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We introduce and discuss a real-space renormalization group (RSRG) procedure on very

small lattices, which in principle does not require any of the usual approximations, e.g., a

cut-off in the expansion of the Hamiltonian in powers of the field. The procedure is carried

out numerically on very small lattices (4×4 to 2×2) and implemented for the Ising Model

and the q = 3,4,5-state Potts Models. Nevertheless, the resulting estimates of the

correlation length exponent and the magnetization exponent are typically within 3–7% of

the exact values. The 4-state Potts Model generates a third magnetic exponent, which

seems to be unknown in the literature. A number of questions about the meaning of

certain exponents and the procedure itself arise from its use of symmetry principles and

its application to the q 5 Potts Model.=
Keywords: real-space renormalization, critical exponents, Potts Model, numerical methods, two dimensional

lattices

1. Introduction

The renormalization group [1, 2] is widely recognized as the most important breakthrough in
statistical mechanics over the past 50 years. At the time when it was conceived and the modern
understanding of phase transitions was formulated, certain procedures, in particular an explicit,
exact implementation of Kadanoff’s block spin procedure [3] were completely out of reach. Modern
computers, however, have made carrying out these procedures feasible and so the question arises
how they work and what information they are able to provide.

In the present work we investigate in detail a procedure inspired by Hasenbusch’s notes [4],
which introduces the method described in here in a pedagogical format, on the basis of the Ising
Model [5]. After introducing an external field, we extend this method to more generalized Ising
Hamiltonians, as it turns out that there are in principle very many different ways of parameterizing
the Ising Model and its renormalized Hamiltonian. With the insights gained, we apply the
procedure to the q-state Potts Model [6, 7].

A real-space renormalization transformationR [8, 9] provides a map from a set of couplings K
entering the Hamiltonian of an original system to the couplings K′ = R(K) of a Hamiltonian of a
so-called coarse-grained system, such that the numerical values of the respective partition sums Z
and Z′ are identical. If the original system were infinitely extended, the coarse grained one would
in fact be identical to the original one, so the two sets of couplings produce the same partition sum.
The real-space renormalization transformation therefore becomes a (symmetry) operation under
which the partition sum of the original Model is invariant, i.e., the procedure provides a means to
determine a locus of constant partition sum in the space of couplings.
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Willis et al Potts Model RSRG in 2d

Strictly, the procedure above cannot be followed through
in an infinite system, as the partition sum would diverge. The
procedure is therefore normally performed in a d-dimensional
system of a certain linear extent L and, say, N = Ld degrees of
freedom, mapping it to one with, say N′ = L′d = (L/b)d degrees
of freedom, where b > 1 is the dilatation factor. In order to take
the thermodynamic limit, free energy densities (free energy per
degree of freedom) are considered which, at constant partition
sum, increases by a factor bd as the number of degrees of freedom
decreases by the same factor. In turn, distances measured in units
of lattice spacings decrease by a factor b, as (intermediate) sites
are removed, see Figure 1.

However, as the system is finite, the (new) couplings which
are found by applying the renormalization transformation to the
original system are strictly no longer applicable to the original
system, as the couplings are those in a smaller system and are
chosen only so that the coarse-grained system reproduces the
partition sum of the original system. The key approximation
made in the following is therefore to ignore this mismatch. The
process is illustrated in Figure 1.

Because of the reduction of the degrees of freedom, the mapR

de facto describes the evolution of the couplings under rescaling.
This can be seen particularly well at the correlation length—if
the coarse-graining procedure maintains correlations, then we
expect the correlation length measured in units of lattice spacings
in the coarse-grained system to be ξ/b if it was ξ in the original.
Any fixed point R(K∗) = K∗ therefore corresponds to either a
divergent or a vanishing correlation length. It is well known that
the eigenvalues of the linear stability matrix at that fixed point are
related to the critical exponents characterising the corresponding
continuous phase transition [10–12]. The aim of the present
work is to demonstrate that very good estimates of those critical
exponents, some unexpected, can be produced on the basis of
very small systems.

This comes as a surprise, not least because conventional
Monte-Carlo simulations of systems as small as the present
one show virtually no sign at all of a phase transition in the
observables normally considered. Given that the renormalization
process becomes exact only if carried out in the thermodynamic
limit, it seems obvious that one should strive for large systems.
However, in very small systems the mapping can be made exact
(within numerical precision and accuracy), because the partition
sum can be performed numerically in its entirety and the number

FIGURE 1 | The blocking of spins occurs in two steps. Firstly the original

lattice is divided into disjoint blocks of b× b spins. These blocks are then

replaced by a single spin using a majority rule [11] (any ambiguity is resolved

by replacing a block by the top left spin) and finally, the lattice is rescaled as to

restore the distance between nearest neighbors to that on the original lattice.

During this process, the number of degrees of freedom decreases by a factor

of bd , while their density remains unchanged.

of couplings required to have an exact identity between original
and coarse-grained system is manageable.

In the following we will introduce our procedure formally first
on the basis of a Hamiltonian for the Ising Model inspired by and
minimally extended beyond the original Ising Hamiltonian, as
suggested by Hasenbusch [4]. We will then extend the concept to
different sets of couplings before moving on to triangular lattices
and the Potts Model [6, 7].

2. Method

We begin this section by reviewing in quite some detail
the procedure of realspace renormalization, which belongs to
the folklore of statistical mechanics. However, we think it is
important to identify precisely the underlying assumptions and
approximations.

The usual Ising Hamiltonian [5, 8] with vanishing external
field is

HIsing(s) = −J
∑

〈ij〉
sisj (1)

where s = (s1, s2, . . . , sN) denotes a spin configuration with si ∈
{−1, 1} and

〈

ij
〉

is an (undirected) pair of nearest neighboring sites
i, j, i.e., the sum runs over indices of each nearest neighboring
pair of sites once. In the following these nearest neighbors are
taken from a two-dimensional square, but we may also use a
triangular lattice. In both cases, we apply periodic boundary
conditions, see Figure 2. The coupling J in Equation (1) is
normally a constant, set to unity in case of a ferromagnetic
interaction. The canonical partition sum is then given by

Z(T) =
∑

s∈{−1,1}N
e−HIsing(s)/(kBT) (2)

where T is the temperature, kB is the Boltzmann-factor and
the sum runs over all distinct spin configurations, of which
there are 2N .

In the following, we will absorb the temperature into
the definition of the coupling K = J/(kBT), and write

FIGURE 2 | Periodic boundary conditions on a square lattice with

vertical interactions shown as full lines and horizontal ones dotted.
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Z(K) =
∑

exp
(

−H(s;K)
)

where J in Equation (1) is effectively
replaced by KkBT. However, we will need to generalize the
Hamiltonian slightly and to see why, we first introduce the real
space renormalization procedure. We will demand that the
partition sum

Z(K) =
∑

s∈{−1,1}N
e−H(s;K) (3)

with k couplings K = (K0,K1, . . . ,Kk−1) on a 4 × 4 lattice for
which N = 16, is identical to the partition sum

Z′(K′) =
∑

s′∈{−1,1}N′
e−H′(s′;K′) (4)

on a 2 × 2 lattice, where N′ = 4. The Hamiltonian H
′ on the

smaller lattice shall differ from the original one on the bigger
lattice only by the set of pairs or, generally, n-tuples it sums over,
so that a set of couplings K′ in the small system may be chosen to
be applied in the large system.

In principle, there are infinitely many solutions, of Z′(K′) =
Z(K), and as long as there are no restrictions on the structure of
the Hamiltonian, it is trivial to construct one. However, the aim
is to coarse-grain in a way that correlations between spins can
be expected to be maintained in some form. One way of doing
that is to devise a method that maps local spin configurations in
the large original lattice to those in the small new lattice in some
systematic fashion. In the following we will apply the majority
rule as shown in Figure 3. In order to maintain correlations,
further down (see Equation (6)), we will make a stronger demand
than Z′(K′) = Z(K).

The coarse-graining works as follows: The original L×L lattice
(here L = 4) is divided into disjoint b × b patches, producing a
lattice of patches of size N′ = L′2 with L′ = L/b (here L′ = 2 as
b = 2). In the new, coarse-grained lattice a patch I, also known
as a block spin [3], is assigned the value SI of the majority of the
spins in the b × b patch it represents. For even b a majority may
not exist, in which case we assign to SI the value of the spin in the
top left corner of the patch.

To formalize the block spin procedure, we introduce the
function [11]

T(S; s) =
{

1 if S is a valid map of s

0 otherwise ,
(5)

FIGURE 3 | On a 2 × 2 lattice, the sum of all spins can be either

4,2,0,−2, or −4. The four non-zero cases cases renormalize

non-ambiguously by a majority rule. Ambiguous cases are renormalized

according to the value of their top left spin.

which indicates whether configuration S is a valid map (a coarse
grained representation) of s. For each s there exists exactly one

S ∈ {−1, 1}N′
that is valid, so that S(s) is a function. In principle

one may introduce a weighted T(S; s) that allows for multiple,
weighted S to represent s, imposing however

∑

S T(S; s) = 1 for
all s.

