h̄ω ≥ 2|1(p)|. Finally, the term 1

2γ (p) is
the log-divergent integral that determines the BCS instability
and equilbrium gap function, 1(p). Thus, we can regulate the
divergence and eliminate the pairing interaction, V1, in the

dynamical equations for d(p) and d′(p) in favor of the self-
consistently determined equilibrium gap function, 1(p), using
the identity, V1

2

∫

d2pY∗
µ(p) γ (p)Yν(p) = δµ,ν for µ, ν = ±.

Energies and Lifetimes of the E± Modes
The Bosonic modes are obtained from the eigenvalue spectrum
of the homogeneous equations, i.e., for A = 0. In the q = 0
limit the eigen-modes are the linear combinations D± = D(ω)±
D∗(−ω) and E± = E(ω) ± E∗(−ω) as in the TDGL theory,
withD− representing the phase mode andD+ the corresponding
amplitude mode. For the modes with time-reversed chirality we
obtain

(

λ00(ω)ω
2 − 412 λ11(ω)

)

E+ = 0 , (20)
(

λ00(ω)ω
2 − 412 [λ10(ω)− λ11(ω)]

)

E− = 0 , (21)

where the functions λnm(ω) are moments of the q = 0 Tsuneto
function. For the anisotropic E1u model with basis functions
given in Equation (14) with p̂x = cosφ and p̂y = sinφ, we have
for the anisotropic chiral ground state, 1(p) = 1 eiφ I(φ). The
corresponding moments λnm are then given by

λnm(ω) = 12

∮

dφ

2π
λ̄(φ;ω, q = 0) [I(φ)]2n [cos(2φ)]2m .

(22)
For the 2D chiral p-wave ground state the gap is isotropic on the
Fermi circle, in which case λ10 = λ00 = 2λ11 = λ(ω), with

λ(ω) = 1

2
|1|2

∫ +∞

−∞

dε
√

ε2 − |1|2
tanh

(

β|ε|
2

)

ε2 − (ω/2)2
2

(

ε2 − |1|2
)

,

(23)
leading to the degenerate E± modes with M−,+ = M−,− =√
21(T), in agreement with the weak-coupling limit of the TDGL

theory; however now valid at any temperature.
The effects of anisotropy of the pairing state on the E± modes

are computed by solving the eigenvalue equations, Equations
(20), (21), and (22) numerically. The minimum and maximum
of the anisotropic gap function are shown as a function of
the anisotropy parameter ε in Figure 3; 21min marks the
minimum in the continuum edge of un-bound Fermion pairs.
The degeneracy of the E± modes is resolved by the anisotropy,
however the splitting of the modes for T → 0 and relatively
weak anisotropy, ε . 0.4, is much smaller than the prediction
based on the GL β parameters. The splitting of the two modes
is generally smaller at lower temperatures, and becomes strongly
suppressed by the asymmetry in level repulsion between the E±

modes and the continuum edge at 21min as the higher energy
mode approaches the continuum edge.

At sufficiently large anisotropy the continuum edge of un-
broken Fermion pairs at 21min intercepts the excitation energy
of E± modes. This opens a channel for the E± mode to dissociate
into un-bound Fermion pairs, and thus leads to an intrinsic
lifetime for the E± mode(s), τ± = h̄/Ŵ±, where Ŵ± is the width
of the E± resonance. The latter are calculated perturbatively from
Equations (20), (21), and (22) and are shown in the right panel of
Figure 3, onsetting precisely at an anisotropy such that M−,± =
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21min. Note also that close to 21min the asymmetry in the level
repulsion drives M−,− → M−,+. The large asymmetry in Ŵ±

reflects the different phase space for pair dissociation of the E±

modes governed by Im λ10(ω) ≫ Im λ11(ω), i.e., the former is
an isotropic average over the spectrum of un-bound Fermion
pairs, whereas the latter preferentially weights regions of the
Fermi surface near the gap maximum. Thus, two key results of
a self-consistent theory of coupled Boson-Fermion excitations
are: (i) the mass spliting of the E± mode spectrum is strongly
suppressed by the asymmetry in the level repulsion from the un-
bound Fermion pairs, and (ii) there is a large asymmetry in the
lifetimes of the E± modes that results from the different phase
space available for dissociation into un-bound Fermion pairs by
E± Bosons. Neither of these effects could be anticipated a priori
from the TDGL theory for the Bosonic excitations.

