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We focus the recent results on spin-current generation from mechanical motion such

as rigid rotation and elastic deformations. Spin transport theory in accelerating frames is

constructed by using the low energy expansion of the generally covariant Dirac equation.

Related issues on spin-manipulation by mechanical rotation are also discussed.

Keywords: spintronics, spin current, mechanical motion, Einstein-de Haas effect, Barnett effect, gyromagnetic

effect, angular momentum conversion, surface acoustic wave

1. Introduction

Spin current, a flow of spins, is a key concept in the field of spintronics. It is generated by
using angular momentum conversion among magnetic angular momentum due to magnetization
dynamics, photon angular momentum, angular momentum due to orbital motion of electron, and
spin angular momentum [1–3]. Meanwhile, mechanical angular momentum carried by condensed
matter systems due to macroscopic motion has not been utilized for spin-current generation,
which might be useful in nano-electromechanical systems (NEMS). In the following, we provide
the theory of the coupling between mechanical angular momentum and spin current, and show
that spin current can be generated from mechanical motion including rigid rotation and elastic
deformations (Figure 1).

1.1. Magnetism and Mechanical Rotation
Let us give a brief reivew on the coupling between magnetic moment and mechanical rotation.
In 1915 Einstein and de Haas carried out the experiment that reveals a close relationship
between magnetism and mechanical angular momentum. They measured the mechanical torque
exerted by a reversal of the magnetization of an iron cylinder (Figure 2) [4]. In the same year,
Barnett discovered the reciprocal effect, magnetization induced by rotation (Figure 3) [5]. He
measured magnetization of iron which is rotated with the angular velocity �, and shows that the
magnetizationM is given by

M = χ�/γ, (1)

where χ is the magnetic susceptibility and γ is the gyromagnetic ratio. The result means that an
effective magnetic field,

B� = �/γ, (2)

is induced in the rotating body. Both Einstein-de Haas and Barnett’s experiments established
conversion between magnetic and mechanical angular momentum.

Recently much attention has been paid to the coupling between mechanical rotation and
magnetism in the context of spintronics. Rapid progress in nanotechnology has allowed

us to investigate the coupling of nano-magnetism and mechanical rotation [6–8]. There
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FIGURE 1 | Concept of spin-mechatronics system. Left: coupling

between charge current and mechanical motion yields electro-mechanical

systems. Right: coupling between spin current and mechanical motion will

open up a new field of spintronics.

FIGURE 2 | Einstein-de Haas effect. Modulation of magnetization of iron by

applying the external magnetic filed, magnetic angular momentum is changed.

As a result, the mechanical angular momentum is induced for compensating

the modulation of the annular momentum.

have been theoretical studies on the coupling between magnetic
moment and mechanical motion [9–22]. Experiments on
mechanical manipulation of nuclear spin have been carried out
[23–25], where the Barnett field has been measured by using
nuclear magnetic resonance (NMR) spectroscopy. Both a sample
and an NMR coil are rotated synchronously at ultra high speed
and the NMR frequency is shifted by the field because of the
lifting of energy levels split by the external magnetic field. The
results provide direct evidence of the coupling between the
nuclear magnetic moment and mechanical rotation.

1.2. Toward Mechanical Generation of Spin
Current
Our goal is to study mechanical generation of spin current.
It is highly challenging because the phenomenon involves

FIGURE 3 | Barnett effect. Magnetization is induced by applying mechanical

rotation since an effective magnetic field, emerges in a rotating body.

non-inertial motion of a body, i.e., rotation and acceleration,
and the microscopic coupling has not been clarified. To study
effects of mechanical motion on spin current, one has to extend
condensed matter theory in an inertial frame to that in non-
inertial frames. In the following, we construct quantum theory in
accelerating systems and theoretically show that spin current can
be generated from mechanical motion, including rigid rotation
and elastic deformations.

