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Biochemical reactions in crowded
environments: revisiting the effects
of volume exclusion with simulations
David Gomez* and Stefan Klumpp
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Molecular crowding is ubiquitous within cells and affects many biological processes

including protein-protein binding, enzyme activities and gene regulation. Here we revisit

some generic effects of crowding using a combination of lattice simulations and

reaction-diffusion simulations with the program ReaDDy. Specifically, we implement

three reactions, simple binding, a diffusion-limited reaction and a reaction with

Michaelis-Menten kinetics. Histograms of binding and unbinding times provide a

detailed picture how crowding affects these reactions and how the separate effects

of crowding on binding equilibrium and on diffusion act together. In addition, we

discuss how crowding affects processes related to gene expression such as RNA

polymerase-promoter binding and translation elongation.

Keywords: molecular crowding, enzymatic reactions, reaction-diffusion systems, diffusion-limited reactions, gene

regulation

1. Introduction

The interior of cells is a crowded environment, quite different from the dilute solutions usually
studied in vitro [1–3]. For example, in bacterial cells, macromolecules can occupy up to 40 %
of the volume during phases of rapid growth [4], and the water content can drop far below this
level upon exposure to increased osmotic pressure [5]. The importance of molecular crowding for
understanding processes in cells is increasingly appreciated. Its consequences have been studied
extensively in the context of protein-protein binding [2, 6], protein folding [7–10], enzyme activity
[11–13], and gene regulation [14–18]. Beyond these fundamental aspects, crowding has direct
consequences to understand drought-tolerance of plants [19, 20] and possibly neurodegenerative
diseases in humans that are based on protein aggregation [21, 22].

Molecular crowding is ubiquitous, and the complexity of its direct and indirect effects can
be bewildering. Some effects of crowding are generic [2, 3]. For example, binding equilibria
are typically shifted toward the bound state [2, 6, 23] and diffusion is slowed down [24–26].
In the case of enzymes, both effects apply to the binding of the substrate to the enzyme, with
opposite consequences. In addition, the reaction rate may be affected by specific changes in the
molecular configuration of the enzyme that are induced by crowding or, in the case of multi-
subunit enzymes, by increased binding between the subunits. As a result, different enzymes can
exhibit rather different behavior upon increased crowding, as illustrated by the tabulated collection
of experimental results in Zhou et al. [13].

In this article, we address the generic effects of crowding. We use a simple lattice model to
disentangle the different contributions to the effects of crowding due to binding equilibria and
diffusion as well as the dependence on the particle size. We specifically study molecular binding
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and enzymatic reactions. As a complement, we perform
simulations with the reaction-diffusion simulation package
ReaDDy [27]. On the one hand, our approach is tutorial in
nature and provides a simple rationalization and illustration
of well-studied effects. On the other hand, it also provides
some new insight. For example, in the case of a receptor-ligand
pair, histograms of the binding times allow us to reconcile
the reduced diffusion rate with the surprisingly crowding-
independent binding rate.

Even though the effects we consider are generic, our main
interest here is in gene expression, in particular reaction
involving the macromolecular machines that process the genetic
information, RNA polymerase and ribosomes. These machines
are rather large molecular complexes, and for molecules of
such size diffusion is strongly reduced [28]. As a consequence,
reactions are expected to be diffusion-limited or close to
the diffusion limit. Specifically for ribosomes, it was recently
proposed that the slow diffusion of ternary complexes (tRNAs
charged with amino acids and GTP-activated elongation factor
Tu) imposes a fundamental limitation on the speed of translation,
which necessitates the large concentrations of elongation factors
in rapidly growing bacteria [29] (elongation factor Tu is the
most abundant protein in E. coli [30]). Such a limitation would
be aggravated during growth under increased osmotic pressure.
Likewise, RNA polymerase is a big molecular machine that
diffuses slowly in the cell, such that binding to promoters,
which usually determines the rate of transcription, might become
diffusion limited.

The paper is organized as follows: We start by introducing
the computation methods we use, the lattice model and ReaDDy.
Then we study simple implementations of two elementary
reactions, binding between two binding partners (which could
represent two proteins or molecular complexes or a protein and
its binding site on DNA) in Section 3 and a diffusion-limited
enzymatic reaction in Section 4. Both cases are based on a ligand
or substate that needs to find a target site (the binding partner
or enzyme) by diffusion. In Section 5, we study the effects of the
size of the crowders and in Section 6 we combine everything to
address an enzymatic reaction with Michaelis-Menten kinetics.
We close with an extended discussion, where we apply the
insight from these simulations to several processes relevant to
gene expression, in particular to the speed of translation and to
promoter finding by RNA polymerase.

2. Simulation Methods

2.1. Lattice Model
The effects of molecular crowding on biochemical reactions
was studied using Monte Carlo simulations of particles on a
three-dimensional lattice with periodic boundary conditions.
The simulation box has the volume V = �l3, where l is the
lattice spacing and � the total number of lattice sites, chosen
as the linear extension of the smallest particle type. The system
contains three types of particles: Target particles (receptors or
enzymes), particles searching for the target (ligands or substrates,
respectively) and crowders. Their numbers are denoted as R, L,
and C, respectively. For now, all particles are taken to occupy

exactly one lattice site. We will consider particles of different sizes
below, but throughout this study, all molecules on our lattice
simulations are taken to have a square geometry.Wewill consider
a single target particle (receptor or enzyme) and take this particle
to be static in the center of the simulation box. A ligand bound
to the target particle is taken to occupy the same lattice site as the
target particle. The other particles are initially placed randomly
on the lattice, occupying the volume fraction φ ≈ (R+ L)/�, see
Figure 1A.

At each simulation time step (of duration τ ), the crowders
and ligands move to each neighbor site with probability 1/6.
This move is accepted if the chosen neighboring lattice site is
free and rejected if it is occupied. Thus, steric effects or excluded
volume are the only interactions considered, and on a free lattice,
these particles diffuse with diffusion constantD = l2/(6τ ). These
moves are performed in a random-sequential fashion: In every
simulation step, we randomly choose L times a ligand and C
times a crowder and update their position, thus that on average
all particles are updated once per simulation step. If a ligand
finds the target and the target is free, the complex ligand-target is
always formed. Thus, this reaction is taken as diffusion-limited.
Only when the target is already occupied by another ligand, the
move to form the complex is rejected. Once the complex has been
formed, the bound ligand can dissociate from the target with the
unbinding rate kub. Below, we will consider different scenarios of
complex dissociation to describe receptor-ligand complexes and
enzyme-substrate reactions.