Using the function T(S; s) we will impose

e−H
′(S;K′) =

∑

s∈{−1,1}N
T(S; s)e−H(s;K) (6)

such that Z′(K′) = Z(K) is a trivial consequence of Z(K) =
∑

S exp
(

−H
′(S;K′)

)

. Equation (6) contains a subtlety, as the
right hand side must be invariant under a change of S if the
left hand side is, otherwise the expression is overdetermined and
generally no root K′ can be found. This can be guaranteed by
imposing that for any two coarse grained configurations S1 and
S2 for which H

′(S1;K′) = H
′(S2;K′) for all K′ there exists a

symmetry operation O12 on the original lattice, so that for each
s1 with T(S1; s1) = 1 one has T(S2;O12s1) = 1 and H(s1;K) =
H(O12s1;K). This demand applies equally to S1 and S2 and thus
establishes an isomorphism between s1 with T(S1; s1) = 1 and
s2 with T(S2; s2) = 1. The demand is most easily satisfied by
reference to lattice symmetries, i.e., H′(S1;K′) = H

′(S2;K′)
if S1 and S2 are related by a translation (or rotation) on the
(periodically closed) lattice or by spin inversion, so that the
corresponding original configurations (those leading to S1 and S2
respectively) are related by the same symmetry operations, under
which the original Hamiltonian as well as the coarse-grained one
are invariant. To perform the sum on the right of Equation (6)
only one representative of the equivalence class C (generated
using the lattice symmetry mentioned above) which S belongs
to is needed. This representative we will call a “paradigm.” In
the numerical implementation, we may generate all original
configurations s ∈ {−1, 1}N and determine whether they belong
to a particular paradigm, i.e., whether T(S; s) = 1. For example,
for the four equivalence classes listed in Table 1, four such
paradigms are needed. In fact, on a periodically closed 2 × 2
square lattice the original Ising Hamiltonian Equation (1) has
only 3 energy levels, namely −8J, 0, and 8J. We will return to
the question as to how the number of classes can be reduced in
Section 3.

Equation (6) determines K′ to the extent that it has to hold
for all S simultaneously with K′ fixed. In principle there are 2N

′

distinct S, so that Equation (6) generates as many equations.
In the light of what has been said above, we will demand that
H

′(S;K′) is invariant under symmetry transformations of S

according to the point and space group of the underlying lattice.
In the absence of an external field, we will also demand that
it is invariant under a global spin inversion, i.e., H′(S;K′) =
H

′(−S;K′). The Hamiltonian H
′ has the same value for all S

within the same equivalence class. If the number of equivalence
classes (and therefore equations in an expression like Equation 8
below) equals the number of components ofK′ then it is uniquely
determined by Equation (6) andR(K) = K′ is a function defined
by it.
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TABLE 1 | The four equivalence classes of spin configurations (local motives) on a 2 × 2 Ising torus.

C0
++
++

−−
−− K′

0 + 8K′
1 + 8K′

2 + 4K′
3

C1
++
+−

++
−+

+−
++

−+
++

−−
−+

−−
+−

−+
−−

+−
−− K′

0 − 4K′
3

C2
++
−−

+−
+−

−+
−+

−−
++ K′

0 − 8K′
2 + 4K′

3

C3
+−
−+

−+
+− K′

0 − 8K′
1 + 8K′

2 + 4K′
3

The last column is the value of the HamiltonianH(S,K′ ), Equation (7), for any member of the class. Wherever necessary, rather than spelling out the vector S, such as, say, S = (1,1,1,-1)

for the first configuration of C1 shown, we use the natural notation of + and − spins arranged in a square to indicate a specific configuration, say ++
+− . On a 2× 2 lattice, the original

Hamiltonian Equation (1) assigns the same energy to configurations in classes C1 and C2.

FIGURE 4 | Interactions as used in Equations (7) and (15). The marked

spin (red) is subject to the following interactions (from left to right): The nearest

neighbor (Ising) interaction, parameterized by K1, the next-nearest neighbor

interaction (K2), the four-point of “quadrupole” interaction (K3) and, in the

presence of an external field, one of the triangular interactions (K5),

Equation (15).

In the specific case of L′ = 2 on a periodically closed
square lattice (a torus), there are exactly four equivalence classes,
generated by the lattice symmetries and inversion, as listed in
Table 1, which means that K′ has to have exactly k = 4
components, so that the functionR(K) exists.While Equation (1)
has only one coupling, it is easy to come up with a Hamiltonian
that recovers Equation (1) for a particular set of couplings and
also extends in a physically reasonable and meaningful manner.
Below, when we introduce the categories Hamiltonian, we will
make use of the ensuing ambiguity differently.

In order to be able to apply the map R(K) iteratively and
search for fixed points (and likewise for the mapping not to
impose an over- or under determined set of constraints), the
Hamiltonian for the original L × L lattice must have the same
couplings and interactions as the the Hamiltonian on the smaller,
rescaled lattice. In the following, we will therefore specify only
the former, implying the same form for the latter. Following
Hasenbusch’s notes [4], we add an energy offset K0, which turns
out to be a necessary ingredient (discussed below), a next-nearest
neighbor interaction parameterized by K2 and a four-point
interaction parameterized by K3,

H(s;K) = −K0 − K1

∑

〈ij〉
sisj − K2

∑

〈〈ij〉〉
sisj

−K3

∑

〈ijkl〉
sisjsksl, (7)

where 〈〈ij〉〉 denotes the next-nearest neighbor pair of sites and
〈ijkl〉 a neighborhood of four sites arranged in a square. These
interactions are shown in Figure 4. Each term is invariant under
the symmetry group operations of the underlying lattice as well
as under s → −s.

Equation (6) is now imposed for all four independent classes
of 2 × 2 spin configurations. To this end, H(S;K′) featuring on

the left hand side has to be calculated in terms of K′. Each n-
tuple of neighbors (nearest neighbors, next nearest neighbors and
four-site neighborhoods) is supposed to be counted only once,
but periodic boundary conditions apply, which results in more
neighborhoods to be considered than one would naïvely expect,
best illustrated in a square-patch contribution 〈ijkl〉, see Figure 5.

Using the values of the Hamiltonian listed in Table 1 and
taking the logarithm of Equation (6) results in the linear problem









1 8 8 4
1 0 0 −4
1 0 −8 4
1−8 8 4

















K ′
0

K ′
1

K ′
2

K ′
3
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ln
[

∑

s→ ++
++

e−H(s;K)
]

ln
[

∑

s→ ++
+−

e−H(s;K)
]

ln
[

∑

s→ ++
−−

e−H(s;K)
]

ln
[

∑

s→ +−
−+

e−H(s;K)
]





































(8)

where each of the sums on the right runs over the suitable set of
original spin configuration, using the notation

∑

s→S

e−H(s;K) =
∑

s∈{−1,1}N
T(S; s)e−H(s;K). (9)

As discussed above, in principle, there is of course one such
equation for each coarse-grained S, but as far as determining K′

from K is concerned, this leads to lines (in Equation 8) being
repeated as often as there are configurations in an equivalence
class.

Solving the linear system Equation (8) establishes the map

K′ = R(K)

= 1

32









4 16 8 4
2 0 0 −2
1 0 −2 1
1 −4 2 1













































ln
[

∑

s→ ++
++

e−H(s;K)
]

ln
[

∑

s→ ++
+−

e−H(s;K)
]

ln
[

∑

s→ ++
−−

e−H(s;K)
]

ln
[

∑

s→ +−
−+

e−H(s;K)
]





































(10)
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FIGURE 5 | When determining the value of the Hamiltonian

Equation (7) on a 2 × 2 lattice, periodic boundary conditions have to

be applied. Even though there exists only one four-spin neighborhood, its

contribution counts fourfold, namely the same as the contribution of a 2× 2

patch in an infinite, periodically repeated lattice. The figure shows the actual

configuration of the 2× 2 lattice in the central four sites (shown in black),

which are periodically repeated (blue). The four sites 〈ijkl〉 to be considered

for the SiSjSkSl contribution in Equation (7) parameterized by K3 are

shown inside the square, which may be thought of as being rooted at the

encircled site. Calling that site i, its “local motif” (on a 2× 2 or 4× 4 lattice)

would be the first four translations shown for C1 in Table 1. As each site’s

local motif contributes equally, the particular choice which site to regard as

the “root” of the patch is irrelevant. An alternative patching is shown in

Figure 6.

FIGURE 6 | The same patching as shown in Figure 5, but with the root

site (encircled) moved within the patch. With equivalence classes like

Table 1, the contribution of each local motif is independent of the location of

the root site and the rotational orientation of the lattice. While this is a triviality

on the square lattice, this invariance requires further attention on the triangular

lattice.

The summation (Equation 9) has to be carried out very many
times when hunting for the fixed point K∗ = R(K∗), using,
for example, Newton-Raphson [13]. The Jacobian matrix Jij =
∂R(K)i/∂Kj can very easily be determined simultaneously with
R(K) itself, see Section 4.1. It is that sum (Equation 9), that is
computationally expensive, even when applying computational
tricks (Section 4.1), of varying sophistication. The most obvious
one is to run over all possible original configurations s and
determine the coarse-grained S for which T(S; s) = 1, rather
than fixing S and finding all roots of T(S; s) = 1. By symmetry
of the block spin transformation, in a q state Potts Model

(q = 2 for Ising) each of the qN
′
has qN−N′

valid original
configurations.