Microwave Excitation of the E± Modes
Indeed key signatures of an anisotropic chiral ground state in
Sr2RuO4 are the excitation and decay channels for the E± modes.
Both depend on the charge conjugation parity of the modes.
Consider an EM field incident normal on a surface of Sr2RuO4

defined by the four-fold axis of symmetry, ẑ, and an axis lying
in the x − y plane, i.e., q ⊥ ẑ, and with linear polarization also
in the x − y plane, i.e., A ⊥ ẑ and A ⊥ q. The EM field couples
directly to the Fermionic degrees of freedom (particles and holes),
generating a current [37, 39],

JF(q, ω) = Nf

∫

d2p (evp)

[

1+ η2

ω2 − η2

(1− λ(p;ω, q))

]

( e

c
vp · A

)

. (24)

Note that the effects of the pairing correlations on the Fermionic
contribution to the charge current - the opening of a gap in the
Fermionic spectrum and the a.c. response of the negative energy
continuum (condensate)—are encoded in the Tsuneto function,
λ(p;ω, q). For T → 0 and low frequencies, ω < 21min,

only the negative energy continuum (condensate) responds as an
a.c. supercurrent—π/2 out of phase with the electric field—with
zero dissipation. The supercurrent, and thus the self-consistently
determined EM field, are screened by the Meissner effect and
penetrate a distance of order the London penetration depth, 3.
This length scale is typically large compared to the coherence
length of the superconductor, 3 ≫ ξ ≫ h̄/pf . In this limit the
EM response is dominated by the bulk excitation spectrum. For
a chiral ground state the EM field also couples directly to the
E± Bosonic modes as shown in Equations (20, 21). The Bosonic
modes also generate a charge current,

JB(q, ω) = 1

4
Nf

∫

d2p (2evp) (vp · q) λ(p;ω, q))

(

1∗(p) d(p; q, ω)+ 1(p) d
′
(p; q, ω)

)

. (25)

Thus, the total current, J = JF + JB, can be expressed in
terms of a response function, Ji = Kij(ω, q)Aj(q, ω), that
encodes both Fermionic and Bosonic contributions to the a.c.
surface impedance. The response function Kij(q, ω) determines
both dissipative and non-dissipative contributions to the current.
In particular, the microwave power absorption spectrum can
be expressed as a sum over the modes contributing to the
Joule losses of the electric field and current that penetrate
into the superconductor, PS(ω) = − 1

2π

∫ +∞
−∞ dqRe [J(q, ω) ·

E∗(q, ω)]. To calculate the power spectrum requires a solution
of the boundary value problem for the incident, reflected and
transmitted EM fields. This boundary value problem determines
A(q, ω) in terms ofKij and the value of the EM field in vacuum at
the surface, B0. For a detailed discussion of the boundary solution
see Yip and Sauls [38].

For weak anisotropy, ε = 0.1, the Bosonic modes have well
defined excitation energies, h̄ω±(q) = M−,± + c2±|q|2/2M−,±,
with M−,± ≈

√
21 and c± ≈ 1

2vf , and carry current for finite
q at frequencies below the un-bound Fermion pair continuum,
h̄ω < 21min, supported by the condensate, represented by
λ(p; q, ω) > 0. Resonant excitation of the E± modes occurs

FIGURE 4 | Power absorption spectra normalized to the

high-frequency limit of the normal-state, PN(ω), for T = 0,

penetration depth, 3/ξ = 10, and polarization q ⊥ A along [100]

directions. For this polarization direction only the E+ mode is excited.