2.2. Off-lattice Simulations (ReaDDy)
In addition to the lattice implementation, we run simulations
with the off-lattice simulation software ReaDDy [27], see
Figure 1B. This simulation package describes biochemical
reaction-diffusion processes via interacting spherical molecules.
Their diffusion is described by a memoryless Langevin equation,

FIGURE 1 | Simulation methods used in this work. (A) Schematic view of

the lattice implementation, in which L ligands (light blue) and C crowders

(black) diffuse by hopping to one of the six nearest neighbor lattice sites until a

ligand finds a target (red). Molecules have square geometry and diffusion is

only allowed if the site of destination is unoccupied. Note that the simulations

use a three-dimensional lattice rather than the two-dimensional one depicted

schematically here. (B) Snapshot from the off-lattice simulation package

ReaDDy. L ligands (dark blue), a single target (gray) and C crowders (yellow)

diffuse and react in a simulation box with volume V.
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which is solved numerically with an Euler discretization with a
constant time step 1t,

x(t + 1t) = x(t)− D1t
∇V(x(t))

kBT
+

√
2D1tηt. (1)

Here, x(t) is a three-dimensional vector indicating particle
positions at time t, D is the reactant diffusion constant, V(x(t))
is the particles’ interaction potential, kB is Boltzmann’s constant,
T is the temperature and η is a normally distributed random
number with zero mean and variance one.

The steric interactions implemented in ReaDDy are given
by a harmonic potential, in which the potential force constant
kpot is optimized by finding the largest simulation time step
1t for which there is no overlapping between particles [27].
Throughout this study we use the recommended potential
force constant kpot = 50 kJmol−1 nm−1 [27]. In ReaDDy,
reactions are understood as uni- or bimolecular reaction events
in which particles either are transformed into other particles, or
events that lead to molecule synthesis or degradation. Thus, the
concentration of molecules as a function of time can be described
by the following set of ordinary differential equations [31]:

dCP1(t)

dt
= ... =

dCPn(t)

dt
= k1CR(t). (2)

for the first order molecular reactions and

dCP1(t)

dt
= ... =

dCPn(t)

dt
= k2CR1 (t)CR2(t), (3)

for the second order molecular reactions. In the latter
expressions, CRn (t) and CPn (t) are the concentration of the
nth reactant and product species, and k1 and k2 are the first
and second order reaction rates, respectively. We note that the
macroscopic second order reaction rate k2 is the product of the
probability for the reactants to be in close contact with the rate at
which the reactants in contact transform into the product, k2micro.
Since diffusion is explicitly simulated by ReaDDy, only k2micro is
set as an input in the simulations. For all simulations, we consider
k2micro = 108 s−1. Computationally, a reaction takes place with a
reaction probability prea, obtained from the Poisson probability

of having at least one reaction event with rate k1,2micro within time

interval 1t, e.g., prea = 1− ek
1,2
micro1t . We note that the molecular

diffusion constant D and the reaction rates k1 and k2 are set in
ReaDDy assuming dilute conditions, e.g., φ = 0. By increasing
levels of molecular crowding the kinetics and thermodynamics
of the reactions are influenced.

To compare the results from both types of simulations, the
length and time units of the lattice simulations must be converted
to nanometers and seconds. In ReaDDy, we run simulations
with spherical particles of radius r = 3 nm that diffuse within
a solid square lattice of volume V = 49 × 49 × 49 nm3 =
1.13 × 105 nm3. This volume is chosen in such a way that
the total volume is 1000 times the molecules’ volume, as in the
lattice simulation. This choice defines our lattice in the 10 ×
10 × 10 lattice constant to correspond to l = 4.9 nm. The time
scale τ of the lattice simulations then corresponds to l2/(6D),

which can be used to convert the reaction rates. However, a
small difference remains between the capture areas from which
binding occurs, so that the binding probabilities Pb are not
exactly the same in both methods. To correct for that difference,
we adjust the unbinding rate, such that in the absence of crowding
the binding probabilities agree between the two methods. This
adjustment corresponds to an approximately two-fold increase of
the unbinding rate, which thus corrects the corresponding two-
fold increase of the binding rate due to different “target volumes.”
This adjustment procedure can be viewed as an instance of
renormalizing the binding binding/unbinding rate by including
unbinding events that are too short for the particle to diffuse away
in the bound state [32].

3. Effects of Crowding on Molecular
Binding

We start by considering the simple case of binding between a
receptor and a ligand in the presence of crowders. We emphasize
that we consider a rather generic scenario here, where the
receptor and ligand do not necessarily describe the typical case
of a protein receptor and a small molecule ligand, but could, for
example, also correspond to two proteins, to a regulatory binding
site on DNA and a transcription factor, or even to an enzyme
and its substrate (provided the actual reaction is very slow, as
we will discuss below). Effects of excluded volume on such a
reaction have been studied extensively in the past; in particular,
it is well-known that crowding shifts the binding equilibrium
toward the bound state [2, 3, 6]. The lattice model allows us to
provide a rather intuitive explanation of these effects. In addition,
we use our simulations to investigate the effects of crowding on
the kinetics, which are more subtle.

3.1. Binding Equilibrium
In the simulations of receptor-ligand binding, a ligand reaching
the target particle (receptor) forms the receptor-ligand complex
unless the receptor is already occupied by another ligand. Thus,
the binding reaction is diffusion-limited (a reaction-limitation
could be introduced by accepting the binding move with a
probability smaller than one but we do not consider this
case here). The complex can dissociate again with a rate kub.
Unbinding is implemented by randomly choosing a neighbor site
of the complex and moving the ligand there, provided that site
is free. At the same time, the receptor becomes free again and
available for another binding event. Thus, the binding reaction,
L + R ⇋ LR, is fully reversible and can be characterized by
the dissociation constant Kd,0, where the index zero indicates the
absence of crowder molecules.

Figure 2A shows results from simulations of a lattice with
volume V = 10 × 10 × 10 l3, i.e., with � = 1000 lattice
sites, where crowders, ligands and the receptor all occupy one
lattice site each. In dilute conditions, the unbinding event is
set to take place (unless otherwise stated) at a rate kub(0) =
1/60 τ−1. To ensure equilibration, the simulations are run until
10,000 binding events have taken place. Figure 2A shows the
probability Pb that the receptor is occupied, as a function of
the number of ligands for different values of volume occupation
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FIGURE 2 | Effects of molecular crowding on binding equilibria. (A)

Probability for the receptor to be occupied, Pb, as a function of the number

of ligands for four different values of volume occupation, φ = 0,0.2,0.3, and

0.5. Crowding shifts the curves toward lower ligand concentrations.

Simulation data are in agreement with Equation (6) (lines). (Inset)

Representation of the unbinding reaction. The ligand steps from the target to

one of the six nearest neighbor sites with a rate kub. (B) Dissociation

constant Kd (φ) as a function of φ. The data points are obtained from the

simulations by interpolation (see text) and the line is Kd (φ) = Kd,0 (1− φ).