Finding and characterizing a fixed point in a 4 × 4 → 2 × 2
RSRG procedure for the Ising Model is, on a modern laptop
computer, a matter of seconds. Extending the procedure to other
lattices of the same size has barely an effect on the CPU time,
but changes to the dimension of the available phase space volume
obviously do.

It turns out that R(K) as defined in Equation (10) has no
fixed point. The reason is that K0 enters identically on the left
and on the right, because it simply gives rise to a factor exp (K0)

in front of the partition sum. Equation (10) can therefore be
written as

K′ = R(K) =









K0 + R0(K1,K2,K3)
R1(K1,K2,K3)
R2(K1,K2,K3)
R3(K1,K2,K3)









, (11)

and imposing R(K∗) = K∗ generally has no solution in K∗
0 at

all, as K∗
0 = K∗

0 + R0(K1,K2,K3) poses only an extra condition
on K1,K2,K3, which is not generally fulfilled. This is an anomaly
that can be resolved by multiplying the offset K0 by the number
of degrees of freedom, as it arises naturally in Section 3, so that
N′K∗

0 = NK∗
0 + R0(K1,K2,K3) which has a unique solution

K∗
0 . At this stage, we accept that R0(K1,K2,K3) represents the

additional phase space volume of an 4 × 4 lattice compared to
a 2 × 2 lattice. Ignoring its particular value for the time being,
we carry on by modifying the renormalization transformation
slightly,

K̃
′ =

(

K ′
1,K

′
2,K

′
3

)T = R̃(K̃) =





R1(K1,K2,K3)
R2(K1,K2,K3)
R3(K1,K2,K3)



 , (12)

with K̃ = (K1,K2,K3)
T . In other words, the fixed point is

determined only in the K1,K2,K3 subspace.
The conventional wisdom of the statistical mechanics of phase

transitions has it that there should be three fixed points: One
is associated with a divergent correlation length, which is the
non-trivial fixed point that we would like to characterize. Two
more fixed points exist that have a vanishing correlation length
associated with them, the low-temperature fixed point and the
high-temperature fixed point. As for the former, it is not a fixed

point in the strict sense of R̃(K̃
∗
) = K̃

∗
as K̃ diverges under the

map R̃(K̃).
As for the high-temperature fixed point, one can easily see

that K1 = K2 = K3 = 0 is invariant under application of
R(K), Equation (10), as in this case the Boltzmann-factor is
simply exp (K0) in each of the terms on the right, which gives

K ′
1 = K ′

2 = K ′
3 = 0 and K ′

0 = K0 + ln(2N−N′
), where 2N−N′

is
the number of terms in the sums.

Once the non-trivial fixed point, K̃
∗ = R̃(K̃

∗
), is found,

critical exponents can be extracted from a linear stability
analysis. These exponents characterize the scale invariance in the
neighborhood of the fixed point. As discussed extensively in
the textbooks [11], they are related to those eigenvalues λx of
the Jacobian J = ∂(K ′

0,K
′
1, . . . , )/∂(K0,K1, . . .) that are greater

than 1, corresponding to relevant directions in coupling space. In
the following we will refer to them as yx with

yx =
ln(λx)

ln(b)
. (13)

We use the naming convention x = t (the thermal exponent)
for a Hamiltonian that contains no coupling which spoils its
invariance under global permutations of the spin state. For
example, in the Ising Model, Equation (7) represents such a
Hamiltonian, which is invariant under s → −s, as H(s;K) =
H(−s;K). In principle, after introducing one or more external
fields there is ambiguity as to which eigenvalue corresponds

Frontiers in Physics | www.frontiersin.org 5 June 2015 | Volume 3 | Article 46

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Willis et al Potts Model RSRG in 2d

to which exponent, which can be resolved by studying the
Hamiltonian first without these external fields.

Using the procedure described above gives a single positive
exponent yt = 0.936, which is a stunningly good estimate
compared to the exact value of yt = 1/ν = 1 [8, 9]. All exponents
calculated in the present work are collected in Table 2, with three
significant digits quoted throughout this work.

2.1. Adding a Magnetic Field
In order to determine the other, well known critical exponent, yh,
we need to allow for a non-vanishing field H in Equation (1),

H(s) = −J
∑

〈ij〉
sisj −H

∑

i

si . (14)

Any H 6= 0 breaks the parity symmetry of the Hamiltonian, i.e.,
H(s) 6= H(−s). This causes another “level splitting” among the
equivalence classes introduced in Table 1, in particular C0 and
C1, which results in the six classes listed inTable 3. Consequently,
we introduce two more couplings in Equation (7), resulting in

H(s;K) = −K0 − K1

∑

〈ij〉
sisj − K2

∑

〈〈ij〉〉
sisj

−K3

∑

〈ijkl〉
sisjsksl − K4

∑

i

si − K5

∑

〈ijk〉
sisjsk, (15)

where 〈ijk〉 denotes corner-triplets of sites (in any orientation) as
shown in Figure 4.

Performing again a fixed point analysis results in one new
exponent yh = 1.823 (see Table 2) and the same yt as above. In
fact, the values of the couplings K1,K2,K3 at the fixed point do
not change at all, while K∗

4 = 0 and K∗
5 = 0 are new relevant

couplings. The analytical value of yh = 1.875 [14] testifies to the
accuracy of the present scheme.

3. Generalization to Categories

The procedure above can be generalized by noticing that in order
for Equation (8) to give rise to a fixed point equation, the precise

structure of the matrix on the left hand side is irrelevant, as the
same linear combination of couplings enters in the Hamiltonian
on the right. Reassigning couplings K̃i according to

K̃ =









K̃0

K̃1

K̃2

K̃3









= M









K0

K1

K2

K3









withM =









1 8 8 4
1 0 0 −4
1 0 −8 4
1−8 8 4









(16)

then produces the map K̃
′ = MR(M−1K̃), which effectively

(apart from a factor M) has the same “fixed point” K̃
∗ = MK

as the original map R(K) and, up to linear transform, the same

Jacobian, K̃
′

K̃
= M K′

K M−1. As long asM is invertible, every linear

combination of couplings is allowed, with no immediate benefit
as far as the properties of the fixed point are concerned, but
suggesting a greatly increased range of choices of couplings for
different classes of local motives (spin configurations), such as
those shown in Table 1 or those in Table 3.

Above, we did not arrive at an actual fixed point equation,
K̃
∗ = R(K̃

∗
), because the implied K∗

0 = K∗
0 + R0(K

∗
1 ,K

∗
2 ,K

∗
3 )

has generally no solution at all or infinitely many for
R0(K

∗
1 ,K

∗
2 ,K

∗
3 ) = 0. To this end we adjust the new Hamiltonian

such that this relation turns into the more desirable formN′K̃ ′
0 =

NK̃0 + R0(K̃1, K̃2, K̃3), which possesses unique solutions for any
given set of couplings K̃1, K̃2, K̃3.

The new Hamiltonian, in the following referred to as the
“categories Hamiltonian” reads

H(s;K) = −
k−1
∑

j=0

Kj

N
∑

i

δC(s,i),j (17)

where C(s, i) ∈ {0, 1, . . . , k − 1} in the Kronecker δ-functions
δC(s,i),j determines for the configuration s the equivalence class or
category of a the local b×bmotif rooted at spin i according to the
given table of equivalence classes or categories, say Table 1, and a
convention regarding orientation like Figure 5. The

∑

j runs over

all k categories and
∑N

i over all N lattices sites. Equation (17)

TABLE 2 | Critical inverse temperatures and exponents for the Ising Model and q-state Potts Models on the square lattice (for the triangular lattice see

Table 8), as determined in the present work (“this work”) or in the literature (“lit.” and references).

Model

(

J
kBT

)

c
yt yh yh2 yh3

This work lit. [7, 14] This work lit. [14, 16, 19] This work lit. [14, 16, 17] This work lit. [16, 18] This work lit.

Ising 0.420 . . . 0.441 . . . 0.936 . . . 1 1.823 . . . 15
8 = 1.875 n/a n/a n/a n/a

2-state Potts 0.840 . . . 0.881 . . . 0.936 . . . 1 1.823 . . . 15
8 = 1.875 n/a n/a n/a n/a

3-state Potts 0.966 . . . 1.005 . . . 1.118 . . . 6
5 = 1.2 1.810 . . . 28

15 = 1.867 0.614 . . . 0.55, 23 n/a n/a

4-state Potts 1.065 . . . 1.099 . . . 1.296 . . . 3
2 = 1.5 1.814 . . . 15

8 = 1.875 0.682 . . . 7
8 = 0.875 0.174 . . .