Left: weak anisotropy with ε = 0.1. A sharp E+ absorption band (blue)

and a broad band of dissipation from pair dissociation that is sharply

peaked at 21max (red) are shown. Right: strong anisotropy with

ε = 0.8. A sharp E+ absorption band (blue) survives weak hybridization

with the un-bound continuum. Dissipation from pair dissociation remains

sharply peaked at 21max.
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over the frequency band, M−,± < h̄ω < 21min, spanned by
the dispersion of the E± modes. Thus, excitation of the E± leads
to an absorption band that is sharply peaked near threshold as
shown in the left panel of Figure 4 for ε = 0.1 and E+. Note
also, the broad band of dissipation from dissociation Cooper
pairs into un-bound Fermion pairs is sharply peaked at 21max.
For strong anisotropy, the E± modes broaden into resonances.
However, the E+ resonance has a narrow linewidth due to limited
phase space for decay into Fermion pairs. Furthermore, the
excitation of ground-state Cooper pairs into un-bound Fermion
pairs is suppressed well below 21max. Thus, even for strong
gap suppression along [100] directions there remains a strong
absorption resonance from the weakly damped E+ Bosonic
mode. Observation of the E+ mode, and other signatures of
the E± Bosonic spectrum, would provide direct evidence of an
anisotropic chiral ground state in Sr2RuO4.

Summary

Chiral superconductors which break time-reversal symmetry
necessarily belong to a higher dimensional representation of the
crystalline point group. In the cases of Sr2RuO4, 2D

3He-A,
and UPt3 this is a two-dimensional orbital representation. An
important consequence is that a chiral ground state supports
Bosonic excitations of the time-reversed Cooper pairs. These
excitations are degenerate for 2D 3He-A with an excitation
gap, M =

√
21, below the continuum edge of un-bound

Fermion pairs. Crystalline anisotropy lifts the degeneracy, and for

strong anisotropy can generate a low-lying Bosonic mode. Strong
amplitude anisotropy also leads to low-lying Fermions, and thus
a channel for the Bosonic modes to decay in to un-bound
Fermion pairs. Selection rules and phase space considerations
are shown to generate to large asymmetries in the lifetimes
and hybridization of the Bosonic modes with the continuum
of un-bound Fermion pairs. The excitation of the Bosonic
modes by microwave radiation could provide clear signatures
of an anisotropic chiral ground state. A detailed theory of
microwave spectroscopy of anisotropic chiral superconductors
which includes the analysis of selection rules, the effects of band
structure and Fermi surface anisotropy, spin-orbit coupling and
weak disorder will be forthcoming as a separate report [39].

Acknowledgments

The research of HW and JS was supported by the National
Science Foundation (Grant DMR-1106315), while that of SC is
supported by the Institute for Basic Science of Korea (Grant IBS-
R009-Y1). JS and SC acknowledge the hospitality of the Aspen
Center for Physics, and its support through National Science
Foundation Grant No. PHYS-1066293, where part of this work
was carried out. JS also acknowledges the hospitality of the
KITP and its support through NSF Grant No. PHY11-25915. We
acknowledge discussions with Sri Raghu, Catherine Kallin, Steve
Simon and Thomas Scaffidi that were important in motivating
this work, and Andrea Damascelli for his comments on the role
of spin-orbit coupling in Sr2RuO4.

References

1. Rice TM, Sigrist M. Sr2RuO4: an electronic analogue of
3He? J Phys CondMat.

(1995) 7:L643–8. doi: 10.1088/0953-8984/7/47/002

2. Layzer A, Fay D. Spin-fluctuation exchange mechanism for P-wave pairing in

liquid 3He. Int J Magn. (1971) 1:135.

3. Leggett AJ. Theoretical description of the new phases of liquid 3He. Rev Mod

Phys. (1975) 47:331–414. doi: 10.1103/RevModPhys.47.331

4. Balian R, Werthamer NR. Superconductivity with pairs in a relative p-state.

Phys Rev. (1963) 131:1553. doi: 10.1103/PhysRev.131.1553

5. Brinkman WF, Anderson PW. Anisotropic superfluidity in 3He:

consequences of the spin-fluctuation model. Phys Rev. (1973) A8:2732.

doi: 10.1103/PhysRevA.8.2732

6. Brinkman WF, Serene JW, Anderson PW. Spin-fluctuation stabilization

of anisotropic superfluid states. Phys. Rev. A (1974) 10:2386–94. doi:

10.1103/PhysRevA.10.2386

7. Braden M, Sidis Y, Bourges P, Pfeuty P, Kulda J, Mao Z, et al. Inelastic

neutron scattering study of magnetic excitations in Sr2RuO4. Phys Rev B

(2002) 66:064522. doi: 10.1103/PhysRevB.66.064522

8. Haverkort MW, Elfimov IS, Tjeng LH, Sawatzky GA, Damascelli A. Strong

spin-orbit coupling effects on the fermi surface of Sr2RuO4 and Sr2RhO4. Phys

Rev Lett. (2008) 101:026406. doi: 10.1103/PhysRevLett.101.026406

9. Raghu S, Kapitulnik A, Kivelson SA. Hidden quasi-one-dimensional

superconductivity in Sr2RuO4. Phys Rev Lett. (2010) 105:136401. doi:

10.1103/PhysRevLett.105.136401

10. Wang QH, Platt C, Yang Y, Honerkamp C, Zhang FC, Hanke W, et al. Theory

of superconductivity in a three-orbital model of Sr2RuO4. Eur Phys Lett.

(2013) 104:17013. doi: 10.1209/0295-5075/104/17013

11. Scaffidi T, Romers JC, Simon SH. Pairing symmetry and dominant band

in Sr2RuO4. Phys Rev B (1981) 89:220510. doi: 10.1103/PhysRevB.89.

220510

12. Veenstra CN, Zhu ZH, Raichle M, Ludbrook BM, Nicolaou A, Slomski B,

et al. Strong spin-orbit coupling effects on the fermi surface of Sr2RuO4 and

Sr2RhO4. Phys Rev Lett. (2014) 112:127002. doi: 10.1103/PhysRevLett.112.

127002

13. Vorontsov AB, Sauls JA. Crystalline Order in superfluid 3He films. Phys Rev

Lett. (2007) 98:045301. doi: 10.1103/PhysRevLett.98.045301

14. Levitin LV, Bennett RG, Casey A, Cowan B, Saunders J, Drung D, et al.

Phase diagram of the topological superfluid 3He confined in a nano-scale slab

geometry. Science (2013) 340:841–4. doi: 10.1126/science.1233621

15. Kallin C, Berlinsky AJ. Is Sr2RuO4 a chiral p-wave superconductor?

J Phys Condens Mat. (2009) 21:164210. doi: 10.1088/0953-8984/21/16/

164210

16. Hicks CW, Brodsky DO, Yelland EA, Gibbs AS, Bruin JAN, Barber ME, et al.

Strong increase of Tc of Sr2RuO4 under both tensile and Compressive strain.

Science (2014) 344:283–5. doi: 10.1126/science.1248292

17. Hess D, Tokuyasu T, Sauls JA. Broken symmetry and Unconventional

superconductivity in uniaxial crystals. Physica B (1990) 163:720. doi:

10.1016/0921-4526(90)90318-O

18. Serene JW. Order parameter modes, zero Sound Symmetries in superfluid

3He. In: Adams ED, Ihas G, editors. Quantum Fluids Solids - 1983, Vol. 103.

New York, NY: A.I.P. (1983). p. 305.

19. Fishman RS, Sauls JA. Particle-hole symmetry violation in normal liquid 3He.

Phys Rev B (1985) 31:251–9. doi: 10.1103/PhysRevB.31.251

20. Higgs PW. Broken symmetries and the masses of gauge bosons. Phys Rev Lett.

(1964) 13:508–9. doi: 10.1103/PhysRevLett.13.508

21. Littlewood P, Varma C. Gauge-invariant theory of the dynamical interaction

of charge density waves and Superconductivity. Phys Rev Lett. (1981) 47:811.

doi: 10.1103/PhysRevLett.47.811

22. Anderson PW. Random-phase approximation in the theory of

superconductivity. Phys Rev. (1958) 112:1900–16. doi: 10.1103/

PhysRev.112.1900

Frontiers in Physics | www.frontiersin.org 9 June 2015 | Volume 3 | Article 36

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Sauls et al. Collective mode spectrum of chiral superconductors

23. Bogoliubov NN, Tolmachev VV, Shirkov DV. New Methods in the Theory of

Superconductivity.Moscow: Academy of Science (1958).

24. Tsuneto T. Transverse collective excitations in superconductors

electromagnetic absorption. Phys Rev. (1960) 118:1029. doi: 10.1103/

PhysRev.118.1029

25. Vaks VG, Galitskii VM, Larkin AI. Collective excitations in a superconductor.

Zh Eskp Teor Fiz. (1961) 41:1655.