Simulation parameters: V = 10×10×10 l3, D = 1/6 l2τ−1 and Kd,0 = 1/60.

φ. Pb is determined as the ratio of the time the receptor was
occupied and the total simulation time. The symbols represent
our simulation results for φ = 0, 0.2, 0.3, and 0.5, the lines
indicate the corresponding results from the binding equilibrium
condition (no free parameters, discussed below), Pb = C/(C +
Kd(φ)), where the dissociation constant is expressed in units
of numbers of molecules in the simulation box. Although
qualitatively the behavior is similar for all values of φ, increasing
volume occupation increases the receptor occupancy by shifting
the curves to the left. Thus, as φ increases, less ligands are needed
to saturate the receptor. For large numbers of ligands, the effect
of the crowders is negligible, because the receptor is already
saturated. In Figure 2B we plot the dissociation constant Kd(φ),
which is obtained by interpolation from the simulations as the
ligand concentration for which Pb = 0.5, as a function of the
volume occupation φ. Kd(φ) decreases linearly with the volume
fraction, indicating the shift of the equilibrium toward the bound
state.

Since the effect of crowders and excluded volume on the
dissociation constant is purely thermodynamic rather than
kinetic, it can be understood based on the statistics of states
of the lattice with the receptor free and occupied, see [33]. We
include this argument here for completeness. At equilibrium, the
probability for the receptor to be occupied Pb, is obtained as
the ratio of the number of possible states Sb, in which a ligand
is bound to the receptor and the total number of states, i.e., Sb
plus the number of states when the receptor is free, Sub. We note
that the states with an occupied receptor are weighted with the
Boltzmann factor due to the binding energy Eb,

Pb =
Sbe

−Eb/kT

Sbe−Eb/kT + Sub
=

1

1+ Snb
Sb
eEb/kT

. (4)

The ratio Snb/Sb is obtained by dividing all the possible ways in
which C crowders and L ligands can be organized in a lattice with
� lattice sites, over all the possible ways in which C crowders and

(L − 1) ligands can be distributed in � lattice sites. This ratio is
thus given by

Sub

Sb
=

(

�
L+C

)(L+C
L

)

(

�
L+C−1

)(L+C−1
L

)
≈

�

L

(

1−
(L + C)

�

)

=
(1− φ)

L/�
,

(5)
with L/� being the dimensionless ligand concentration.
Introducing the latter expression into Equation (4) leads to

Pb =
1

1+ Kd(φ)
L/�

, (6)

with the crowding-dependent dissociation constant Kd(φ) =
eEb/kT(1 − φ). The limiting value for φ = 0 is the microscopic
dissociation constant for the binding reaction without interfering
crowders, Kd,0 = eEb/kT . We note that this dissociation constant
as well as the ligand concentration L/� are dimensionless, but
can be converted to per-volume units as [L] = L/V = l−3 ×
L/� and likewise for the dissociation constants. The microscopic
dissociation constant Kd,0 can also be related to the kinetic
parameters of the model via the detailed balance condition,
kub/τ

−1 = eEb/kT . The latter relation is used to determine the
lines in Figures 2A,B.

Equation (6) thus shows that, as φ increases, the dissociation
constant is diminished and a lower ligand concentration is
needed to saturate the receptor as observed in the simulations.
An alternative interpretation of the result is that the volume is
reduced by the excluded volume, so that the available volume is
�(1 − φ)l3, which effectively increases the ligand concentration.
We note however that this interpretation is only valid in the
simplest case that we consider here, as it depends on the
assumption that all particles have the same size. In that case, the
available volume is independent of the spatial arrangement of the
particles, which is not the case for particles of different sizes, as
discussed below.
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3.2. Kinetics of Binding and Unbinding
Next we consider the impact of the crowders on the kinetics
of binding and unbinding. To that end, we determine binding
and unbinding rates from our simulations as the inverse of the
average time the receptor is free before a binding event and
occupied before an unbinding event. In Figure 3A we plot the
binding rate kb for three different ligand concentrations as a
function of the occupied volume fraction. The binding rate is
given by 1 l3L−1τ−1 and depends on the ligand concentration,
but not the level of crowding, suggesting that diffusion of the
ligand to the target is not affected by crowding. The observation
of a constant binding rate indicates that the effect of crowding
on the dissociation constant discussed above is entirely due to
the decrease of the unbinding rate kub(φ). In Figure 3B we plot
kub(φ) as a function of the excluded volume fraction φ. As
expected, kub(φ) decreases linearly as the level of φ increases,
consistent with the expression kub = Kd,0τ

−1(1 − φ). Such
a linear decrease can be understood as a simple exclusion rule
for the complex dissociation step, where the ligand moves from
the receptor site to one of its neighbors. The rate for that step
is simply reduced by a factor corresponding to the probability
that this site is free, (1 − φ). We can thus conclude that for the
simple case with crowders and ligands of the same size, the shift
of the binding equilibrium toward the bound state is caused by
crowders blocking unbinding.

The rates presented so far are based on the mean values of
times between binding and unbinding events. To get a more
detailed picture of the effects of crowders, we next consider
histograms of these times. Figure 3C shows the histograms of
the durations of the bound state before unbinding for the case
of a single ligand and three different volume occupation values.
The simulation data follow a single exponential (correlation
coefficient of fit R2 = 0.984, 0.995, and 0.998 for φ =
0, 0.2, and 0.5, respectively), with a characteristic time scale that
increases as the volume occupation increases, in agreement with
an unbinding rate reduced by crowding. For the binding times,
the picture is more complex: Figure 3D shows the histograms
of the durations of all binding events for the same three cases.
In all cases, the simulation data can be described by a double
exponential (correlation coefficient of fit R2 = 0.999 for the
three values of φ = 0, 0.2, and 0.5), P(t) = N1 exp(−k1t) +
N2 exp(−k2t), which indicates the existence of a fast and a slow
component in the binding kinetics. The corresponding two rates
k1 and k2 are plotted individually as functions of the volume
fraction in Figures 3E,F, respectively. These plots show that
they exhibit opposite dependencies on crowding. The rate for
rapid rebinding, k1, increases with increasing volume fraction φ,
while the rate of the slow component decreases. This result can
be interpreted in the following way: crowding enhances rapid
rebinding of a ligand still close to the receptor upon unbinding,

FIGURE 3 | Kinetics of the simple binding reaction model. (A) Binding

rate kb and (B) unbinding rate kub, as a function of the volume occupation

fraction φ. kb remains constant for all values of φ. Thus, diffusion of the ligand

toward the target is not affected by crowding. kub decays as φ increases, in

agreement with the expression kub = Kd,0τ−1 (1− φ). (C) Histograms of the

duration of 10,000 unbinding events for the case of a single ligand for

different values of φ. The data follow a single exponential. (D) Histograms of

the duration of 10,000 binding events for φ = 0,0.3,0.5 and a single ligand.