5-state Potts 1.146 . . . n/a 1.462 . . . n/a n/a n/a n/a

Results are based on minimal sets of categories, e.g., Tables 1, 3, 5, 6. All values are quoted to three significant digits. Theoretical values of the critical temperature follow
(

J
kB T

)

c
= ln(1 + √

q) [7]. The Ising Model is the 2-state Potts Model with the inverse critical temperature divided by 2. Critical temperatures and exponents that are not expected

or are known to not exist are labeled as n/a (not applicable). Their value is stated if the present work produced an estimate nevertheless (as is the case for the 5-state Potts Model).
Where no results are available from the literature or have not been determined in the present work entries have been left empty.
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TABLE 3 | The six equivalence classes of spin configurations (local motives) on a 2 × 2 Ising torus, based on Equation (15).

C0
++
++ K′

0 + 8K′
1 + 4K′

2 + 4K′
3 + 4K′

4 + 8K′
5

C1
−−
−− K′

0 + 8K′
1 + 4K′

2 + 4K′
3 − 4K′

4 − 8K′
5

C2
++
+−

++
−+

+−
++

−+
++ K′

0 − 4K′
3 + 2K′

4 − 2K′
5

C3
−−
−+

−−
+−

−+
−−

+−
−− K′

0 − 4K′
3 − 2K′

4 + 2K′
5

C4
++
−−

+−
+−

−+
−+

−−
++ K′

0 − 8K′
2 + 4K′

3

C5
+−
−+

−+
+− K′

0 − 8K′
1 + 8K′

2 + 4K′
3

The last column is the value of the Hamiltonian H(S,K′ ) Equation (15) for any member of the class.

applies equivalently to coarse-grained configurations where
s is replaced by S and N and N′. Correspondingly, the
renormalization map based on Equation (17) is

K′ = R(K) = 1

N′

















ln
[
∑

s→S0
e−H(s;K)]

ln
[
∑

s→S1
e−H(s;K)]

ln
[
∑

s→S2
e−H(s;K)]

...

ln
[
∑

s→Sk−1
e−H(s;K)]

















, (18)

with Si in category Ci, in short K ′
i = N′−1 ln

[
∑

s→Si
e−H(s;K)].

Extrapolating from the discussion about K∗
0 above, one coupling

to be determined through K∗ = R(K∗) in Equation (18) should
be related to the others by some trivial relationship. In fact, by
construction, every fixed point K∗ of R(K∗) has the property
R(K∗ + δ1) = K∗ + bdδ1 for arbitrary δ and 1 = (1, 1, . . . , 1)T ,
i.e., shifting all couplings by the same amount. This is because
Equation (17) gives H(s;K + δ1) = −Nδ + H(s;K) since
∑

j δC(s,i),j = 1 and
∑N

i = N = bdN′.
As far as exponents are concerned, since more generally

K′(K+δ1) = R(K+δ1) = bdδ1+R(K) = bdδ1+K′(K) (19)

for any K, the Jacobian in the linear stability analysis remains

unchanged as
∂K′

i (K+δ1)

∂Kj
= ∂K′

i (K)

∂Kj
, in particular at the fixed

point K = K∗, resulting in identical estimates for the exponents.
In other words, finding a K̃∗ which is shifted equally in all
components after renormalization,R(K̃∗)−K̃∗ = (bd−1)δ1 is as
good as finding a fixed point. The particular choice of δ = −K∗

0
makes category 0 disappear from the Hamiltonian at the fixed
point, i.e., there is K̃∗ = (0,K∗

1 − K∗
0 ,K

∗
2 − K∗

0 , . . . ) such that

R(K̃∗) = K̃∗ + (bd − 1)δ1. Since category 0 disappears from
the Hamiltonian, one less root has to be found numerically, and
indeed δ and thus K∗

0 are determined from the shift of K̃∗ under
R(K̃∗).

It turns out to be numerically most convenient to use the
parameterization

H(s; K̂) = −K̂0

∑

i

δC(s,i),0 − (K̂0 + K̂1)
∑

i

δC(s,i),1

− (K̂0 + K̂2)
∑

i

δC(s,i),2 − (K̂0 + K̂3)
∑

i

δC(s,i),3

= −NK̂0 −
k−1
∑

j=1

K̂j

N
∑

i

δC(s,i),j (20)

which corresponds to Hamiltonian Equation (17) with K =
(K̂0, K̂0 + K̂1, K̂0 + K̂2, . . . ) and so the transform of K̂ trivially
derives from that of K according to Equation (18), so that

K̂
′
(K̂) = A−1

R(AK̂) with

A =









1 0 0 0 . . .

1 1 0 0 . . .

1 0 1 0 . . .

. . .









.

The proper fixed point K̂
∗ = A−1

R(AK̂
∗
) = A−1K∗ needs to be

determined only up to arbitrary K̂0, as Equation (19) implies

K̂
′
(K̂+ δ(1, 0, 0, . . . )T) = K̂

′
(K̂)+ bdδ(1, 0, 0, . . . )T (21)

and the estimates of the exponents are unaffected by the specific
value of K̂0, as discussed above. From Equation (21) it follows
that the first column of the Jacobian is

∂K̂
′

∂K0
= (bd, 0, 0, . . .)T , (22)

which leads to an eigenvector of the form (1, 0, 0, . . .)T and an
eigenvalue of λ = bd and thus an exponent y0 = d, Equation (13).
Correspondingly, 1 is an eigenvector of the Jacobian of K′(K)
with eigenvalue bd, see Equation (19).

Formulating the Hamiltonian in terms of categories frees us
from the need to come up with enough (complicated) n-point
interactions (as we did in Equation 7) to match the number of
equivalence classes (such as Table 1). Rather, each equivalence
class is assigned a particular coupling, so their numbers match
by definition.

The new form of the Hamiltonian Equations (17) or (20)
allows for more radical changes, as there is no need to
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construct the classes of local motives in reference to the original
Hamiltonian, such as Equation (1). In this light, the previous
choice of four categories (equivalence classes) for the real-
space renormalization of Equation (1), as listed in Table 1, was
somewhat arbitrary. The particular feature of this partitioning of
the N′ configurations is that all configurations within a category
are related by symmetry operations induced by the properties of
the underlying lattice or, in the absence of external fields, by spin
reversal. Configurations from different classes cannot be related
by any such operation.

However, the original Hamiltonian Equation (1) has only
three different energy levels, as configurations in categories C1

and C2 have the same energy. It appears justified to enforce that
this property is preserved under renormalization, i.e., to demand
that there are only three categories, namely C0, C1 ∪ C2 and C3.

A subtlety arises when merging categories such that the
resulting set contains configurations, which are not related by the
lattice or spin symmetries (see the discussion after Equation 6),
because now coarse-grained configurations S1 and S2 may have
the same energy, H′(S1;K′) = H

′(S2;K′) without, however,
being related by lattice symmetry operations that could equally
be applied to the set of s1 with T(S1; s1) = 1. To accommodate
this change, we modify Equation (6),

∑

S∈C
e−H′(S;K′) =

∑

S∈C

∑

s∈{−1,1}N
T(S; s)e−H(s;K) (23)

where the sum
∑

S∈C runs over all coarse-grained configurations
S in C. With

∑

i

∑

S∈Ci
=

∑

S this restores Z
′(K′) = Z(K).

By definition exp
(

−H
′(S1;K′)

)

= exp
(

−H
′(S2;K′)

)

for
any pair S1, S2 ∈ C, so the left hand side in Equation (23)
is |C| exp

(

−H
′(S;K′)

)

, with |C| the cardinality of the category
C ∋ S. A similar simplification can be applied on the right, as

∑

s∈{−1,1}N
T(S1; s)e−H(s;K) =

∑

s∈{−1,1}N
T(S2; s)e−H(s;K) (24)

for any two S1, S2 that are related by lattice symmetry operations.
Above, these equivalence classes were referred to as “classes,”
the (possible) union of which we generalized to categories.
To compute the right hand side in Equation (23) only one
representative or paradigm is needed for each equivalence class.
If C is the union of the (former) classes C1 and C2 with paradigms
S1 and S2 respectively, then Equation (23) can be re-written as

e−H′(S1;K′) = e−H′(S2;K′)

= |C1|
|C|

∑

s∈{−1,1}N
T(S1; s)e−H(s;K)

+ |C2|
|C|

∑

s∈{−1,1}N
T(S1; s)e−H(s;K). (25)

With the set-up mentioned above (three categories, C0, C1 ∪ C2,
and C3 as of Table 1) the exponents found are y0 = 2 (trivially)
and yt = 0.929 (see Table 2).

The possibility to create categories as unions of equivalence
classes reduces the number of couplings and thus the

dimensionality of the space to consider in search for a fixed point.
There is, in principle, no reason to keep certain configurations
together in the same category, even when that may break the
symmetries of the lattice. The six categories shown in Table 3

are, in that sense, minimal, in that each category contains exactly
one representative and (all) its translations (on a periodically
closed lattice), so that any two configurations are related by
lattice symmetries. For the sake of computability, we may,
however, strive to reduce the number of categories and break
them up only if induced by the application of an external field.
Table 1 is minimal in the sense that each category contains
all configurations equivalent not only under translation but in
addition also under spin reversal, the latter a symmetry broken
by an external magnetic field. In principle, all symmetries could
be broken, such that there are N′ categories, corresponding to a
maximum number of external fields. It turns out, however, that
only very few of these fields produce an exponent and that many
choices result in a singular matrixM, Equation (16).

