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Characterizing interactions in online
social networks during exceptional
events
Elisa Omodei *, Manlio De Domenico and Alex Arenas

Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain

Nowadays, millions of people interact on a daily basis on online social media like

Facebook and Twitter, where they share and discuss information about a wide variety

of topics. In this paper, we focus on a specific online social network, Twitter, and we

analyze multiple datasets each one consisting of individuals’ online activity before, during

and after an exceptional event in terms of volume of the communications registered.

We consider important events that occurred in different arenas that range from policy

to culture or science. For each dataset, the users’ online activities are modeled by a

multilayer network in which each layer conveys a different kind of interaction, specifically:

retweeting, mentioning and replying. This representation allows us to unveil that these

distinct types of interaction produce networks with different statistical properties, in

particular concerning the degree distribution and the clustering structure. These results

suggests that models of online activity cannot discard the information carried by this

multilayer representation of the system, and should account for the different processes

generated by the different kinds of interactions. Secondly, our analysis unveils the

presence of statistical regularities among the different events, suggesting that the

non-trivial topological patterns that we observe may represent universal features of the

social dynamics on online social networks during exceptional events.

Keywords: multilayer, social networks, complex networks, exceptional events, big data

1. Introduction

The advent of online social platforms and their usage in the last decade, with exponential increasing
trend, made possible the analysis of human behavior with an unprecedented volume of data.
To a certain extent, online interactions represent a good proxy for social interactions and, as a
consequence, the possibility to track the activity of individuals in online social networks allows one
to investigate human social dynamics [1].

More specifically, in the last years an increasing number of researchers focused on individual’s
activity in Twitter, a popular microblogging social platform with about 302 millions active users
posting, daily, more than 500 millions messages (i.e., tweets) in 33 languages1. In traditional social
science research the size of the population under investigation is very small, with increasing costs
in terms of human resources and funding. Conversely, monitoring Twitter activity, as well as other
online social platforms as Facebook and Foursquare to cite just some of them, dramatically reduces
such costs and allows to study a larger population sample, ranging from hundreds to millions of

1https://about.twitter.com/company.
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individuals [2], within the emerging framework of computational
social science [3].

The analysis of Twitter revealed that online social networks
exhibit many features typical of social systems, with strongly
clustered individuals within a scale-free topology [4]. Twitter
data [5] has been used to validate Dunbar’s theory about
the theoretical cognitive limit on the number of stable social
relationships [6, 7]. It has been shown that individuals tend to
share ties within the same metropolitan region and that non-
local ties distance, borders and language differences affect their
relationships [8]. Many studies were devoted to determine which
and how information flows through the network [9–12], as well
as to understand themechanisms of information spreading—e.g.,
as in the case of viral content—to identify influential spreaders
and comprehend their role [13–17]. Attention has also been given
to investigate social dynamics during emergence of protests [18],
with evidences of social influence and complex contagion
providing an empirical test to the recruitment mechanisms
theorized in formal models of collective action [19].

Twitter allows users to communicate through small messages,
using three different actions, namely mentioning, replying and
retweeting. While some evidences have shown that users tend
to exploit in different ways the actions made available by the
Twitter platform [20], such differences have not been quantified
so far. In this work, we analyze the activities of users from a new
perspective and focus our attention on how individuals interact
during exceptional events.

In our framework, an exceptional event is a circumstance not
likely in everyday news, limited to a short amount of time—
typically ranging from hours to a few days—that causes an
exceptional volume of tweets, allowing to perform a significant
statistical analysis of social dynamics. It is worth mentioning
that fluctuations in the number of tweets, mentions, retweets,
and replies among users may vary from tens up to thousands
in a few minutes, depending on the event. A typical example of
exceptional event is provided by the discovery of the Higgs boson
in July 2012 [21], one of the greatest events in modern physics.

We use empirical data collected during six exceptional events
of different type, to shed light on individual dynamics in the
online social network. We use social network analysis to quantify
the differences between mentioning, replying and retweeting in
Twitter and, intriguingly, our findings reveal universal features
of such activities during exceptional events.