A double exponential decay is observed with a fast and slow component in

the binding kinetics. Inset: closeup of the histogram for short times with

smaller bin size. (E) Fast rebinding is enhanced when levels of molecular

crowding increase. (F) Slow rebinding is negatively affected when φ

increases, since the diffusion of the ligand toward the target is hindered.

Simulation parameters as in Figure 2.
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as the crowders hinder the diffusive motion of the ligand away
from the receptor and thus keep it close for a longer time.
At the same time, the crowders hinder the diffusive motion
to the receptor when the ligand needs to diffuse there from
further away. Thus, the constant binding rate, independent of
the presence and concentration of crowders conceals the more
subtle balance between two opposing effects, namely an increased
rate for rapid rebinding and a reduced rate for binding during
longer periods of unoccupied receptor. Both effects are related
to an effect of crowding on diffusion, but in one case away
from the target and in the other toward the target. One could
however, consider coarse-grained rates and consider the short-
lived unbinding events as part of the bound state [32]. In that
case, the binding rate would be reduced by crowding and the
unbinding rate would be reduced even more.

3.3. Binding in Off-Lattice Simulations
In addition, we simulated the same receptor-ligand binding
reaction using the off-lattice reaction-diffusion dynamics
software ReaDDy [27]. These simulations allow us to cross-check
the results and to test for possible lattice artifacts. Figure 4A
shows the probability Pb that the target is occupied as a function

of the number of ligands for different values of φ. Comparable
quantitative results are found for both implementations of
molecular crowding. As in the lattice simulations, increasing
volume occupation levels φ leads to a decrease in the dissociation
constant. In Figures 4B,C we show the rates of binding
and unbinding as functions of the volume occupation. The
binding rate is independent of the volume fraction, while the
unbinding rate decreases as the volume fraction of crowders
increases. Just as in the lattice model, the unbinding rate follows
kub = kub(0)(1 − φ). We can thus conclude that the effects of
crowding on Pb are due to the slower dissociation rate. Next,
in Figure 4D we plot the histograms of 1700 binding events for
the cases φ = 0 and 0.1. As in the lattice implementation, the
histograms follow a double exponential distribution (R2 = 0.996
and 0.998 for φ = 0 and 0.1, respectively). Thus, simulations with
ReaDDy also show a slow and a fast component of the binding
kinetics. We note that although for both implementations the
simulation time increases quadratically with particle number,
the simulation times in ReaDDy are about 2 orders of magnitude
larger than in our implementation (data not shown). This is
primarily due to the computationally expensive evaluation of the
steric potential in ReaDDy.

FIGURE 4 | Effects of molecular crowding on binding equilibria

simulated with ReaDDy. (A) Probability for the target (receptor) to be

occupied Pb as a function of the number of ligands, for two levels of volume

occupation φ = 0 and 0.3. Crowding shifts the probabilities towards lower

number ligands. Similar behavior is observed for the lattice implementation

and for ReaDDy. (B) Binding rate kb stays constant as the levels of volume

occupation increase. (C) Unbinding rate decays as φ increases, following the

relation kub = kub (0)(1− φ). (D) Histograms of 1700 binding events for two

different values of volume occupation φ = 0 and 0.3. A double exponential

decay is observed, indicating the presence of a slow and a fast component

of the dynamics, as in the lattice implementation. Simulation parameters:

V = 49 × 49 × 49 nm3, kub (0) = 1.6× 106 s−1, r = 3 nm, D = 166.6 µm2

s−1 and T = 20◦C. The data from lattice simulations in (A) are the same as

in Figure 2A.
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4. Effect of Crowding on Diffusion-Limited
Reactions

We have seen above that crowders do not affect the rate of
formation of the receptor-ligand complex, because they suppress
binding events involving large-distance diffusion of the ligand to
the receptor, but also enhance (re-)binding for ligands close to
the receptor and the two effect compensate each other. We now
consider the reaction between an enzyme (replacing the receptor)
and its substrate (replacing the ligand). Specifically, we consider
a reaction that is diffusion-limited and very efficient, converting
every incoming substrate into the corresponding product P, i.e.,
we consider the irreversible reaction L + R → LR → P + R. In
contrast to the receptor-ligand binding considered above, in this
case, immediate rebinding of the substrate is not possible, because
the released molecule is the product rather than the substrate.
Thus, one can expect that the balance between the different
effects of the crowder is perturbed and different behavior can be
expected in this case. Clearly, the reaction we consider here is a
limiting case; a more general and more realistic scenario, namely
Michaelis-Menten kinetics, that allows both the unbinding of the
substrate and release of the product will be considered below.

4.1. Lattice Simulations
We study the enzyme-substrate reaction under steady-state
condition with constant substrate and product concentrations.
To implement this case, we use the same simulations as above
with only a difference in the unbinding process. Instead of
unbinding of the ligand, we now simulate a reaction that
transforms the substrate into the product. In addition, we need
to implement an additional reaction that keeps the substrate and
product concentrations constant. In our lattice simulation, these
two events are implemented in one single step: When a substrate
is bound to the enzyme (i.e., occupies the target site), the reaction
occurs with rate kr and simultaneously the product is released
and removed from the simulation and a new substrate molecule

is introduced at a random position. Thus, we keep the product
concentration zero and the substrate concentration at its initial
value. Effectively, the reaction is described as a unbinding process
to a random position in space rather than a neighbor site of the
enzyme. Clearly, this dynamics does not satisfy detailed balance;
energy input is required to keep the concentrations and thus the
chemical potential constant.