26. Bardasis A, Schrieffer JR. Excitonsplasmons in superconductors. Phys Rev.

(1961) 121:1050. doi: 10.1103/PhysRev.121.1050

27. Vdovin YA. Effects of p-state pairing in fermi systems. In: Alekseeva A.

I., editors. Methods of Quantum Field Theory to the Many Body Problem,

Moscow: Gosatomizdat (1963). p. 94–109.

28. Maki K. Propagation of zero sound in the Balian-Werthamer State. J Low

Temp Phys. (1974) 16:465. doi: 10.1007/BF00654896

29. Wölfle P. Collisionless collective modes in superfluid 3He. Phys Lett. (1974)

47A:224.

30. Sauls JA, Serene JW. Coupling of order-parameter modes with ℓ > 1 to

zero sound in 3He-B. Phys Rev B (1981) 23:4798. doi: 10.1103/PhysRevB.

23.4798

31. Halperin WP, Varoquaux E. Order parameter collective modes in superfluid
3He. In: Halperin WP, Pitaevskii LP, editors. Helium Three. Amsterdam:

Elsevier Science Publishers (1990). p. 353.

32. Sauls JA. Broken symmetry non-equilibrium superfluid 3He. In:

Godfrin H, Bunkov Y, editors. Topological DefectsNon-Equilibrium

Symmetry Breaking Phase Transitions - Lecture Notes for the 1999 Les

Houches Winter School. Amsterdam: Elsievier Science Publishers (2000).

p. 239–65.

33. Sauls JA. Fermi-liquid theory of unconventional superconductors. In: Bedell

KS, Wang Z, Meltzer DE, Balatsky AV, Abrahams E, editors. Strongly

Correlated Electronic Materials: The Los Alamos Symposium 1993. Reading,

MA: Addison-Wesely (1994). p. 106–32.

34. Ali S, Zhang L, Sauls JA. Thermodynamic potential for superfluid 3He in

silica aerogel. J Low Temp Phys. (2011) 162:233–42. doi: 10.1007/s10909-010-

0310-4

35. Volovik G, Zubkov M. Higgs bosons in particle physics and in condensed

matter. J Low Temp Phys. (2014) 175:486–97. doi: 10.1007/s10909-013-0905-7

36. Chung S, Raghu S, Kapitulnik A, Kivelson S. Charge and spin collective modes

in a quasi-one-dimensional model of Sr2RuO4. Phys Rev B (2012) 86:064525.

doi: 10.1103/PhysRevB.86.064525

37. Hirschfeld PJ, Wölfle P, Sauls JA, Einzel D, Putikka, WO. Electromagnetic

absorption in anisotropic superconductors. Phys Rev B (1989) 40:6695. doi:

10.1103/PhysRevB.40.6695

38. Yip SK, Sauls JA. Circular dichroism and birefringence in unconventional

superconductors. J Low Temp Phys. (1992) 86:257–90. doi:

10.1007/BF01151804

39. Wu H, Chung SB, Sauls JA. Collective modes electromagnetic response of

anisotropic chiral superconductors. Phys. Rev. B. (2015). Available online at:

http://eolus.phys.northwestern.edu/publications/arxiv/wu-23-05-2015.html

40. McKenzie RH, Sauls JA. Collective Modes and Nonlinear acoustics in

superfluid 3He-B. arXiv 1309.6018 (2013) p. 1–62. Available online at: http://

arxiv.org/abs/1309.6018

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Sauls, Wu and Chung. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 10 June 2015 | Volume 3 | Article 36

http://eolus.phys.northwestern.edu/publications/arxiv/wu-23-05-2015.html
http://arxiv.org/abs/1309.6018
http://arxiv.org/abs/1309.6018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive

	Anisotropy and strong-coupling effects on the collective mode spectrum of chiral superconductors: application to Sr2RuO41
	Introduction
	Order Parameter

	Ginzburg-Landau Theory
	Time Dependent GL Theory—Fluctuations
	Weak-Coupling GL Theory for Anisotropic E1u Pairing
	Cylindrical Symmetry
	Phase Anisotropy
	Amplitude Anisotropy

	Beyond TDGL
	Energies and Lifetimes of the E Modes
	Microwave Excitation of the E Modes

	Summary
	Acknowledgments
	References