2. Materials and Methods

2.1. Material
It has been recently shown that the choice of how to gather
Twitter data may significantly affect the results. In fact, data
obtained from a simple backward search tend to over-represents
more central users, not offering an accurate picture of peripheral
activity, withmore relevant bias for the network ofmentions [14].
Therefore, we used the streaming Application Programming
Interface (API) made available by Twitter, to collect all messages
posted on the social network satisfying a set of temporal and
semantic constraints. More specifically, wemade use of the public

streaming API2 subjected to filters (keywords, hashtags or a
combination of both). If the flow of tweets corresponding to the
filter is smaller than 1% of the total flow on Twitter, then all tweets
satisfying the filters are obtained, otherwise a warning reporting
the number of missed tweets is received.

We consider different exceptional events because of their
importance in different subjects, from politics to sport. More
specifically, we focus on the Cannes Film Festival in 20133

(Cannes2013), the discovery of the Higgs boson in 20124 [21]
(HiggsDiscovery2012), the 50th anniversary of Martin Luther
King’s famous public speech “I have a dream” in 20135

(MLKing2013), the 14th IAAF World Championships in
Athletics held in Moscow in 20136 (MoscowAthletics2013), the
“People’s ClimateMarch”—a large-scale activist event to advocate
global action against climate change—held in New York in 20147

(NYClimateMarch2014) and the official visit of US President
Barack Obama in Israel in 20138 (ObamaInIsrael2013).

For each event, we collected tweets sent between a starting
time ti and a final time tf containing at least one keyword or
hashtag, as specified in Table 1. For almost all events, we have
chosen keywords and hashtag that are very specific, reducing the
amount of noise (i.e., tweets that are not related to the event
although they satisfy our filters). In the case of the visit of Barack
Obama in Israel in 2013 we have included the more generic
keyword “peace,” because in this specific context it was relevant
for gathering data. However, it is worth anticipating here that our
results show that the (unknown) amount of noise in this dataset
did not alter the salient statistical features of the dataset.

Finally, we report that in a few cases we complemented a
dataset by including tweets obtained from the search API (atmost
5% of tweets with respect to the whole dataset) and that in the
worst cases, the flow of streaming API was limited causing a loss
of less than 0.5% of tweets.

2.2. Methods
To understand the dynamics of Twitter user interactions during
these exceptional events, we reconstruct, for each event, a
network connecting users on the basis of the retweets, mentions
and replies they have been the subject or object of. In the
literature on Twitter data what is usually built is the network
based on the follower-followee relationships between users [4, 8,
9]. However, this kind of network only captures users’ declared
relations and it does not provide a good proxy for the actual
interactions between them. Users, in fact, usually follow hundreds
of accounts whose tweets appear in their news feed, even if there
is no real interaction with the majority of those individuals.
Therefore, to capture the social structure emerging from these
interactions we build instead a network based on the exchanges
between users, which can be deduced from the tweets that they

2https://dev.twitter.com/streaming/public.
3https://en.wikipedia.org/wiki/2013_Cannes_Film_Festival.
4https://en.wikipedia.org/wiki/Higgs_boson#Discovery_of_candidate_boson_at_

CERN.
5https://en.wikipedia.org/wiki/I_Have_a_Dream.
6https://en.wikipedia.org/wiki/2013_World_Championships_in_Athletics.
7https://en.wikipedia.org/wiki/People’s_Climate_March.
8https://en.wikipedia.org/wiki/List_of_presidential_trips_made_by_Barack_

Obama#2013.
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TABLE 1 | Information about events used in this work.

Dataset Starting date Ending date Keywords

Cannes2013 06 May 2013 03 Jun 2013 cannes film

festival,cannes,

canneslive

05:23:49 GMT 03:48:26 GMT #cannes2013,

#festivalcannes,

#palmdor

HiggsDiscovery2012 30 Jun 2012 10 Jul 2012 lhc, cern, boson,

higgs

21:11:19 GMT 20:59:56 GMT

MLKing2013 25 Aug 2013 02 Sep 2013 Martin Luther King

13:41:36 GMT 08:16:21 GMT #ihaveadream

MoscowAthletics2013 05 Aug 2013 19 Aug 2013 mos2013com,

moscow2013,

mosca2013

09:25:46 GMT 12:35:21 GMT moscu2013,

#athletics

NYClimateMarch2014 18 Sep 2014 22 Sep 2014 peopleclimatemarch,

peoplesclimate

22:46:19 GMT 04:56:25 GMT marciaxilclima,

climate2014

ObamaInIsrael2013 19 Mar 2013 03 Apr 2013 obama, israel

15:56:29 GMT 21:24:34 GMT palestina, peace

Note that starting and ending dates reported here consider only tweets where users

perform a social action, i.e., tweets without mentions, replies or retweets are not

considered.