In Figure 5A, we plot the probability that the target site, the
enzyme, is occupied as a function of the number of substrates
in the box. In contrast to the ligand-receptor binding reaction
considered above, increased crowder numbers now shift the
function to the right, that is, toward larger ligand numbers,
so that the occupation of the enzyme (as well as the overall
reaction rate) is reduced by the crowders. We note that the
effect is rather modest, but nevertheless it is important that the
effect is the opposite of what we observed above. Although the
process does not correspond to a binding equilibrium, the data
are well-described by Equation (6), with an effective dissociation
constant K∗

d
(φ) = kr/kb, where kr is the reaction rate and kb the

diffusion-limited binding rate. The effective dissociation constant
(determined as the substrate concentration for which Pb = 0.5)
is plotted in Figure 5B as a function of the volume fraction of
crowders. It increases with increasing volume fraction and can be
described by

K∗
d (φ) =

kr

kb
=

kr

k0
b
(1− φ)κ

(7)

with κ ≃ 0.5 (obtained from the fit to the binding rate below).
This functional form is not entirely surprising: Our reaction

is diffusion-limited, thus the binding rate is proportional to the
diffusion coefficient (kb = 4πσD, where σ ≃ l is the reaction
radius of the interacting particles). Experiments for different
concentrations and species of crowding agents have shown that
the change in the diffusion constant of different proteins due to
crowding can be described by the phenomenological expression
D(φ)/D(φ = 0) = (1− φ)κ [15, 24]. In the presence of different

FIGURE 5 | Effects of molecular crowding on a diffusion-limited

reaction. (A) Probability Pb for the target (enzyme) to be occupied Pb as a

function of the number of substrates, for φ = 0,0.2,0.3, and 0.5. Molecular

crowding shifts Pb toward larger number of ligand. Thus, more ligands are

needed to saturate the receptor when φ increases. (Inset) Representation of

the reaction model, in which a product P is synthesized with a rate kr . (B)

Dissociation constant K*
d
(φ) (obtained as the substrate concentration for

which Pb = 0.5) as a function of φ, which increases as a function of φ. The

line is obtained from Equation (7) with κ = 0.5, as obtained from the fit in

Figure 6B. Simulation parameters as in Figure 2, and kr = 1/60 τ−1.
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crowding agents, diffusion measurements for the protein carbon
monoxide hemoglobin have been fitted with a value of κ = 0.36
[15, 24].

That our result for the effective dissociation constant shows
the same dependence as experimentally observed for diffusion
indicates that, in contrast to the binding reaction studied
above, here the entire effect of crowding is via the (diffusion-
limited) binding rate. This is indeed the case, as one can
see in Figures 6A,B, where we plot the reaction rate (which
serves as an effective unbinding rate) and the binding rate
individually as functions of the volume fraction, respectively. The
bare reaction rate is unaffected by crowding, while the binding
rate decreases with increasing volume fraction, with the same
functional dependence as the effective dissociation constant,

kb(φ) = k0b(1− φ)κ . (8)

This dependence was used for the fit to determine κ ≃ 0.5
(with correlation coefficient R2 = 0.98 and 0.96 for 10 and 100
substrates, respectively). As a side remark, we note that the results
for the binding rate of this reaction can be used to determine the
effect of crowding on the diffusion coefficient, which would be

more difficult to obtain from the mean square displacement due
to the effect of confinement in the finite simulation volume.

Next, we consider the histograms of the ligand binding times,
which are shown in Figure 6C. In contrast to the binding reaction
considered above (Figure 3D), the simulation data for this
reaction are well-described by a single exponential (correlation
coefficient of fit R2 = 0.998, 0.995, and 0.998 for φ = 0, 0.3, and
0.5, respectively). When φ is increased, the characteristic time
increases, that is, the ligand-receptor encounter needs more time
to take place. This result corresponds to the slow component of
the binding scenario discussed above. In fact the two results show
good quantitative agreement. We therefore conclude that our
description of a diffusion-limited reaction completely uncouples
the effect of molecular crowding on diffusion from the effect on
binding equilibria.

4.2. Off-Lattice Simulations
Next, we implement this reaction in ReaDDy. We note that
the reaction described on the lattice is idealized in the sense
that removal of the product and re-introduction of substrate to
keep the substrate concentration constant occur simultaneously
at different positions on the lattice. For the off-lattice case, this

FIGURE 6 | Kinetics of the diffusion-limited reaction. (A) Reaction

rate kr as a function of the number of substrate molecules for

different levels of volume occupation φ. kr stays constant and has a

value of kr = 1/60τ−1 for all substrate numbers and levels of φ. (B)

Binding rate kb decays as φ increases. The simulation data is fitted

with Equation (8), resulting in κ ≃ 0.5 (lines). (C) Binding time

histograms fitted with a single-exponential. (Inset) The characteristic

time increases as the levels of volume occupation increase. (D,E)

Trajectories of the implementation of the diffusion-limited reaction with

ReaDDy. Number of particles (D) and mean square displacement (E)

from the target as functions of time for different charging rates. The

solid lines represent the substrate particles (ligands) that can bind and

react, the dashed lines represent the product that needs to be

recharged with rate kc before it can bind again. (F) Comparison of

the binding probability Pb as a function of the number of ligands at

different crowding levels for ReaDDy simulations and the lattice model

(data from Figure 5A). Simulation parameters (ReaDDy):

V = 49 × 49 × 49 nm3, kr = 1.6× 106 s−1, r = 3 nm and T = 20◦C.
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idealization is less straightforward and it is easier to uncouple
these processes. Thus, we include an additional reaction in these
simulations: A product can be converted back into a substrate
with rate kc. Indeed such processes are realized for example in
translation, where tRNAs leave the ribosome uncharged, i.e., not
carrying an amino acid and get recharged by tRNA synthetases.
The product constitutes an additional molecular species which
we take to diffuse with the same diffusion coefficient as the
substrate, but not to bind to the enzyme/target.

To compare the ReaDDy simulations with our lattice model,
two difficulties must be solved: In the first place, we want to
keep the substrate (charged ligand) concentration as unaffected
as possible. On the other hand, the product or uncharged ligand
must diffuse far from the receptor and be charged at a random
position within the simulation box. These two requirements are
antagonistic, meaning that on average, fast recharging implies
short diffusion, and long diffusion implies slow recharging. Thus,
we run simulations for different values of the recharging rate kc in
order to obtain an adequate value to simulate our ideal reaction.

Figure 6D shows simulation time courses for the number of
molecules with 50 charged and no uncharged ligands as initial
condition. For a small recharging rate, kc = 0.01 µs−1, the
charged ligand number decreases to about 40 molecules. For a
fast charging rate kc = 0.1 µs−1, the charged ligand number
stays almost constant at 50 molecules with slight fluctuations.
However, the mean square displacement of the substrate and
product particles from the origin of the simulation box, which
we use as a measure of the distance of the target, shows that
for the high recharging rate, the products (uncharged ligand)
are on average closer to the target than the substrate/charged
ligand. Even for the low recharging rate, a small difference in
mean square displacement can still be seen. To balance the two
requirements, we therefore used an intermediate charging rate of
kc = 0.05 µs−1. For this value, the number of charged ligands
does not change drastically (Figure 6D), and the uncharged
ligand diffuses far from the ligand before it gets recharged, see
Figure 6E.