Exploring the possibility of merging amongst the four original
equivalence classes in Table 1, two can be merged (in

(4
2

)

=
6 ways), resulting in three classes, three can be merged (in
four ways) leaving only one class intact, or two pairs can
be merged each (in three ways). Merging all four trivially
produces only one exponent, y0 = 2. Of the thirteen non-
trivial parameterizations, only parameterizations which leave the

ground state configurations ++
++ and −−

−− in a class of their own

result in a fixed point being found, see Table 4.
Most of these choices combine categories with different

energies according to the original Ising Hamiltonian and
consequently the critical temperature can no longer be calculated.
How that is done is discussed in the following.

3.1. Estimating the Critical Temperature
The critical temperature Tc is originally defined on the basis
of the Hamiltonian Equation (1) and the partition sum

TABLE 4 | All thirteen non-trivial unions of categories based on the

original four categories listed in Table 1.

Categories combined

(

J
kBT

)

c
yt

C0 ∪ C1 – –

C1 ∪ C2 0.432 0.929

C2 ∪ C3 – 0.936

C1 ∪ C3 – 0.997

C0 ∪ C2 – –

C0 ∪ C3 – –

C1 ∪ C2 ∪ C3 – 0.9862

C0 ∪ C2 ∪ C3 – –

C0 ∪ C1 ∪ C3 – –

C0 ∪ C1 ∪ C2 – –

C0 ∪ C1,C2 ∪ C3 – –

C0 ∪ C2,C1 ∪ C3 – –

C0 ∪ C3,C1 ∪ C2 – –

Unions of two and three categories can be formed. The unions which resulted in a
renormalization mapping with no fixed point have no critical exponents associated with
them. Only four unions result in estimates of critical exponents and only one has energies
compatible with the original Hamiltonian Equation (1), resulting in an estimate of the critical
(inverse) temperature (Section 3.1).
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Equation (2), as the value of T in the effective coupling J/(kBT)
at the critical point. At the critical point, the couplings in the
partition sum approach under renormalization the non-trivial
fixed point determined above. In fact, an entire subspace of the
coupling space, namely the basin of attraction, flows toward that
fixed point. The critical point is thus the intersection of the
basin of attraction and the “physical line.” The physical line is
determined by the linear map between the coupling J/(kBT) of
the original Hamiltonian, e.g., Equation (1), and the couplings K,
see Equation (7), such that

1

kBT
HIsing(s) = H0 +H(s;K) , (26)

with some additive constant H0, independent of the individual
configurations s, which represents a possible overall energy offset
that has no impact on any physical observable. For fixed J and kB,
Equation (26) provides a map K(T), linear in J/(kBT).

Equation (26) holds for all s simultaneously and therefore is,
in principle, a set of 2N (independent) equations, which means
thatK(T) is hugely overdetermined. Even taking into account the
various different symmetries leaves a vast number of equations,
much larger than the set Equations (6) or (23). In the case of the
set of couplings used in Equation (7), however, this Hamiltonian
is in fact identical to Equation (1) for K0 = K2 = K3 = 0 and
K1 = J/(kBT). Even after moving to the more convenient set of
couplings K̃ via Equation (16), the identity remains unchanged
except for the trivial, linear map outlined in Equation (16).

Finding the couplings of a categories Hamiltonian such that
it matches an original, physically motivated Hamiltonian is
straight-forward as long as the former forms a superset of the
interactions contained in the latter. For example, using the
categories of Table 1 with C1 and C2 merged, so that C0 has
coupling K̃0, C1 ∪ C2 coupling K̃12 and C3 coupling K̃3, the set
of linearly independent equations to determine the couplings in
Equation (20) is given by

4K̃0 +H0 = 8
J

kBT
(27a)

4K̃0 + 4K̃12 +H0 = 0 (27b)

4K̃0 + 4K̃3 +H0 = −8
J

kBT
(27c)

where the factor 4 on the left accounts for the effect of summing
over all 2 × 2 neighborhoods, see Figure 5. Technically, the first
and third equations are repeated twice and the second twelve
times. In the present parameterization, the arbitrary offset H0

may be absorbed into K̃0. The temperature T thus determines
effectively only K̃3.

Obviously, such a mapping Equation (27) is possible only for
those categories Hamiltonians, that do not merge configurations
that have different energies in the original Hamiltonian, as
otherwise the same left hand side is equated to different right
hand sides.

Once the map K̃(T) is established, the critical temperature
Tc, is found as the K̃(Tc) which ultimately flows into the fixed
point, i.e., repeated application of the renormalization scheme

R such as Equations (10) or (18) drives K̃(Tc) to the fixed point
K̃
∗ = R(K̃

∗
),

R(R(. . .R(K̃(Tc)) . . . )) = K̃
∗

. (28)

In order to find Tc the linearization about the fixed point is of
little use, as the renormalization flow becomes non-linear away
from it. Numerically, the most efficient way of finding the critical
temperature is thus a divide-and-conquer scheme, whereby a
reasonable interval of (inverse) temperatures is split into regions
according to the fixed point that is approached under successive
application of R. Above Tc, i.e., T > Tc, all K̃(T) flow toward
the high-temperature fixed point K̃(T → ∞) → 0. Below Tc,
i.e., T < Tc, some or all of the components of K̃(T) diverge (see
Figure 7). The critical temperature Tc is to be found between
those regions, bracketed by successively picking a temperature
between one that is known to flow toward the high-temperature
fixed point and one that flows toward the low-temperature fixed
point.

The second column in Table 2 lists the temperatures that we
found for the different models considered. In general, inverse
temperatures are mildly underestimated, whichmay be explained
by the small lattices suppressing some fluctuations.

3.2. Potts Model
In the following, we present the analysis of the Potts Model. The
approach using categories avoids the use of n-point interactions
to provide enough couplings for the set of equivalence classes in
the Potts Model, which otherwise would prove rather messy [15].

The procedures outlined above can obviously quite easily be
extended to the q-state Potts Model [7, Equation (1.6)] which
(traditionally) has Hamiltonian

H(s) = −J
∑

〈ij〉
δsi,sj −H

∑

i

δsi,0 (29)

FIGURE 7 | The flow induced by repeated application of the map R(K)

from different starting points in the K1–K2 plane, see Equation (7). A

separatrix between flow toward the high- and low-temperature fixed points is

clearly visible. This is the basin of attraction of the fixed point. Its intersection

with the line K2 = 0 (and K3 = 0) determines K1c =
(

J
kBT

)

c
.
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where si ∈ {0, 1, . . . , q− 1} and the Kronecker δ-function favors
equality of nearest neighbors for positive J and si = 0 for H > 0.
For q = 2 the Ising Hamiltonian Equation (1) is recovered up to a
constant shift of the energy and a factor 2 in the couplings, which
has no impact on the value of the exponents. For q = 3 and in the
absence of an external field, theminimal set of categories is shown
in Table 6. The thermal exponent found is yt = 1.118 compared
to yt = 1.2 analytically [16], again in very good agreement (see
Table 2).

The situation becomes significantly more complicated when
an external field is applied, such as H in Equation (29),
which breaks the permutation symmetry S3 down to S2, as the
Hamiltonian remains invariant under permutations of the two
states 1 and 2 which do not couple to H. Without using unions
of equivalence classes as categories, the number of couplings
needed for the q = 3 Potts Model in an external field is 13,
shown in Table 5. Again, this set of categories is minimal, in
the sense that each category contains only those configurations
which are related to each other by lattice translations and (global)
permutations of state 1 and 2. The resulting magnetic exponent
is yh1 = 1.810 (Table 2), again in very good agreement with the
theoretical value of yh1 = 1.866 . . . [17].

The presence of a single external field promoting one
particular state in a q > 2-state Potts Model is peculiar, as the
phase space selected by favoring one state, say 0 via positive
external field H, is fundamentally different from the phase space
selected by −H, which favors q − 1 states that have an Sq−1

symmetry between them. A linearization about the fixed point, as
used in the derivation of the exponents, is blind to such a (non-
linear) change of character, i.e., each eigenvector of the Jacobian
is associated with only one exponent. The number of categories
(and couplings) however, arising from the application of a single
field allows for many more new relevant directions.

In fact, the exponent yh1 may be thought of as characterising
the continuous phase transition at the endpoint of a line of first
order transitions between a phase with a majority of 0 states
and a mixed phase of state 1 and 2. A second line of first
order transitions exist between phases where a single state has

a majority, say, between 0 and 1. The introduction of a single
field does in fact produce a second magnetic exponent yh2, whose
numerical value yh2 = 0.614 (also listed in Table 2) should
be compared to the values reported in the literature of yh2 =
0.55 [16] and yh2 = 2

3 [18] . In the present picture, it seems
that the external field has a projection on the relevant direction
associated with this second magnetic exponent. It may thus also
be interpreted as a subleading term (associated with a confluent
singularity) visible in a perturbation by an external field such as
the one in Equation (29).