The outline of this article is as follows. In Section 2, the
Dirac equation in both inertial and non-inertial frames are
summarized. In Section 3, the Pauli equation in the rotating
frame is derived and mechanical generation of spin current by
rigid rotation is presented. In Section 4, spin diffusion in the
presence of elastic deformation is discussed and spin-current
generation by surface acoustic waves is shown. In Section 5,
renormalization of spin-rotation coupling is investigated. This
article ends with a few concluding remarks in Section 6.

2. Electron in Non-inertial Frames

In this section, we derive the Pauli equation in non-inertial
frames which includes inertial effects due to mechanical motion
on electron spin. Conventionally, the Pauli equation is derived
from low energy expansion of the special relativistic Dirac
equation. However, this cannot describe effects induced by
acceleration of a body since the special relativity is the theory
in inertial systems. To describe spin transport phenomena with
inertial effects, we start with the general relativisticDirac equation
that is the fundamental theory of spinor in non-inertial frames.

2.1. Electron in an Inertial Frame
Before going into the non-inertial frame, let us review the
derivation of the Pauli equation in an inertial frame. Lagrangian
of the special relativistic Dirac equation is given by

L = 9̄
[

iγ ac(pa − qAa)−mc2
]

9, (3)

where 9 is the 4-spinor wave function, γ a (a = 0, 1, 2, 3)
is the Dirac matrix, which satisfies the anti-commutation
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relation: {γ a, γ b} = 2ηab, with the Minkowski metric ηab =
diag(−,+,+,+), q is charge, m is mass, c is the speed of light,
and Aa is the U(1) gauge potential. The Dirac matrix is related as

γ 0(x) = iβ , γ i(x) = iβαi with β =
(

I O
O −I

)

and α =
(

O σ

σ O

)

,

where I is the 2× 2 unit matrix and σi is the Pauli matrix.
The Dirac equation contains the electron and positron

components. The special relativistic Dirac Hamiltonian is given
by

HD = βmc2 + cα · π + qA0, (4)

where π = p − qA. As the energy gap between the electron
and positron states is much larger than the energy scales of
condensed matter systems, we reduce the Dirac equation to the
Pauli equation using the low energy-expansion developed by
Foldy and Wouthuysen [26] and Tani [27]. The Hamiltonian
HD is divided into two parts: E = qA0 and O = cα · π . By
successive unitary transformation, H′ = UFH0U

†
F − ih̄UF∂tU

†
F ,

H′′ = UFH
′U†

F − ih̄UF∂tU
†
F , ... , where UF = exp(−iβO/2mc2),

we obtain the block-diagonalized Hamiltonian up to the order of
1/m:

H′′ = β
[

mc2 +
π2

2m
+

qh̄

2m
σ · B

]

+ qA0. (5)

The second and third terms are the kinetic term and the Zeeman
term. The Hamiltonian up to the order of 1/m2 leads to the
spin-orbit coupling and the Darwin term:

−1

8m2c4
[O, [O, E] + ih̄∂tO] =

qλ

2h̄
σ · (π × E− E× π)

−
qλ

2
divE, (6)

where λ = h̄2/4m2c2. While the spin-orbit coupling, λ, is small
in vacuum since it originates from the expansion ofO(1/m2), the
coupling is enhanced by quantummany body effects in materials
(see Section 6 of this article). Actually, large spin-orbit coupling
in Pt is widely used for the conversion between charge and spin
currents, which are known as spin Hall effect (SHE) [28–34]
and inverse spin Hall effect [35]. Hamiltonian with spin-orbit
coupling:

H(1/m2)
e =

π2

2m
− eA0 −

eh̄

2m
σ · B−

eλ

h̄
σ · (π × E) (7)

gives rise to the spin-dependent velocity

v =
1

ih̄
[r,He] =

π

m
−

eλ

m
σ × E. (8)

The second term is known as the anomalous velocity, which is
responsible for the spin Hall effect (Figure 4).

FIGURE 4 | Spin Hall effect. Spin current is generated by strong spin-orbit

coupling in Pt and it flows perpendicular to the charge current.