Using this intermediate value of the recharging rate (and
all other simulation parameters as above), we determine the
target occupation Pb as a function of the number of ligands
for different levels of crowding (Figure 6F). As the volume
occupation increases, Pb is shifted to the right, toward larger
ligand concentrations, in quantitative agreement with the lattice
simulations.

5. Effects of Crowder Size

So far, we have only considered crowders with the same size
as the diffusing ligand or substrate molecules. However, effects
of molecular crowding on biochemical reactions are known
to be dependent on the reactants’ size and geometry [6].
Specifically, large particles experience entropic attraction forces
in the presence of smaller crowders. Such forces are known
as depletion forces and have been studied extensively, both
theoretically and experimentally [34, 35].

Here we are interested in the case of crowders smaller than
the ligand/substrate. In the lattice simulations we thus consider

ligands occupying more than one lattice site, specifically cubic
particles occupying 8 sites. We implemented this situation in two
ways, explicitly with crowders occupying a single site and ligands
occupying n = 8 sites (small crowders model, SC) and in an
approximate way, where the different sizes are taken into account
implicitly, by allowing up to n = 8 crowders to occupy the same
site, while the presence of a single crowder already excludes a
ligand from that site (multiple crowdersmodel,MC). In the latter,
n is the maximal number of crowders allowed to occupy the same
lattice site (which can have any integer value, while in the first
model only sizes n = k3 with integer k are possible). We note
that in the first implementation, the lattice constant corresponds
to the size of the crowder, while in the second it corresponds to
the size of the ligand. Thus, to compare the two implementations,
one needs to account for the different unit lengths as well as
the corresponding different unit times, which are defined via the
diffusion over the lattice spacing.

The effect of the crowders on the binding equilibrium can be
calculated in the same way as above, by counting the number of
configurations Sub and Sb by distributing L or L − 1 ligands and
C crowders on the lattice [33]. This leads to the probability that
the receptor is occupied as given by

Pb =
1

1+ Kd(φ)
[L]

with Kd(φ) = Kd,0(1− φ)n. (9)

Thus, small crowders have a stronger effect on binding than
crowders of the same size as the ligands. This results is confirmed
by the simulations. Figure 7A shows Pb as a function of the
number of ligands for different levels of molecular crowding.
Here, gray-filled symbols show data from simulations where
multiple crowders can occupy one lattice site, half-filled colored
symbols (pink and green) represent simulations with small
crowder particles on the lattice and the red-filled symbols show
results from ReaDDy simulations. For the latter, crowders have
a radius r = 1.5 nm to obtain a volume 8 times smaller
than the ligands. Symbols show averages of our simulations
after running over 3000 binding events. Half-saturation of the
receptor at φ = 0.2, is reached at ≃ 3 ligands, whereas for
the case where crowders and ligands have the same size, i.e.,
n = 1, half-saturation occurs at ≃ 13 ligands. Lines represent
Equation 9 and show good agreement with the simulations.
The effective dissociation constant is plotted, for the multiple
crowder approximation, as a function of the volume fraction φ

in Figure 7B. Comparison of the data for crowders with the same
size as the ligand and with an 8-fold smaller volume, shows that
for the same occupied volume fraction, the small crowders shift
the dissociation constant more strongly toward the bound state
than the larger crowders. Thus, only for crowders of the same
size as the ligand, the effect of crowding can be identified with
a reduction of the available volume by the volume occupied by
the crowders. For the smaller crowders, the available volume is
reduced by a larger amount. This observation can be explained by
the fact that the volume from which large particles are excluded
is determined by the spatial arrangement of small particles. This
additional volume exclusion effect can also be interpreted as due
to an additional attractive force between the large particles (here
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FIGURE 7 | Effects of crowder size on the binding of a ligand to a

receptor (A–C) and on the diffusion-limited enzymatic reaction (D,E).

In all panels, gray-filled symbols represent the implementation in which

multiple crowders can occupy the same lattice site (MC), half-filled symbols

(green and pink) represent the implementation of the small crowders (SC)

and the red symbols show results from ReaDDy. In general, good agreement

between the methods is observed. (A) Pb of the simple binding reaction as a

function of the number of ligands for different crowder sizes and volume

occupation fractions φ. The lines are from Equation (9) with no free

parameters. (B) Dissociation constant as a function of φ for two different

crowder sizes. Smaller crowders have a stronger effect on the dissociation

constant than crowders with the same size as the ligands. (C) Unbinding rate

as a function of crowder volume fraction. (D) Pb for a diffusion-limited

reaction at different crowder volumes. (E) Corresponding binding rate. The

lines show fits with Equation (8) (R2 = 0.96,0.995, and 0.994 in descending

order). The simulation parameters are as in Figures 2, 5.

the ligand and the target). The effect of crowder size is also known
from scaled particle theory, however in that theory non-linear φ-
dependencies are already present for crowders of the same size as
the ligands [6].

Next, we plot the unbinding rate as a function of the volume
fraction for smaller crowders, see Figure 7C. Independent of
the crowder size, the effect of crowding on the dissociation
constant is entirely mediated by the unbinding rate. Results are
in good agreement with the expression for the unbinding rate
kub = Kd,0τ

−1(1 − φ)n, with n = 1 and 8 for crowders with
the same size as the ligands, and crowders 8-fold smaller than
the ligands, respectively. No strong difference between the two
different implementations is observed.

Next, we study the effect of small crowders on ligand diffusion
using again the diffusion-limited reaction in which the target
converts a substrate (the ligand) into a product (which is
instantaneously replaced by a new substrate inserted into the
simulation box at a random position). As for the crowders with
the same size as the ligand, binding to the target is weaker
in the presence of the crowders and the dissociation constant
increases with increasing volume fraction due to a reduction
of the binding rate (the effective unbinding rate, given by the
reaction rate, remains constant by construction of the reaction

model). Figure 7D shows Pb as a function of L for two different
volume fractions of crowders, which are again 8-fold smaller than
ligands. In Figure 7E, we plot the binding rate kb as a function of
volume fraction for a fixed number of ligands, L = 10, and three
different crowder sizes (gray and green symbols).When crowders
and ligands have the same size n = 1, the decrease in the binding
rate is modest. Reducing the sizes of the crowders increases the
effect of crowding. As above, the dependence of the binding rate
on the volume fraction can be described by kb = k0

b
(1 − φ)κ ,

with κ ≃ 0.5, 3.6 and 16 for crowders with the same size as the
ligands, 8-fold smaller than the ligands and 30-fold smaller than
the ligands, respectively. For the case of crowders being 8-fold
smaller than the ligands, where we tested both implementations
of smaller crowders, no strong difference is observed between the
two different implementations.