Dividing the categories up further by introducing a second
external field, thereby breaking symmetry (the remaining S2)
down one last time, causes further splitting of the categories
listed in Table 6 (to 21 categories) and produces a second pair of
exponents yh1 and yh2 which are numerically identical to the ones
produced above, so in total 6 relevant (positive) exponents are
observed, namely y0 = 2 and yt , as well as yh1 and yh2 each twice.
That second breaking of symmetry has exhausted all remaining
symmetries and no further external fields can be introduced. If
the second is thought of as mediating a transition between phases
with majority states 1 and 2 respectively, then suitable linear
combinations between the first and the second external field will
mediate transitions between any majority or mixed states.

We took a similar approach for the q = 4 Potts Model.
The resulting exponents were yt = 1.296 and yh1 = 1.814
(Table 2) compared to yt = 1.5 [19] and yh1 = 1.875 [16]
in the literature. The “second magnetic exponent” yh2 = 0.682
(compared to the theoretical value yh2 = 0.875 [16]) is again
visible with only one external field. However, a third magnetic
exponent yh3 = 0.174 (as well as a second pair of yh1 and
yh2) appears when introducing a second field. We are not aware
of this exponent being discussed in the literature. It may be
associated with a transition between, say, a mixed phase with
mostly states 0 and 2 and one with mostly 1 and 3, i.e., favoring
pairs of states. Table 7 lists the number of categories and which
exponents appear under the application of external fields. It is
well-known that there exists a marginal exponent or logarithmic
correction to yt because q = 4 is the marginal value of q above

TABLE 5 | The six equivalence classes of the 3-state Potts Model (with states 0, 1, and 2 as shown) on a 2 × 2 lattice.

C0 C1 C2 C3 C4 C5

00
00

00
01

00
02

11
12

00
11

11
22

22
00

01
10

00
12

11
02

22
01

02
10

12
01

21
02

11
11

00
10

00
20

11
21

01
01

12
12

20
20

10
01

00
21

11
20

22
10

01
20

10
21

20
12

22
22

10
00

20
00

21
11

11
00

22
11

00
22

02
20

01
02

10
12

21
20

10
02

21
10

12
20

01
00

02
00

12
11

10
10

21
21

02
02

20
02

02
01

12
10

20
21

20
01

01
12

02
21

11
10

22
20

22
21

12
21

12
00

20
11

01
22

11
01

22
02

22
12

21
12

21
00

02
11

10
22

01
11

02
22

12
22

10
20

01
21

12
02

10
11

20
22

21
22

20
10

21
01

02
12

Configurations within each equivalence class are related by the symmetry operations of the underlying lattice and, in the absence of an external field, global permutations of the states.
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TABLE 6 | The 13 equivalence classes of the 3-state Potts Model (with states 0, 1, and 2 as shown) on a 2 × 2 lattice in the presence of an external field

coupling to state 0.

C0
11
11

22
22

C1
00
00

C2
11
12

11
21

21
11

12
11

22
21

22
12

12
22

21
22

C3
11
10

11
01

01
11

10
11

22
20

22
02

02
22

20
22

C4
00
02

00
20

20
00

02
00

00
01

00
10

10
00

01
00

C5
11
22

12
12

21
21

22
11

C6
00
22

02
02

20
20

22
00

00
11

01
01

10
10

11
00

C7
12
21

21
12

C8
01
10

10
01

02
20

20
02

C9
11
02

11
20

10
12

12
10

02
11

20
11

01
21

21
01

22
01

22
10

21
20

20
21

01
22

10
22

02
12

12
02

C10
00
12

00
21

01
02

02
01

12
00

21
00

20
10

10
20

C11
12
01

10
21

01
12

21
10

21
02

20
12

02
21

12
20

C12
02
10

01
20

10
02

20
01

Configurations within each equivalence class are related by the symmetry operations of the underlying lattice and permutations of states 1 and 2. The categories shown here arise
naturally from Table 5 by separating out permutations that involve a change of state 0.

which the transition becomes first order in d = 2 dimensions
[20]. However, despite the relatively small value of yh3 (0.174 on
the square lattice, Table 2, and 0.099 on the triangular lattice,
Table 8), this exponent should not be mistaken as a correction,
as its appearance follows the same pattern as the other magnetic
exponents, on the square lattice as well as on the triangular lattice,
see Table 7. In contrast, the exponent yt , which is not related
to the application of external magnetic fields, occurs only once,
regardless of how many external fields are applied.

Introducing a dedicated field which couples equally to 0 and
2 spins has the effect of leaving a symmetry in place between
0 and 2 spins as well as between 1 and 3 spins. This field
splits for example the category containing the four configurations
00
00 , 11

11 , 22
22 , 33

33 in two, namely in one containing 00
00 and 22

22

and another one containing 11
11 and 33

33 . A less obvious result

of breaking symmetry in such a way is that the category which
contains all four different spin states (which exists for only if

q ≥ 4) will also split. This is because 01
23 and 21

03 are related by

swapping 0 and 2 and/or swapping 1 and 3, whereas 01
23 and 10

23

are not related by this symmetry operation. This demonstrates
the need to differentiate between the notion of an external field
coupling to a certain spin species as it does in the Ising or Potts

Hamiltonian, and an external field breaking a (permutation)
symmetry. Introducing such a field results in 22 categories. All
three magnetic exponents, as well as the thermal and trivial
exponent are observed exactly once (i.e., there are no repeated
exponents). The values are exactly those found when introducing
two external fields. The existence of yh3 in the presence of
such a field and its absence without such a field reinforces our
interpretation that this exponent is not related to logarithmic
corrections to scaling with temperature.

3.3. Other Fixed Points
The BEG Model or spin-1 Ising Model, introduced by Blume,
Emery and Griffiths to describe the behavior of a 3He − 4He
mixture [21], has the Hamiltonian (without external field)

H = −J
∑

〈ij〉
sisj − K

∑

〈ij〉
s2i s

2
j + 1

∑

i

s2i (30)

with si ∈ {−1, 0, 1}. This Hamiltonian is invariant under the
global parity transformation si → −si, i.e., the inversion of
all spins. Unlike the 3-state Potts Model, however, it is not
invariant under other permutations of the three states {−1, 0, 1}.
This is reminiscent of the 3-state Potts Model in an external
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TABLE 7 | Introducing more symmetry breaking external fields produces an increasing number of (minimal) categories and exponents.

Model No fields 1 field 2 fields 3 fields

# Cats Exp. # Cats Exp. # Cats Exp. # Cats Exp.

Ising 4 y0,yt 6 yh n/a n/a n/a n/a

3-state Potts 6 y0,yt 13 yh1,yh2 21 yh,yh2 n/a n/a

4-state Potts 6 y0,yt 16 yh1,yh2 34 yh1,yh2,yh3 55 yh1,yh2,yh3

Each field here is chosen as to favor one particular species or state (e.g., the first field may favor the up state in the Ising Model or state 0 in Potts). Introducing further fields does not affect
the value of exponents but their degeneracy. For each Model and field we show the total number of categories (# cats) on the square lattice and which exponents (exp.) are obtained
additionally. For example, after introducing one field in the 3-state Potts Model, we finds yt, yh1, yh2 and after introducing another magnetic field, in total one finds yt, yh1 × 2, yh2 × 2.

field coupling to state 0, which is equivalent to offsetting the
Hamiltonian by a constant and a coupling equally to states 1 and
2. This is similar to the effect of the products sisj and (sisj)

2 in
Equation (30), which singles state si = 0 out. In fact, the 13
categories of the Potts Model, Table 6, also form the minimal
set of categories of the BEG Model, if state 2 is mapped to spin
orientation si = −1.

The magnetic (and thermal exponents) of the 3-state Potts
Model with a single external field as discussed above were
determined using the couplings at the fixed point of the
transform for the model without external field, as discussed in
Section 2.1. This fixed point is unique in the sense that its basin
of attraction intersects with the physical line of the Potts Model
Equation (29). To find a fixed point that is associated with the
BEG Model, one has to widen the net and consider the entire 13
dimensional coupling space. It is, of course, futile to scour this
space systematically without the constraint of a physical line or
any other special locus.

We therefore resorted to random, uniform sampling over a
reasonable range of couplings, rejecting the known Potts and the
trivial fixed points. Computationally, it takes under a minute to
determine the fixed point a particular parameter set flows to.
Two further fixed points were revealed by the process, which
we discuss in the following. Both fixed points have the usual
structure of a fixed point with external field, i.e., the Jacobian has
three eigenvalues greater than unity, namely y0 = 2 as well as two
further, non-trivial exponents y1,2.

The couplings at the first alternative fixed point are such that
a symmetry of states 1 and 2 in the Potts Model (1 and −1 of the
BEG Model) is implemented, that is to say, configurations have
the same energy under local changes of state 1 to state 2 and vice

versa. For example, 22
22 , 22

21 , 22
11 , 21

12 , 11
12 and 11

11 all have the

same energy at the fixed point, and similarly 00
12 ,

00
11 , and

00
22 have

the same energy as well. Considering categories with the same
energy for a moment as identical, the resulting set of categories
is that of the Ising Model in an external field, associating states
1 and 2 with, say, up spins (+) and 0 with down spins (−) and
interpreting the “entropic advantage” of the former as the effect
of an external field. The critical exponents of y1 = 0.927 and
y2 = 1.837 appear to support this rather artificial interpretation.
However, the symmetries at the fixed point sit well with the BEG
Model which for J = 0 in Equation (30) is invariant under local

parity transforms si → −si, while providing more phase space
for |si| = 1 compared to si = 0.