produce. In particular, there are three kinds of interactions that
can take place on Twitter and that we will focus on:

• A user can retweet (RT) another user’s tweet. This means that
the user is endorsing a piece of information shared by the other
user, and is rebroadcasting it to her/his own followers.

• A user can reply (RP) to another user’s tweet. This represents
an exchange from a user to another as a reaction of the
information contained in a user’s tweet.

• A user can mention (MT) another user in a tweet. This
represents an explicit share of a piece of information with the
mentioned user.

A fourth kind of possible interaction is to favourite a user’s
tweet, which represents a simple endorsement of the information
contained in the tweet, without rebroadcasting. However, we do
not have this kind of information for this dataset and therefore
we do not consider this kind of interaction.

As just discussed, each kind of activity on Twitter (retweet,
reply, and mention) represents a particular kind of interaction
between two users. Therefore, an appropriate framework to
capture the overall structure of these interactions without loss
of information about the different types is the framework
of multilayer networks [22–27]. More specifically, in the
case under investigation the more appropriate model is
given by edge-colored graphs, particular multilayer networks

TABLE 2 | Number of nodes and edges of the network corresponding to

each event considered in this study.

Event Aggregate RT RP MT

Cannes2013 N = 514,328 337,089 85,414 91,825

E = 700,492 490,268 82,952 127,272

HiggsDiscovery2012 N = 747,659 434,687 167,385 145,587

E = 817,877 542,808 122,761 152,308

MLKing2013 N = 346,069 286,227 24,664 35,178

E = 339,143 288,543 18,157 32,443

MoscowAthletics2013 N = 103,319 73,377 11,983 17,959

E = 144,591 102,842 12,768 28,981

NYClimateMarch2014 N = 115,284 94,300 7,900 13,084

E = 239,935 213,158 8,038 18,739

ObamaInIsrael2013 N = 2,641,052 1,443,929 737,353 459,770

E = 2,926,777 1,807,160 586,074 533,543

The second column reports the total number of nodes and edges, corresponding to a

network in which information is aggregated. The last three columns report the number

of active nodes and edges per layer. A node is considered active on a given layer if the

corresponding user is the subject or the object of the corresponding kind of interaction.

where a color is assigned to different relationships—i.e., the
edges—among individuals defining as many layers as the number
of colors. We refer to Kivelä et al. [28] and Boccaletti et al. [29]
for thorough reviews about multilayer networks.

Here, for each event, we build a multilayer network composed
by L = 3 layers {RT,RP,MT}, corresponding to the three actions
that users can perform in Twitter, and N nodes, being N the
number of Twitter users interacting in the context of the given
event. A directed edge between user i and user j on the RT layer
is assigned if i retweeted j. Similarly, an edge exists on RP layer
if user i replied to user j, and on MT layer if i mentioned j. An
illustrative example is shown in Figure 1.

Details about the number of nodes and edges characterizing
each event are reported in Table 2. We can observe that the
number of nodes and edges can vary importantly across events
and across layers, but for each event and each interaction type
the size of the corresponding networks is sufficient to allow a
statistically significant analysis of the data.

3. Results

In the following we present an analysis of the networks
introduced in the previous section, which is oriented at exploring
two different but complementary questions.

Firstly we want to know if, within one same event, the three
kinds of interactions produce different network topologies. To
this aim, we consider basic multilayer and single-layer network
descriptors relevant to characterize social relationships, and we
study how they vary when considering different layers.

Secondly, we want to unveil if different exceptional events
present any common pattern regarding users interactions. As
shown in Figure 2, the temporal pattern of the different events
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FIGURE 1 | Illustrative example of a multilayer network representing the different interactions between Twitter users in the context of an exceptional

event. Different colors are assigned to different actions.