2.2. Electron in Non-inertial Frames
To include inertial effects due to mechanical motion, we start
with the generally covariant Dirac Lagrangian [36–38]:

LG = 9̄
[

ieµaγ
ac(pµ − qAµ + ih̄Ŵµ)−mc2

]

9, (9)

where the vierbein e
µ
a is a local orthonomal base and can be

regarded as a square root of the metric tensor gµν(x): e
µ
aη

abeν
b
=

gµν . The general relativistic version of the Dirac matrix is given
by γ µ(x) = e

µ
a(x)γ

a since it satisfies the anti-commutation
relation: {γ µ(x), γ ν(x)} = 2gµν(x). The Lagrangian includes
the spin connection Ŵµ = ω ab

µ 6ab, where ω
ab
µ = e a

λ (∂µδ
λ
ν +

Ŵλµν)e
νb with the Christoffel symbol Ŵλµν and the generator of

the Lorentz transformation 6ab = 1
4 [γa, γb]. Especially, the

spatial component of the generator is spin operator for the 4-

spinor: 6ij = 1
2ǫijk

(

σk O
O σk

)

. It should be noted that the

general relativistic Lagrangian includes the spin-dependent gauge
field Ŵµ(σ ), which is responsible for the spin-dependent inertial
effects and themechanical generation of spin current as discussed
below.

3. Spin Current Generation by Rigid
Rotation

In this section, we show spin-current generation due to rigid
rotation by using low energy expansion of the general relativistic
Dirac equation.

3.1. Electron in a Rigidly Rotating Frame
Firstly, let us reconsider Einstein-de Haas and Barnett effects
from the point of view of the Dirac equation in a rotating frame.
The coordinate transformation from a rigidly rotating frame to
an inertial frame is given by

dr′ = dr+ (�× r) dt, dt′ = dt, (10)

where � is the angular velocity of the rotation with respect to an
inertial frame. From the line element

ds2 = −c2dt′2 + dr′2 =
[

−1+ (�× r/c)2
]

c2dt2 + 2(�× r/c)

cdtdr+ dr2 = gµνdx
µdxν, (11)
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the metric leads to g00 = −1+ (�×r/c)2, g0i = gi0 = (�×r/c)i,
gij = δij (i, j = 1, 2, 3), where we assume |� × r/c| ≪ 1. The
vierbein and inverse vierbein are given by

e00 = 1, e0j = 0, ei 0 = −(�× r/c)i, e
i
j = δij, (12)

and

e α0 = δα0 + ηαi(�× r/c)i, e
α
i = δαi . (13)

The space-time dependent Dirac matrix becomes γ 0(x) = −
i β, iγ i(x) = iβ[(�× r/c)i + αi], and the Christoffel symbols are
given by

Ŵ0
00 = Ŵ0

i0 = Ŵ0
ij = Ŵi

jk = 0,

Ŵi
00 =

ǫijk�j(�× r/c)k

c
+ ∂0(�× r/c)i,

Ŵi
j0 = −

ǫijk�k

c
, (14)

where ∂0 = c−1∂t . Thus, the spin connection reads

Ŵ0(x) =
γ iγ jǫijk�l

4c
=

i6 · �
2c

, (15)

Ŵi(x) = 0, (16)

where 6 = 1
2

(

σ O
O σ

)

. The time component of the spin

connection consists of the inner product of the spin operator and
the angular velocity of the rotation, and appears in the following
Hamiltonian:

H̄D = βmc2 + (cα − � × r) · π + qA0 − h̄� · 6. (17)

The last term−h̄�·6 is spin-rotation coupling. Velocity operator
of the Dirac particle in the rotating frame is given by

v =
1

ih̄
[r,H] = cα − � × r. (18)

This consists of the combination of the velocity in an inertial
frame cα and the rotation velocity � × r. By using the relation
(cα − � × r) · π = cα · π − (r× π) · �, the Hamiltonian in the
rotating frame H̄D is related to that in an inertial frame HD =
βmc2 + cα · π + qA0 as H̄D = HD − (r× π + h̄6) ·�. It agrees
with the Hamiltonian obtained by the unitary transformation:
UHDU

†− ih̄U∂tU
† withU = exp[J ·�t/ih̄] and J = r×π + h̄6.