The second alternative fixed point has a lower symmetry, as no
local permutation are allowed, that is to say, at the fixed point no
two couplings are equal. Furthermore, the numerical value of the
couplings at the fixed point are unusually large, imposing a heavy
energetic penalty on configurations containing 1 − 2 nearest
neighbour pairs. The critical exponents found are y1 = 0.700 and
y2 = 1.722. We can only speculate that this fixed point may also
be related to the rich phase diagram of the BEG model, known to
have a variety of transitions [22].

It seems reasonable to expect that the exponents of higher spin
Ising Model can be found as fixed points of higher q-state Potts
Models. For example, the categories of the spin 3

2 Ising Model
with si ∈ {−3,−1, 1, 3} are identical to those of the 4-state Potts
Model in the presence of a single field which couples identically
to two of the four states.

3.3.1. Reconstructing the Ising Fixed Point
The conventional wisdom of statistical physics [7] would argue
that one can always introduce p strong external fields in a q-
state Potts Model to suppress the occurrence of p states, resulting
in a q − p-state Potts Model. For example, applying a strong
magnetic field in the 3-state Potts Model should reveal the Ising
fixed point. This will be the Ising fixed point without external
field as the only external field present is the one that suppresses
one species without coupling (differently) to the remaining two
species.

In our scheme, this fixed point should feature as a further
alternative fixed point in the 3-state Potts Model with a single
external field, however with unusually large or even divergent
(negative) couplings in the presence of the disfavored species.
Having recourse to Table 6, we set the couplings related to
configurationsC1,C3,C4,C6,C8,C9,C10,C11, andC12 such that
these configurations are penalized and the couplings related to
configurations C0,C2,C5, and C7 are set to the fixed point values
of the corresponding four we found for the IsingModel (compare
Table 1 and Table 6). While the large (penalizing) coupling
renormalize to larger values, we find the couplings related to the
(allowable) categories C0,C2,C5, and C7 to stay fixed under the
renormalization scheme, as expected. Correspondingly, we find
the same yt as produced by the scheme based on Table1.
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3.4. 6 × 6 Lattices
At least for q = 2, it is numerically feasible to study larger
lattices, such as N = 6. While a stronger rescaling of b = 3
is possible, b = 2 is more promising as it results in a larger
coarse-grained lattice of 3 × 3. It turns out that N = 6, b = 2
is also less memory intensive, because there are fewer original

configurations per coarse-grained one, namely 2(N
2)/2(N

2/b2).
This is partially compensated by the N/b × N/b patches falling
into 13 categories for b = 2 and into 4 for b = 3, namely the same
as for N = 4, b = 2, see Table 1. Consequently, N = 6, b = 3 is
approximately three times as memory intensive as N = 6, b = 2,
rendering the former feasible with the computational resources
available to us but not the latter. The scheme finds two exponents
as expected, namely y0 = 2, and the thermal critical exponent
yt = 0.980. This is a significant improvement compared to
yt = 0.936 in Table 2.

3.5. Triangular Lattice
Implementing the scheme developed above on a triangular
lattice is considerably more complicated as rhombic patches have
to be constructed in multiple orientations which respect the
boundary conditions. Likewise, taking the boundary conditions
into account when generating the categories is more difficult for
triangular than square lattices. The motivation of doing so is
to validate the scheme and to demonstrate that the remarkable
accuracy of the estimated critical exponents is not dependent on
using a square lattice, but, in fact, inherent to the scheme.

Table 8 summarizes our findings on the triangular lattice.
In general, the inverse critical temperatures are more strongly
underestimated compared to our findings for the square lattice
Table 2. On the other hand, the thermal exponents, yt , are
generally found to be closer to the theoretical values, whereas the
first magnetic exponents yh seem systematically underestimated.
Because different theoretical estimates for the q = 3 second
magnetic exponent yh2 exist [16, 18], our estimates are not easily
validated, but the results in Table 8 and Table 2 differ by only
6% or less. The existence of the third magnetic exponent yh3
is confirmed, but its estimate of 0.099 is significantly smaller
than on the square lattice (0.174). Although the numerical

value may thus be questioned, we strongly believe that it exists
in the thermodynamic limit. Finally, the pattern of repeated
magnetic exponents as summarized in Table 7 is recovered on
the triangular lattice.

Furthermore, in the case of the Ising Model in the presence of
a single magnetic field, it seemed reasonable that the categories
obtained by our method should likewise be capable of capturing
the physics of the Baxter-Wu model [23]. This would manifest
itself in there being a second, non-trivial fixed point which we
however were unable to locate using a wide range of initial
conditions for the couplings in our Newton-Raphson scheme.
A considerably wider range of random starting points can be
probed for the Ising Model compared to the 3 state Potts
Model, as the process of converging to a fixed point from
a given starting configuration typically takes a fraction of a
second.

3.6. q = 5 Potts Model
The critical point of the q-state Potts Model in two dimensions
ceases to exist when q is increased beyond q = 4 [7, 24]. Subject
to a lengthy historical discussion, the transition in temperature
T (or, equivalently, J in Equation 29) becomes first order for
q = 5 (in 2 dimensions) and beyond. We were hoping to see this
reflected in the apparent absence of a non-trivial fixed point, or at
least absence of a fixed point whose basin of attraction intersects
the physical line, Section 3.1.

The absence of a critical point for q ≥ 5 has been associated
with the presence of effective vacancies (or voids) [25], where
none of a spin’s neighbors is in the same state as that spin, i.e.,
all δsi,sj for a give spin i vanish in Equation (29). On the square
lattice, such local configurations exist for q ≥ 2 and can extend
across macroscopic parts of the lattice. However, with increasing
q they are highly degenerate and thus acquire a large weight in
the partition sum.

It has been long known that conventional renormalization
group methods fail to capture this effect [15]. For example, using
the majority rule and dilatation by a factor b = 2, as we have

above, replaces 01
23 by a single spin and thus may dramatically

overestimate its contribution to long range order.

TABLE 8 | Critical inverse temperatures and exponents for the Ising Model and q-state Potts Models on the triangular lattice (for the square lattice see

Table 2), as determined in the present work (“this work”) or in the literature (“lit.” and references).

Model

(

J
kBT

)

c
yt yh yh2 yh3

This work lit. [7, 28] This work lit. [14, 16, 19] This work lit. [14, 16, 17] This work lit. [16, 18] This work lit.

Ising 0.231 . . . 0.275 . . . 0.933 . . . 1 1.743 . . . 15
8 = 1.875 n/a n/a n/a n/a

2-state Potts 0.462 . . . 0.549 . . . 0.933 . . . 1 1.743 . . . 15
8 = 1.875 n/a n/a n/a n/a

3-state Potts 0.553 . . . 0.6309 . . . 1.158 . . . 6
5 = 1.2 1.737 . . . 28

15 = 1.867 0.624 . . . 0.55, 23 n/a n/a

4-state Potts 0.626 . . . 0.6931 . . . 1.365 . . . 3
2 = 1.5 1.756 . . . 15

8 = 1.875 0.724 . . . 7
8 = 0.875 0.099 . . .

5-state Potts 0.731 . . . n/a 1.584 . . . n/a n/a n/a n/a

Theoretical values of the critical temperature are obtained by solving y3 − 3y + 2 = q where ln y =
(

J
kBT

)

c
[7]. See also Table 2.
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Nienhuis et al. managed to recover the first order transition
for q = 5 and above by replacing such “disordered” patches
by effective holes [25]. We have explored a different route,
motivated by the work by Berker and Andelman [26], who,
using Monte Carlo, could demonstrate that a slightly modified
Potts Hamiltonian (cf. Equation 29) produces continuous phase
transitions for q as high as 20. Their modification amounted to
energetically penalizing effective vacancies by raising the energy

of 2 × 2 patches of the form 01
23 . In the original Hamiltonian,

Equation (29), such patches have the same energy as those of the

form 01
10 or 01

20 . In a minimal set of categories, 01
23 and all of its

permutation (in the absence of an external field) are contained
in the same category and can thus be energetically penalized or
favored, depending on the coupling. Onemay therefore speculate
that the (undesirable) fixed point found by our scheme was
the one encountered by Berker and Andelman, i.e., one where
effective vacancies are suppressed.

To avoid this unintended suppression, we merged categories
according to the original Hamiltonian Equation (29), as discussed
in Section 3 for the Ising Model. For q = 3, 4, 5 this results in
only 4, 5, and 5 categories respectively. The resulting estimates
for the exponents differ only marginally from those obtained by
using the full minimal set of categories, and a non-trivial fixed
point for the 5-state Potts Model was indeed found again (see
Table 9).