6. Enzymatic Reaction

Finally, to consider the combined effect of crowding on diffusion,
binding and reactions, we simulate an enzymatic reaction with
Michaelis-Menten kinetics [36], i.e., L + R ⇔ LR → P + R.
This reaction is implemented in our lattice model by combining
the two reactions studied above: The substrate binds to the target
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(the enzyme) as before, but then two events may occur. The
substrate may unbind from the target with rate kub as in the
binding reaction studied in Section III. Alternatively, the reaction
can take place and a product is released with rate kr . In this case,
we again remove the product from the simulation box and re-
insert a substrate molecule at a random position. In the absence
of crowders, the synthesis of product proceeds with a rate

dP

dt
=

kr[R][L]

KM + [L]
, (10)

with the Michaelis constant KM =
(

kr + kub
)

/kb. In the two
limiting cases where either kr or kub = 0 are negligibly small,
the reaction reduces to the two reactions considered above. In
the following, we will modulate these two parameters such that
kub + kr is kept constant (= 1/60τ−1). Thus, in the absence
of crowding, the reactions have the same Michaelis constant,
but differ in their maximal reaction rate, see Figure 8A. By
contrast, when crowders interfere in the reaction, the maximal
reaction rate may be limited by different physical processes. If
unbinding is negligible, the reaction is diffusion-limited, and thus
hindered by crowding. The Michaelis constant is increased by
crowders, KM ≈ kr/kb × (1 − φ)−κ . As we have seen, this
increase can be attributed to a reduced binding rate, and the
value of κ is strongly dependent on crowder size. In the other
limit, the reaction is limiting and the binding/unbinding process
has enough time to reach equilibrium before a reaction takes
place. In that case, the Michaelis constant is decreased by the
crowders, KM ≈ kub × (1 − φ)n/kb due to a reduced unbinding
rate. For a given concentration of substrate, the rate of product
formation is reduced in the first case, but increased in the second.
These opposing limiting behaviors are plotted as dashed lines in
Figures 8B,C.

The latter competitive effects lead to a non-monotonic
behavior of the reaction rate for parameters that lie between the

limit cases, as shown by the symbols in Figures 8B,C. In these
cases, the reaction rate is increased by crowding at low volume
fractions of crowders, but decreases for large volume fractions.
This observation can be explained as a transition between the
reaction-limited and the diffusion-limited case, as increasing
volume fractions decrease the unbinding rate. Thus, the volume
fraction for which the reaction rate is maximal can be estimated
by kr = kub(1−φ)n, which leads to a diffusion-limitation for φ &

1−(kr/kub) for n = 1. This estimate also indicates that for smaller
crowders (larger n), the maximal reaction rate occurs for smaller
volume fractions. This expectation is confirmed by simulations,
shown in Figure 8C. Here decreasing reaction rates are seen for
volume fractions below the typical intracellular crowding level
of 0.3.

Experimentally, both increases and decreases of enzyme
activity with increasing levels of crowding have been seen [13].
However, often these observations do not reflect simply the shift
in equilibrium binding, in particular, when substrates are small
compare to the crowders. Rather, crowding can also affect the
activity of an enzyme by modulating its conformation or by
inducing oligomerization [11, 37]. However, there is evidence
for decreased activity due to diffusion-limitation in several cases
[11, 38].

7. Discussion: Crowding Effects on Gene
Expression

In the preceding sections we have discussed generic effects
of molecular crowding on two elementary types of reactions,
simple binding/unbinding and an enzymatic reaction converting
a substrate into a product. These two reaction paradigms can
be used to describe many different processes in cells, including
some that are not enzymatic in a strict sense. An example for the
latter is binding of RNA polymerase to a promoter and initiation

FIGURE 8 | Effects of molecular crowding on a reaction with

Michaelis-Menten kinetics. (A) Overall product synthesis rate in absence

of crowding (φ = 0) as a function of the number of substrates for different set

of parameters kub and kr (in units of the inverse simulation time steps τ−1, all

other parameters are as in Figure 2). (B) Ratio between the overall synthesis

rate in the presence of crowders and the overall synthesis product rate

without crowding as a function of crowder volume fraction φ. Non-monotonic

behavior is obtained for all sets of parameters. For small values of φ, binding

equilibrium effects are dominant, shifting the ratio to values > 1; for large

values of φ, the slow diffusion dominates, as the reactions become

diffusion-limited and the ratio decreases again. The maximal reaction rate is

found at an intermediate value of φ. (C) The same as in (B), but for crowders

8-fold smaller than substrates. The qualitative behavior is the same as in (B),

but the presence of smaller crowders shifts the maximums toward lower

values of φ. The dashed lines in (B,C) represent the theoretical limits of

kub ≫ kr (top) and kub ≪ kr (bottom).
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of transcription, which can be described (within a minimal
mathematical representation) by Michaelis-Menten kinetics with
the promoter taking the role of the enzyme [39, 40]. In the
following, we will thus discuss some applications of these two
elementary reactions to processes in gene expression.

7.1. Transcription Factors
Most efforts to study the impact of molecular crowding on gene
expression have been devoted to the binding of transcription
factors to their binding sites on the chromosome [14, 15, 41].
For most transcription factors, this is a typical case of equilibrium
binding and indeedmost models for gene regulation are based on
the assumption of a binding equilibrium for transcription factors
[42, 43]. As discussed above as well as in a large body of previous
work, one generically expects such binding to be strengthened
by crowding. Interestingly, this holds both for specific binding to
the functional binding sites and for (sequence-independent) non-
specific binding. Since the molecules involved are the same, the
relative strength of specific and non-specific binding should not
be affected. Thus, the increase in binding is mainly at the cost of
the cytoplasmic fraction of the transcription factors, in agreement
with the observation that transcription factors spends most of the
time bound to DNA [44, 45].