Now let us derive an effective Hamiltonian for an electron
in the rotating frame by the Foldy-Wouthuysen-Tani (FWT)
transformation. The Hamiltonian H is divided into E

′ = qA0 −
� · (r × π + h̄6) and O = cα · π . Using the unitary
transformation UF = exp(−iβO/2mc2), the Hamiltonian to the
order of 1/m is given by

H̄′
D = β

[

mc2 +
π2

2m
+

qh̄

2m
σ · B

]

+ qA0

− (r× π + h̄6) · �. (19)

We obtain the kinetic term and Zeeman term as well as the
coupling of the total angular momentum J = r × π + 6 and
the rotation frequency�. The electron sector of the Hamiltonian
is written as

H̄(1/m)
e =

π2

2m
− eA0 − r× π · � −

eh̄

2m
σ · (B+ B�), (20)

where B� = m�/e is known as the Barnett field, which is
the effective magnetic field due to mechanical rotation and the
quantum mechanical origin of the Barnett effect.

The expansion of the order of 1/m2 yields the spin-orbit
coupling and the Darwin terms augmented by inertial effects
[39–41]:

−1

8m2c4
[O, [O, E ′]+ ih̄∂tO] =

qλ

2h̄
σ · (π × E′ − E′ × π)

−
qλ

2
divE′, (21)

where E′ = E + (� × r) × B. It means that the conventional
electric field E appeared in the couplings is modified as E → E′ =
E+(�×r)×B. This result is in accord with the general relativistic
transformation of electromagnetic fields in the rotating frame:

E′ = E+ (� × r)× B, (22)

B′ = B, (23)

where E and B are electromagnetic fields in the rest frame.
It should be noted that these relations are not the Lorentz
transformations in the special relativity but the general
coordinate transformations in the general relativity. The Lorentz
transformation of the electromagnetic fields is written as

E′′/c = γ (E/c+ β × B)−
γ 2

γ + 1
(β · E/c)β, (24)

B′′ = γ (B− β × E/c)−
γ 2

γ + 1
(β · B)β, (25)

with γ = 1/
√

1− β2, and β = v0/c, where E
′′ and B′′ are the

electromagnetic field in the inertial frame, whose relative velocity
to the rest frame is v0. In the case of β ⊥ E, β ⊥ B and |v0/c|≪1,
the Lorentz transformations are reduced to

E′′/c = E/c+ β × B, (26)

B′′ = B− β × E/c. (27)

The special relativistic transformations Equations (26) and
(27) have a symmetry for E/c and B, while the general
relativistic relations Equations (22) and (23) do not. Such an
asymmetry originates from the space-time asymmetry of a
general coordinate transformation [41, 42].
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3.2. Spin Current from Rigid Rotation
Now we discuss spin current generation from rigid rotation. As
derived above, Hamiltonian for electron in the rotating frame is
given by

H̄e = He −
(

r× π +
h̄

2
σ
)

· �

−
eλ

h̄
σ · [π × {(E+ � × r)× B}]. (28)

Even in the absence of E, when we have both magnetic field B

and rotation�, the anomalous velocity is induced in the rotating
frame as

vσ = −
eλ

m
σ × {E+ (� × r)× B}. (29)

In the case of � ‖ B ‖ ez , where ez is the unit vector along the
z-axis, the term (� × r)× B becomes�rBer with the unit vector
along the radial direction er . Accordingly, the z-polarized spin
current flows along the azimuthal direction (Figure 5). The spin
current is estimated as