Another strategy is to revise the disambiguation of the
majority rule, which crudely replaces, say

0101
2323
0101
2323

by the fully ordered 00
00 . This can be done by allowing the

indicator function T(S; s), Equation (5), to carry a weight, so that,
for example,

0100
2300
0000
0000

contributes with a weight of 1/4 to 00
00

10
00

20
00 and 30

00 , as if

the patch 01
23 coarse grains to 0, 1, 2 and 3 each with a weight

of 1/4. As a result, highly disordered (and thus ambiguous)
configurations contribute comparatively little to any given sum
∑

s→S, but likewise contribute to several sums simultaneously.

TABLE 9 | The inverse critical temperatures and exponents yt as obtained

by grouping categories based on the original Potts Model Hamiltonian

(this work, see text) in comparison to literature values (lit.).

Model

(

J
kBT

)

c
yt

This work lit. [7, 14] This work lit. [14, 16, 19]

2-State Potts 0.864… 0.881… 0.929… 1

3-State Potts 0.986… 1.005… 1.121… 1.2

4-State Potts 1.081 1.099…… 1.311… 1.5

5-State Potts 1.159 n/a… 1.485… n/a

Performing this process does not only consume much more
CPU-time (compared to top left rule), but requires significantly
more memory, see Table 10. Applying the process to q = 4,
for which estimates of yt are somewhat less accurate than for
q = 2 and q = 3, does, however, not result in improved
exponent estimates. Given the computing resources available, we
were unable to apply this technique to q = 5.

In conclusion, it would appear that our method cannot easily
be adjusted to allow us to observe the change of transition from
continuous to first order when q is increased from q = 4 to
q = 5. One may hope that this can be achieved by reconciling
our categories Hamiltonian method with Nienhuis et al.’s special
treatment of effective vacancies when performing the coarse-
graining.

4. Discussion

In the present section we first review a number of
implementation details and “numerical tricks” some of which
yield a considerable speed-up. In the second part, we summarize
the findings above.

4.1. Numerical Techniques
The CPU-time spent on the renormalization procedure is
essentially determined by the time it takes to calculate the sums
on the right of the transformations Equations (10) or (18) and
the number of times the transform itself is invoked. In the
following, we list some measures to improve the computational
performance.

(1) As outlined above, of the qN
′
renormalized configurations

of size L′ × L′ in a q-state Potts Model many are related by
the lattice symmetries leading to the classes and categories such
as those listed in Table 1 or Table 3. To reduce the CPU-time,
only those configurations that renormalize to a small number
of representatives (paradigms) need to be generated. This may

be achieved by using a dictionary that divides the qb
2
states of

the b × b patches into q coarse-grained configurations. This
dictionary is consulted for the purpose-built generation of all
original configurations that renormalize to a given paradigm.

Alternatively, one may start out considering all qN

configurations and determine whether and, if so, which

TABLE 10 | Memory requirements for ga→b
j

in the q = 2,3,4,5-state Potts

Model with N = 4, b = 2 and in the absence of a magnetic field.

Model RAM

T ∈ {0,1} T ∈ Q

Ising Model 61kiB 272 kiB

3-state Potts Model 17.8 MiB 46.39 MiB

4-state Potts Model 765 MiB 3.58 GiB

5-state Potts Model 11.14 GiB 99.51 GiB

The second column shows the memory requirement if ambiguous cases of original
configurations a are renormalized to a single definite configuration b in a deterministic
way, T(S;s) ∈ {0,1}, Equation (5). The rightmost column shows the memory requirement
if ambiguous cases are allowed to contribute (with a weight, T ∈ Q) to different
configurations b and consequently more information must be stored.
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paradigm they renormalize to. This was done by generating a

table to map each of the qb
2
configurations to a one of q possible

values. The renormalization of b × b patches inside the L × L
configuration can be sped up by stopping as soon as it is found
that the resulting coarse grained configuration cannot possibly
belong to any of the paradigms. For example, if the left-most
coarse-grained configurations in Table 1 are the paradigms,
which all have a + spin in the top left corner, then having a −
spin in the top left corner means that the configuration cannot
possibly result in a paradigm.

(2) In principle, the Jacobian Jij = ∂R(K)i/∂Kj can be
determined numerically. However, the derivatives according, say
Equation (18), are easily computed along with the Boltzmann-
factor itself, such as

∂R̃(K)i

∂Kj
=

∑

s→Ci

(

∑N
k δC(s,k),j

)

e−H(s;K̃)

∑

s→Ci
e−H(s;K̃)

(31)

for Equation (17) and similarly for the more complicated
Hamiltonians discussed above, such as Equation (7). Calculating
the Jacobian in this form improves both numerical accuracy of
the Jacobian and speed of the computation.

(3) When calculating the Boltzmann-factor, exp (−H),
frequent calls of the library function exp(double) can be
avoided by using a lookup-table which stores the exponential
of each coupling. In modern architectures, fast numerical co-
processors compared to relatively slow memory access might
question the benefit of this measure. We found that there was no
noticeable speed-up using such a dictionary.

(4) However, the use of a more extensive lookup table ga→b
j

described in the following made a considerable difference. It
stores all information to determine the energy of an L × L
configuration indexed by a, which coarse-grains to a particular
L′ × L′ configuration b. No reference is otherwise retained to
determine the specific original configuration a. If T(S; s) (defined
in Equation 5) is either 0 or 1, then by symmetry, the qN original

configurations divide into qN
′
coarse-grained configurations, i.e.,

a ∈ {1, 2, . . . , qN−N′}. The table ga→b
j gives the coefficients

in front of all couplings Kj with j = 0, 1, . . . , k − 1 in the
Hamiltonian, so that

H(sa;K) =
k−1
∑

j=0

ga→b
j Kj (32)

where sa coarse grains to Sb. The sum Equation (6) can thus be
written

∑

s∈{−1,1}N
T(Sb; s)e−H(s;K) =

qN−N′
∑

a=1

e
−

∑

j g
a→b
j Kj . (33)

The table ga→b
j has to determined only for those coarse-grained

configurations b which are paradigms, of which there are k, the
number of categories. Because ga→b

j stores the k coefficients

in front of the couplings Kj for each original configuration,

memory requirements scale in total like k2qN−N′
, i.e., memory

needs to be allocated for k2qN−N′
entries. The values stored

in ga→b
j range from 0 to at most N, namely the number of

spins (and thus patches) in the original configuration. As N =
16 < 255 in our case, a single byte for each entry suffices
for our purposes. If T(S; s) is allowed to have values different
from 0 and 1, then effectively more original configurations a

contribute to the coarse-grained configuration b, namely qN−N′

original configuration plus ambiguous ones. In addition, the
weight T(Sb; sa) has to be stored. The memory requirements for
q = 2, 3, 4, 5 are listed in Table 10.

Once determined, ga→b
j effectively relieves us from

determining the energy of the original (non-coarse-grained)
configurations over and over, namely each timeR(K) is invoked.

The speed-up is considerable. For example, on a reasonably
modern laptop computer, generating ga→b

j for a q = 4 Potts

Model on a square lattice takes about 7 min, reducing the time to
calculateR(K) to about 30 s, a reduction by a factor 15 compared
to the CPU-time spent on the same task without ga→b

j . The table

ga→b
j can also be used to calculate derivatives as it contains the

information necessary to evaluate Equation (31).

4.2. Discussion and Summary
In the present work we have attempted to improve and generalize
a particularly simple realspace renormalization scheme as first
suggested by Hasenbusch [4]. The aim was to understand
realspace renormalization and its limitations and to extend the
scheme to characterize the q = 3, 4, 5 Potts Models and
their magnetic exponents. The present scheme can be used on
different lattices and for a comparatively large number of local
states, as we investigated systems with up to about 152 · 109
states.

Although the lattices we have used are minimalistic and, in
fact, ridiculously small compared to what is used in modern
Monte-Carlo simulations [27], the resulting exponents and
estimates of the critical temperature are surprisingly good,
typically within 3–7% on the square lattice and within 5–20% on
the triangular lattice. We were able to systematically investigate
the Potts Model with q = 2 to q = 5 states and determine a whole
range of magnetic exponents, some of which are disputed (yh2
[16, 18]) or have not previously been reported in the literature
(yh3).

Given the high quality of the results and the consistency, we
had hoped to find the first order transition of the q = 5 Potts
Model reproduced in our approach. Unfortunately, we found a
fixed point even in effective Hamiltonians, which treat certain
local motifs, so-called “effective vacancies,” more efficiently. The
q = 5 Potts Model, however, is known to have defied numerics in
the past [15].

One may wonder whether the present approach can be
used successfully in higher dimensions, say the Ising Model in
three dimensions, which, however, has about 18 · 1018 states.
Considering our computationally fastest method, the amount
of configurations which must be generated is approximately
1.21 · 1012 larger than for the q = 5 Potts Model, which takes
approximately one day to run on current computer equipment.

Frontiers in Physics | www.frontiersin.org 15 June 2015 | Volume 3 | Article 46

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Willis et al Potts Model RSRG in 2d

The memory requirements on the other hand would be 6.71 ·
107k2 GiB, with k the number of categories. Without performing
the analysis explicitly, we estimate the number of categories

would turn out to be roughly ten meaning the current method
would require roughly 6.7 EiB of RAM and is thus clearly out of
the reach with current resources available.
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