A B C

D E F

FIGURE 2 | Volume of tweets, in units of number of messages posted per hour, over time for the six exceptional events considered in our study. In

panels (A–F) we show the volume corresponding to each exceptional event reported in Table 1, respectively.

considered in our study presents highly heterogeneous profiles.
Some events are, in fact, limited to one day or only to a few
hours, whereas others span over a week or more, and the profile
of tweets volume varies accordingly. However, despite of these
differences, do the user interactions that take place during these
events present any common feature?

3.1. Edge Overlap Across Layers
To understand if the kinds of interaction produce similar
networks or not, we analyze if users interact similarly with

each other regardless of the type of activity (retweet, reply, or
mention), or not. This information can be obtained by calculating
the edge overlap [26, 30] between each pair of layers. However,
when the number of edges is very heterogeneous across layers, a
more suitable descriptor of edge overlap is given by:

oαβ =
|Eα ∩ Eβ |

min(|Eα|, |Eβ |)
, (1)

where Eα (Eβ ) is the set of edges belonging to layer α (β) and
| · | indicates the cardinality of the set. This measure quantifies
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FIGURE 3 | Heatmap representing the edge overlap between pairs of

layers, averaged over the different events.

TABLE 3 | Number of nodes and edges of the network corresponding to

each event considered in this study.

Layer pair Edge overlap Degree-degree correlation

MT-RP 0.05± 0.04 0.50± 0.12

MT-RT 0.06± 0.03 0.33± 0.08

RP-RT 0.08± 0.04 0.35± 0.10

the proportion of pair-wise interactions—represented by the
edges—that are common to two different layers. Because, as
shown in Table 2, the number of edges can vary largely on the
different layers, the normalization is given by the cardinality of
the smallest set of edges, to avoid biases resulting from the size
difference. The results are reported in Figure 3. Each value is
obtained by averaging over the different events. The standard
deviations are not shown in the figure for the sake of clarity,
but are reported in Table 3. We see that, for every couple of
layers, (α, β), oαβ ≪ 1. This result indicates that different layers
contain different pairwise interactions, i.e., the users that we
retweet are not necessarily the same that we mention or we reply
to, for example. This result suggests that considering the different
activities separately might be very relevant in order to understand
human interaction dynamics on Twitter.

3.2. Degree-degree Correlations Across Layers
In this section, we study the degree connectivity of users, themost
widely studied descriptor of the structure of a network. We focus
in particular on the in-degree ki,α , which quantifies the number
of users who interacted with user i on layer α (α = RT, RP, and
MT). This is the simplest measure of the importance of the user
in the network.

First, we explore if users have the same connectivity on the
different layers, or not, i.e., if the users consistently have the
same degree of importance on all the layers, or not. To this
aim, we compute the Spearman’s rank correlation coefficient
[31] between the in-degree of users on one layer and their
in-degree on a different layer, for each pair of layers. The results,

FIGURE 4 | Heatmap representing the average degree-degree

correlation between layer pairs.

averaged across the different events, are reported in Figure 4,
with statistical details reported in Table 3. The value of two
degree-degree correlations out of three is about 0.35, and the
third—and highest—correlation is 0.5. This means that users
tend to have different in-degree values on the different layers,
i.e., a highly retweeted user is most likely not to be mentioned
or replied to by as many users. This result suggests that the
different types of interaction might produce different networks
and should be considered separately in realistic modeling of
individual dynamics.

3.3. Degree Distribution Per Layer
Building on the result discussed in the previous section, we
also explore, for each event, the distribution of the in-degree
on the different layers, separately. Intriguingly, for each layer,
we find that the empirical distributions corresponding to all
the exceptional events present very similar shape, as shown in
Figure 5. This result suggests that individuals’ communications
on Twitter present some universal characteristics across very
different types of events.