Js = enTrσzvσ = 2neκωcreφ, (30)

where r is the distance from the rotation axis, eφ is the unit vector
of the azimuthal direction, n is the electron density, and ωc =
eB/m is the cyclotron frequency. The dimensionless parameter

κ is given by κ = λ̃k2F · h̄�
ǫF
, where kF, ǫF = h̄2k2F/2m are the

Fermi wave number and the Fermi energy, respectively, and λ̃ is
the spin-orbit coupling in a material. In the case of Pt, λ̃k2F ≈ 0.6,
and when B = 1T and � = 1 kHz, the spin current becomes
Js ≈ 108A/m2 [39].

FIGURE 5 | Spin Hall effect in the rotating frame where an external

magnetic field is applied along the rotation axes. In this case, the

effective electric field is induced in the radial direction and the spin current

flows along the azimuthal direction.

4. Spin Current Generation by Elastic
Motion

The spin current generation from rigid rotation requires strong
spin-orbit coupling as discussed above. On the contrary, in the
following we will show an alternative mechanism for mechanical
generation of spin current in non-magnets where spin-orbit
coupling is not necessary.

4.1. Spin Diffusion Under Time-dependent Field
From now on, we pursue a new route for generating spin current
by considering spin-rotation coupling:

HSR = −
h̄

2
σ · B. (31)

First let us consider applying stationary rotation. In this case, the
Barnett field is induced in a material and electron spins align to
the rotation axis because of the spin relaxation. However, spin
currents cannot be generated since an equilibrium spin state is
eventually reached. To generate spin currents, the Barnett field
should be time-dependent so that a nonequilibrium spin state
is realized. In the following, we investigate spin transport by
using the generalized spin diffusion equation in the presence of
non-stationary rotation.

When the mechanical rotation, �, is applied along the z-axis,
the bottom of the energy band of the electron is shifted by h̄�/2
due to the Barnett effect. The number density of up (down) spin
electron is given by

n↑(↓) =
∫ µ↑(↓)

±h̄�/2
dεN0(ε), (32)

where N0 is the density of states for electrons, µ↑ and µ↓ are
the spin-dependent electro-chemical potentials for up and down
spin electrons, respectively (Figure 6). Thus, the spin density can
be estimated as n↑−n↓ ≈ N0δµ, where δµ = µ↑−µ↓ is the spin
accumulation. Here the density of state is assumed to be constant
for simplicity. Generally, spin relaxation occurs in two processes
(Figure 6):

1. on-site spin flip with the spin lifetime, τsf,
2. spin diffusion with the diffusion constant, D.

The on-site spin flip with the spin lifetime is expressed as
τ−1
sf

N0δµ and the spin diffusion process as D∇2(N0δµ). Then,
the continuity equation for spin density becomes ∂t(n↑ − n↓) =
τ−1
sf

N0δµ + D∇2(N0δµ). Thus, we obtain the extended spin
diffusion equation in the presence of spin-rotation coupling [43]:

(

∂t − D∇2 + τ−1
sf

)

δµ = h̄∂t�, (33)

The time-derivative of rotation frequency ∂t� appears in the
right-hand side of Equation (33) and this term vanishes when the
rotation is stationary as mentioned above.

The z-polarized spin current can be calculated as Js = σ0
e ∇δµ,

where σ0 is the conductivity and δµ is the solution of Equation
(33). Therefore, to generate spin current, we need space-time
dependent mechanical rotation. To realize such rotation, we
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FIGURE 6 | Electron spin states in a rotating frame and spin-diffusion. In a rotating frame, the magnetization by the Barnett field due to mechanical rotation

should be included when calculating the spin density (left panel). Spin relaxation occurs in both on-site spin flip (middle panel) and spin diffusion processes (right panel).

focus on an elastic deformation induced by surface acoustic
waves, which is suitable for spin-current generation as shown in
the next section.