The strengthening of non-specific binding by crowding
should also have an interesting consequence for the dynamics.
Transcription factors diffuse in the cell by a combination of
three-dimensional cytoplasmic diffusion and one-dimensional
diffusion (sliding) along DNA while non-specifically bound
[45]. The one-dimensional diffusion coefficient is typically
considerably smaller than the diffusion coefficient for three-
dimensional diffusion. Thus, unless the transcription factor is
bound to DNA in close proximity to a specific binding site, where
sliding plays an important role, non-specific binding to DNA can
mostly be interpreted as inhibiting cytoplasmic diffusion. Thus
the effective diffusion coefficient can be approximated as Deff =
D(1 − Pb,ns), where D is the cytoplasmic diffusion coefficient.
Assuming that the crowders in the cell are mostly proteins and
thus similar in size to the transcription factor of interest, one
should expect crowding to have a relatively mild effect on the
transcription factor’s diffusion in the cytoplasm with D(φ) ≃
D(1 − φ). However, since non-specific binding is strengthened
by crowding, the inhibition of cytoplasmic diffusion is also
enhanced and cytoplasmic diffusion is interrupted by pauses
on the DNA that get longer and longer with increasing
volume fraction of the crowders. Recent Brownian Dynamics
simulations [46] indeed showed an increase in the fraction
of time spend bound to DNA, however the overall effect on
search times, the time required to find a binding site on the
DNA, was found to be only weakly affected by crowding, as
the opposing effects of crowding seem to keep each other in
balance.

7.2. Transcription
As mentioned above, the initiation of transcription can be
described by Michaelis-Menten kinetics with RNA polymerase
reversibly binding to the promoter and irreversibly starting to
elongate an RNA chain. Thus, the promoter formally takes the

role of the enzyme and converts free RNA polymerases into
transcribing RNA polymerases. Contrary to many transcription
factors, RNA polymerase is a relatively big protein with a
molecular weight of ≈ 400 kDa [47]. Thus, its size is larger
than that of the typical crowder and crowding effects can be
expected to be more pronounced. However, to address the effect
of crowding on the initiation of transcription, we first need
to estimate whether this reaction is diffusion-limited. For a
large protein complex such as RNA polymerase, the cytoplasmic
diffusion coefficient is approximately 1 µm2/s [28, 48], which
is reduced due to non-specific binding to approximately 0.2
µm2/s [48, 49]. Thus, the diffusion-limited binding rate to a
promoter can be estimated to be about 0.1 µM−1s−1. This
value could be increased due to sliding along the DNA, which
effectively increases the size of the target to be reached by
cytoplasmic diffusion. However, the importance of sliding is
unclear, recent studies have questioned it plays an important
role at all and it will clearly be limited by the presence of
other DNA-bound proteins including the transcription factors
bound near a promoter. Since typical transcription rates are of
the order of a few per minute, however, for most cases, with a
concentration of RNA polymerases of 5–10 µM, transcription
should not be limited by diffusion. An exception might be the
transcription of ribosomal RNA, which exhibits much larger
transcription rates, up to 80 per minute. Notably, the cellular
RNA polymerase pool is quite large, exceeding numbers needed
for transcription. One can speculate that a smaller pool would
make transcription initiation diffusion-limited at least for highly
transcribed genes such as those encoding ribosomal RNA and
thus not be sufficient for the high transcription rates required on
these genes.

However, for most genes, the initiation of transcription should
not be limited by diffusion of RNApolymerase and thus crowding
can be expected to enhance polymerase binding to the promoter
and thus transcription.

7.3. Translation
Similar to the case of RNA polymerase, one can argue that
the initiation of translation could be limited by diffusion of
the ribosome, which is an even bigger molecular machine
than RNA polymerase; however it does not exhibit non-specific
binding to DNA. Contrary to RNA polymerase however, the
pool of free ribosomes appears to be rather small [50]. To a
first approximation, ribosomes are translating all the time, an
observation that can be interpreted as efficient use to maximize
the return of an expensive investment [51, 52]. Thus, initiation
of translation on any specific mRNA could well be limited by the
diffusion of ribosomes. However, different mRNAs compete for
ribosomes and such a limitation would not result in inefficient
use of ribosomes but rather in the translation of a different
mRNA. Thus, the cell’s objective here may not be affected by a
diffusion limitation.

The elongation process is also quite different for translation
compared to transcription. Elongation of the growing
polypeptide chain requires that the next amino acid is delivered
to the ribosome by a ternary complex containing a tRNA charged
with the amino acid and a GTP-activated elongation factor Tu.
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This complex is again a large molecular complex with a small
diffusion coefficient and a molecular size exceeding the size of
typical crowders. Assuming a concentration of a few µM for
typical ternary complex species [53], binding to the ribosome
is expected to occur with rate ∼ 10 s−1 [29]. Thus, peptide
chain elongation may proceed rather close to the diffusion
limit and the large concentration of ternary complexes in cells
(EF-Tu is the most abundant protein in E. coli cells [30]) is likely
required to avoid such limitation to ensure efficient cellular
use of ribosomes. Indeed, from a proteome partitioning point
of view, the optimal solution would be to set the Michaelis
constant of translation elongation as low as possible. Thus, the
actual value must be set by some limitation such as a diffusion
limitation, which results in a lower limit for the Michaelis
constant [29]. Thus any increase in the level of crowding should
slow down translation and, via to the close link between protein
synthesis and cell growth, have a negative effect on cell growth.
We note, however, that such a limitation could be circumvented
by local ternary complex pools. Indeed it has been suggested
that tRNAs are recharged while associated with the ribosome
[54]. The dynamics is then similar to a high recharging rate in
the recharging process in our ReADDy simulations (Figure 6)
and crowding would not have the expected negative effect.
However, definitive proof for such local recharging is still
lacking.

8. Concluding Remarks

In this paper, we used a simple computational approach to discuss
the effects of molecular crowding on several simple enzymatic
reactions, specifically for relatively big molecular substrates. We
used a combination of lattice and off-lattice simulations to revisit
the two elementary consequences of molecular crowding, namely
enhanced binding and reduced diffusion. The balance between
these two effects can be subtle as indicated by the example of
the binding rate, which remains unaffected due to an increase
in rapid rebinding events and, at the same time, a decrease in
binding event involving diffusive arrival of ligands. The lattice
model provides a rather intuitive picture of these situations (as
well as a very efficient computational implementation).

In addition, we have discussed applications of these effects
to steps in gene expression, such as transcription factor-DNA
binding, promoter finding by RNA polymerase and translation
elongation. Our estimates show that some of these processes
may come close to the diffusion limit and that such diffusion
limitation may be physiologically important, specifically for
translation elongation.

The methods we used here can be applied more generally and
there are a number of possible extensions to this work, such
as addressing the effects of spatial clustering of targets (binding
sites/enzymes) and the built-up of local concentrations.
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