The in-degree, shown in Figure 5, exhibits a power-law
distribution for about three order of magnitudes. To validate our
observation, we fit a power law to each distribution following a
methodology similar to the one introduced in Clauset et al. [32].
By noticing that the in-degree is a discrete variable, we estimate
the scaling exponent of a discrete power law for each empirical
distribution. The goodness of fit is estimated by using the Chi
Square test [33]. We find that the null hypothesis that the data
is described by a discrete power law is accepted for all empirical
distributions with a confidence level of 99%.We have tested other
hypotheses, by considering other distributions with fat tails such
as lognormal, exponential, Gumbel’s extreme values, and Poisson.
In the cases where the null hypothesis is accepted with the same
confidence level, we used the Akaike information criterion (AIC)
[34, 35] to select the best model. It is worth remarking that, in all
cases, we find that the power law provides the best description of
the data.
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FIGURE 5 | Distribution of the in-degree for each event considered in this study (encoded by points with different shape and color) and each layer:

retweets (left), mentions (center), and replies (right).

Power-law distributions of the degree have been found in a
large variety of empirical social networks [36]. Here, the main
finding of our results is that each kind of interaction presents
a different scaling exponent. To show this, in Figure 6 we
report three notched box plots, each corresponding to a different
layer and including the information about the different events.
Notched box plots present a contraction around the median,
whose height is statistically important: if the notches of two boxes
do not overlap, this offers evidence of a statistically significant
difference between the two medians. This is indeed the case in
Figure 6, meaning that the median scaling exponent of the in-
degree distribution of each of the three layer is different from the
exponent characterizing the in-degree distribution of the other
layers. The fact that the in-degree distributions corresponding to
the different types of interaction are characterized by different
scaling exponents indicates that the dynamics of each type of
interaction in Twitter should be modeled as a distinct process,
and that existing models of Twitter activity that do not take into
account this fact should be carefully rethought.

3.4. Average Clustering Per Layer
Lastly, for each layer separately, we calculate the average
clustering coefficient of the corresponding network. This is a
measure of the transitivity of the observed interactions, and
constitutes an important metric to characterize social networks

FIGURE 6 | Notched box plots showing the value of the scaling

exponent of the in-degree distribution for each layer. Each box

aggregates the values corresponding to the different events considered.

Notched box plots present a contraction around the median, whose height is

statistically important: if the notches of two boxes do not overlap, this offers

evidence of a statistically significant difference between the two medians. This

is the case here, meaning that the median scaling exponent of the in-degree

distribution of each of the three layer is different from the exponent

characterizing the in-degree distribution of the other layers.
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FIGURE 7 | Notched box plots showing the value of the average

clustering coefficient for each layer. Each box aggregates the values

corresponding to the different events considered.

[37]. In particular, for each event and each layer, we compute the
average local clustering coefficient defined by:

C̄ =
1

N

N∑

i= 1

Ci, (2)

where

Ci =
2|{ejk : vj, vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
, (3)

where ejk indicates the edge between users j and k. We show
in Figure 7 the values of the clustering coefficient using three
notched box plots, each corresponding to a different layer
and including the information about the different events. The
mention network has the highest clustering level, whereas
the reply network has the lowest one. The clustering level
of the retweet network is the most variable across events,
however the three medians are again different because the
notches do not overlap. This result is a further confirmation
that the three layers, and therefore the three types of
interaction that they represent, form different network topologies

and that the dynamical processes producing them are thus
distinct.

4. Discussion

In this paper we analyze six datasets consisting of Twitter
conversations surrounding distinct exceptional events. The
considered events span over very different topics: entertainment,
science, commemorations, sports, activism, and politics. Our
results show that, despite the different fluctuations in time and in
volume, there are some statistical regularities across the different
events. In particular, we find that the in-degree distribution
of users and the clustering coefficient in each of the three
layers (representing interactions based on retweet, replies, and

mentions, respectively) are the same across the six different
events. Our first conclusion is therefore that users behavior
on Twitter—during exceptional events—presents some universal
patterns.

Secondly, we show that different types of interactions between
users on Twitter (retweeting, replying, and mentioning) generate
networks presenting different topological characteristics. These
differences were captured making use of the multilayer network
framework: instead of discarding the information contained in
the tweets regarding how users interact, we use this information
to build a more complete representation of the system by means
of three layers, each representing a different type of interaction.
The fact that networks corresponding to different layer present
different statistical properties is an important hint for models
aiming at reproducing human behavior in online social networks.
Our results indicate that, to faithfully represent how users
interact, these models cannot be based on an aggregated view
of the network and should account for all the different processes
taking place in the system, separately.
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