4.2. Electron in Elastic Materials
The coordinate transformation from a local rest frame in an
elastic material to the laboratory frame is given by dr′ = dr +
vdt, dt′ = dt, where v(t, r) is the velocity field due to elastic
deformations, and then, the metric tensor becomes g00 = −1 +
v2/c2, g0i = gi0 = vi/c, gij = δij, and the vierbein is given by

e00 = 1, e0j = 0, ei 0 = −vi/c, ei j = δij . In this case, the

spin connection is given by Ŵ0 = i6 · ω/2, Ŵi = 0, where
ω = ∇ × v is the vorticity of the lattice motion. This result shows
that spin-rotation coupling 6 · � in the rigidly rotating frame is
extended to“spin-vorticity coupling" 6 · ω/2 in the presence of
elastic deformation. The Dirac Hamiltonian is written as

HD = βmc2 + cα · π − eA0 +
e

2
A · v−

1

2
{v, π}

−
h̄

2
6 · ω, (34)

and the lowest order of the FWT transformation leads to the
Hamiltonian for electron:

He =
π2

2m
− eA0 −

eh̄

2m
σ · B+

e

2
A · v−

1

2
{v, π}

−
h̄

2
σ ·

ω

2
. (35)

The last term is the spin-vorticity coupling, which is responsible
for spin-current generation due to surface acoustic waves.

4.3. Spin Current from Surface Acoustic Wave
Let us consider the generation of spin current due to
surface acoustic waves (SAWs) in nonmagnetic metals or
semiconductors1. Our setup is illustrated in Figure 7. The SAW

1Note that spin-generation due to SAWs in magnets has been carried out by

Uchida et al. [44–46], where they use magnetization dynamics induced by SAWs.

traveling along the x-axes induces the local rotational motion
along the z-axes whose angular velocity is given by [47, 48]

�(x, y, t) =
ω2
s u0

2ct
exp{−kty+ i(kx− ωt)}, (36)

where ωs and u0 are the frequency of the mechanical resonator
and the amplitude, respectively, and ct is the transverse sound

velocity, k is the wave number, kt = k
√

1− ξ 2 is the transverse
wave number, and ξ is given by ξ = (0.875 + 1.12ν)/(1 + ν)
with the Poisson ratio ν. The frequency ωs is related to k, ct,
and ξ as ωs = ctkξ . Inserting Equation (36) into the spin-
diffusion Equation (33), the solution leads to the SAW induced
spin current [43]:

Js =
σ0

e

∂

∂y

∫ ∞

0
dt′

∫ ∞

0
dy′
θ(t − t′)e−(t−t)(1+λ2s k2)/τsf

√
4πD(t − t′)

[

e
− (y−y′)2

4D(t−t′) + e
− (y+y′)2

4D(t−t′)

]

e−kty
′−iωt′ , (37)

where λs =
√
Dτsf is the spin diffusion length, and we use the

boundary condition Js = 0 on the surface y = 0. Especially, in
the case of ωsτsf ≪ 1, the solution is reduced to

Js ≈
h̄σ0

2e
τsfω

4
s

u0

c2t

√

1− ξ 2
ξ

exp[−kty+ i(kx− ωst)]. (38)

As shown in Figure 7, the spin current flows along the y-
axes, namely parallel to the gradient of the effective magnetic
field due to the vorticity of the lattice motion. As a result,
the magnetic stripe pattern is induced on the surface of the
non-magnetic metal or semi-conductor. Experimentally, spin
precession controlled by SAW was observed by using the time-
resolved polar magneto-optic Ker effect (MOKE) in which
the spatial and time resolution of the order of 10 µm and
10 ns have been acheived [49, 50]. MOKE measurements for
metallic multilayer are also performed [51]. Since in-plane spin
polarization is induced in our setup, transversal of longitudinal
MOKE measurements are relevant to the SAW-induced spin
accumulation.
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FIGURE 7 | Spin-current generation by spin-vorticity coupling. Spin current flows along the gradient of vorticity due to the SAW (left figure). Magnetic stripe

patterns are induced on the surface of non-magnets (right figure).

TABLE 1 | Spin current generated by SAWs.

σ0 [107�−1m−1] τsf [ps] Js/Js(Pt) (2.5GHz)

Pt 0.96 0.3 1

Al 1.7 100 250

Cu 7 42 650

Ag 2.9 3.5 34

Au 2.5 2.8 33

GaAs 3.3×10−4 105 0.05

The spin current depends strongly on σ0 and τsf. Table 1
shows the amplitude of the spin current for Pt, Al, Cu, Ag, Au,
and n-dopoed GaAs normalized by that for Pt in the case of
ωs = 2.5 GHz. In the case of u0 = 0.01 nm, Js(Pt) becomes 104

A/m2. Remarkably, the spin current for Al or Cu is much larger
than that for Pt since the generated spin current is proportional
to σ0 and τsf.

Conventionally, the generation of spin current in
nonmagnetic materials has required strong spin-orbit coupling
because the spin Hall effect is used. This means that materials
with short spin lifetime has been suitable for spin-current
generation. On the contrary, the mechanism proposed in this
section requires longer spin lifetimes to generate larger spin
currents. In other words, Al and Cu, which have been regarded
as good materials for a spin conducting channel, can be favorable
for generating spin current.

As expressed in Equation (38), the generated spin current
oscillates with the frequency ωs. The AC nature of the spin
current has several advantages: one of the valuable applications
would be for the spin-torque ferromagnetic resonance (ST-
FMR) [52], where AC spin currents excite magnetization
dynamics of nanomagnets in the several GHz range. In Liu
et al. [52], an AC charge current is converted into an AC
spin current via the SHE which requires materials with the
large spin-Hall angle such as Pt and Ta whereas our method
does not rely on the SHE and Cu or Al can be used. This
indicates that the predicted AC spin current can provide an
alternative route for the ST-FMR, namely, a “rare-metal-free”
ST-FMR.

5. Renormalization of Spin-rotation
Coupling

It is well known that conventional Zeeman coupling and spin-
orbit coupling are enhanced by quantum many body effect in
materials. In this section, spin-rotation or spin-vorticity coupling
and augmented spin-orbit coupling derived in the previous
sections are also enhanced by the similar mechanism.

5.1. Bloch Theorem in the Presence of Rotation
Let us consider an electron in a periodic potential in the presence
of mechanical rotation.

Firstly, we recall conventional Bloch’s theorem.We begin with

an electron Hamiltonian in the laboratory frame: H0 = p2

2m +
V0(r0), where V0 is a microscopic periodic crystal potential.
When the crystal lattice has translational symmetry, where
primitive lattice vectors ai (i = 1, 2, 3), eigenfunction for H0

can be written as ψn,k(r) = eik·run,k(r). Here n is the band
index, R is given by R =

∑

imiai with integer mi, and uu,k
satisfies uu,k(r+ R) = un,k(r). This is known as Bloch’s theorem.
In the presence of an external magnetic field, Hamiltonian
has the magnetic translation symmetry [53], and the Bloch’s

eigenfunction is modified as ψn,k′ (r) = eik
′·run,k′ (r), where the

generalized crystal momentum h̄k′ = p+ eA is introduced.
As discussed above, mechanical rotation � can be regarded as

an effective magnetic field, namely, the Barnett field B� = �/γ .
Accordingly, the wave function for electron in the rotating frame
should be treated as a similar eigenfunction in the presence of
magnetic fields. The Hamiltonian in the rigidly rotating frame H̄

is derived as H̄ = UH0U
† − ih̄U ∂U†

∂t = H0 − J · �, where U =
exp[J ·�t/ih̄] is the unitary transformation with the generator of

rotation J = r× p+ h̄
2σ . The Hamiltonian can be rewritten as

HR =
(p+ eAg)

2

2m
+ V0(r)− eφg −

eh̄

2m
σ ·

Bg

2
, (39)

where Ag = −(m/e)� × r, φg = (m/e)(� × r)2/2, and Bg =
∇×Ag . The field Bg is known as the gravitomagnetic field, which
is related to the Barnett field B� as B� = Bg/2. Compared
with the Hamiltonian in the presence of electromagnetic fields,

H = (p+ eA)2

2m + V0(r) − eφg − g
2
eh̄
2mσ · B with the electron g-

factor g, the vector potential, which represents the Coriolis effect,
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Ag , and the scalar potential φg , the centrifugal force, appears
in H̄ and the spin-rotation coupling can be interpreted as the
effective Zeeman coupling with g = 1. Since the symmetry of the
Hamiltonian is similar to the magnetic translational symmetry,
the eigenfunction of H̄ is given by ψn,kg (r) = eikg ·run,kg (r) with
h̄kg = p+ eA [54].

5.2. Renormalization by Interband Mixing
We extend the conventional k · p perturbation [55, 56] to that
in the presence of rotation [54]. It is shown that spin-rotation
coupling and spin-orbit coupling can be renormalized by the
interband mixing in the case of the simple band structure such
as GaAs and InSb by using the 8× 8 Kane model [55] ( in which
the band structure is shown in Figure 8). We obtain an effective
Hamiltonian for the conduction electrons [54]:

H′∗ =
h̄2k2g

2m∗ + V − (1+ δg)
h̄

2
σ · �

+ q(λ+ δλS)σ · (kg × E)+
q

2
(λ+ δλD)divE, (40)

where

1

m∗ =
1

m
+

2P2

3h̄2

( 2

EG
+

1

EG +10

)

(41)

δg = −
4m

h̄2
P2

3

( 1

EG
−

1

EG +10

)

, (42)

δλS = −
P2

3

( 1

E2G
−

1

(EG +10)2

)

, (43)

δλD =
P2

3

( 2

E2G
+

1

(EG +10)2

)

. (44)

FIGURE 8 | Band structure in the 8× 8 Kane model.

Here, EG is the energy gap between the conduction and
valence bands, 10 is the spin-orbit gap, and P is the Kane
momentum matrix element. Thus, both spin-rotation and spin-
orbit couplings are renormalized by the interband mixing in
materials with non-zero spin-orbit gap 10. In this derivation,
we use the simple Hamiltonian H̄′. If we include the augmented
spin-orbit coupling, The relations above are modified as
E → E′, and therefore, the spin-orbit coupling due to
mechanical rotation is also renormalized by the interband
mixing.

Conventionally, the renormalized Zeeman coupling obtained
from the 8 × 8 Kane model is given by (2 + δg)/2µBσ · B,
while spin-rotation coupling is modulated as −(1 + δg) h̄2σ ·
�. The difference stems from that of g factors for the
usual magnetic field and the gravitomagnetic field. For lightly
doped n-InSb at low temperature, g = −49 has been
reported. In this case, δg = −51 [55], and then, spin-
rotation coupling becomes about 50 times as large as the bare
coupling.

6. Discussion and Conclusions

In this article, we reviewmechanical generation of spin current by
using the low energy expansion of the generally covariant Dirac
equation.We have found various inertial effects on electron spins
that have been ignored in conventional condensed matter theory.
According to general relativity, inertial effects are represented by
connections, or gauge fields. Especially, the Dirac equation in
non-inertial frames contains spin-dependent connections, and
thus, spin-dependent gauge fields appears in the Hamiltonian
for electrons in accelerating bodies, and are responsible for
generating spin current.

Mechanical generation of spin current as well as mechanical
manipulation of spins stem from the intrinsic property of
spinor, which is sensitive to curvature of space-time. This year
is the 100th anniversary since Einstein’s clarification of the
coupling between magnetism and mechanical motion as well
as his construction of the general relativity. Relying on both
fundamental concepts, we are pursuing a new development of
spintronics, where spin and mechanical motion are gracefully
harmonized.
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