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The study of opinions—e.g., their formation and change, and their effects on our

society—by means of theoretical and numerical models has been one of the main

goals of sociophysics until now, but it is one of the defining topics addressed by social

psychology and complexity science. Despite the flourishing of different models and

theories, several key questions still remain unanswered. The aim of this paper is to provide

a cognitively grounded computational model of opinions in which they are described as

mental representations and defined in terms of distinctive mental features. We also define

how these representations change dynamically through different processes, describing

the interplay between mental and social dynamics of opinions. We present two versions

of the model, one with discrete opinions (voter model-like), and one with continuous

ones (Deffuant-like). By means of numerical simulations, we compare the behavior of

our cognitive model with the classical sociophysical models, and we identify interesting

differences in the dynamics of consensus for each of the models considered.

Keywords: opinion dynamics, cognitive modeling, social influence, agent-based modeling, sociophysics

1. Introduction

Opinions represent a large part of human mental representations, and a large part of our everyday
social interactions consist in exchanging, evaluating, revising and comparing opinions with our
family, friends, acquaintances, or even strangers. Understanding opinions, describing how they are
generated and revised, and how far opinions travel across social space both as a consequence of
social influence and as one of the main means through which social influence unfolds, is crucial for
grasping a deeper understanding of human social cognition and behaviors.

Since the beginning of the last century, sociologists and psychologists have been interested in
understanding opinions, focusing in particular on the multiplicity of dimensions that characterize
this phenomenon [1, 2]. Other disciplines have also been interested in the topic, like sociophysics
and complexity science [3, 4]. In the last decades, the study of social phenomena as opinion
formation and dynamics has become of great interest in physics. Due to similarities between
spreading and ordering phenomena, opinion dynamics has been studied from a mathematical and
numerical point of view by means of the tools of statistical and computational physics [5, 6]. In
particular, in the physics community, opinions have been so far considered dynamic elements that
can be approximated as spin systems or by similar statistical-mechanical methods [7]. Moreover,
the possibilities offered by Big Data Science to collect and analyze huge amounts of digital traces
humans leave on the web and other media, has made opinion change and consensus achievement
exceeds disciplinary boundaries and become one of our century’s grand scientific challenges [8].
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Nonetheless, a theory explaining micro-foundations of
opinion dynamics is still missing. In cognitive terms, opinions
are highly dynamical mental representations resulting from the
interplay between different mental objects within individuals’
minds. Another distinguishing feature is their being easily
affected by opinions of other individuals in the same network,
as we will show in our model. Without explaining how opinions
are formed and manipulated within the individuals’ minds, it is
very difficult to account for the way in which they change as
an effect of social influence. Even more difficult is to predict
consensus or to identify mechanisms leading to polarization
or to isolation and/or integration of minorities. This means
that when explaining the emergence of macro-social phenomena
we need to know what happens at the micro-level, i.e., what
drives human actions and decisions in order to understand
how individuals’ representations and behaviors can give rise to
socially complex phenomena and how those affect agents’ actions.
Defining an opinion in terms of its mental ingredients and
specifying how human cognition promotes opinion change or
resistance provides not only a more realistic description of the
phenomenon of interest, but it represents an attempt to model
the bottom-up emergence of opinions’ persistence, the effects
of contrasting forces on them and the generation of alternative
paths of diffusion.

We aim at developing a cognitively grounded model of
opinion dynamics that will allow us to answer the following
questions: canwe identify the distinctive features of opinions, and
model them as interacting representations that get influenced by
others’ mental states? How can heterogeneous agents, endowed
with different representations of the external world, come to
share a given viewpoint and what consequences this sharing has
on individuals’ beliefs and their related behaviors?

Aim of this paper is to put forward a new model of opinion
dynamics in which opinions are defined by three main features
that interact and support opinion revision and change. We test
our model through simulation experiments with two different
network topologies and we try to identify how changes at the
micro-level of agents’ cognition can give rise to changes in
opinions at the collective level. In order to check for our models’
robustness and reliability, we will also compare our results with
existing models, in particular the Voter [9] model and the work
of Deffuant [10].

1.1. Opinions in the Social Sciences
The study of opinions’ formation and spreading originated
within the field of social science, in which several important
contributions were developed. A comprehensive review of the
social and psychological literature on the topic is beyond the
scope of this work, but in this section we will tackle the
background and we will review some of the main theories that
social scientists put forward about opinions and opinion change
with the aim of situating our inter-disciplinarymodel in the wider
context of the social sciences.

In general, opinions are treated as synonyms for different
mental objects, as beliefs [11], or more frequently, attitudes
[2, 12, 13]. In general, opinions and attitudes are used as
interchangeable terms referring to a mental object liable to

social influence and persuasion [14]. The specificity of attitudes
and the fact that they cannot be considered opinions is made
clear in Allport’s work [15]. In this account, attitudes define
and shape people’s perceptions, whereas opinions result from a
more articulated process in which beliefs, goals, intentions and
knowledge play a role. An attitude can be regarded as a necessary
element in opinion formation, but it is not sufficient. Allport [15]
recognizes the difference between attitudes and opinions, but he
nonetheless considers the measurement of opinions as one way
of identifying the strength and values of personal attitudes. An
alternative view contrasts the affective content of attitudes with
the more cognitive quality of opinions that involve some kinds of
conscious judgments [16]. In general, it is possible to identify two
main trends in the relevant literature.

On one hand, researchers focus on attitudes, considered as
implicit evaluations that allow to access individuals’ positive or
negative views about given matters, and that are supposed to be
stable across time and relevant enough to predict individuals’
behaviors and actions. On the other hand, explicit theories
of opinions are more centered on conscious reasoning and
judgment, through which individuals are supposed to form and
express measurable opinions.

Another general feature of the social and psychological
approach is the preminence given to measuring, rather than
conceptualizing opinions. As a result, many studies (for a review,
see [17]) tried to develop reliable and fine-tuned ways to measure
people’s approaches to general questions, partially abandoning
the issue of defining what an opinion is, and focusing on how
it should be measured. Quantifying opinions and measuring
their diffusion in a given population is important in order to
understand, monitor and predict social and political events, but
it is not yet an answer to the question: What is an opinion?
Answering this question is essential to define good measures, to
identify the right tools and also to get insights from the results. If
the measurement does not take into account the main features of
opinions, then we will never know what we are exactly measuring
and how good our predictions can be, based on that measure.

In political science, Crespi [18] considers individual opinions
as “judgmental outcomes of an individual’s transactions with the
surrounding world” (p. 19), emphasizing the interplay between
what he calls an attitudinal system and the external world
characterized by the presence of other agents and different
subjective perceptions. Opinions are the outcomes of a judging
process but this does not mean that they are necessarily
rational or reasoned, although Crespi recognizes that they
need to be consistent with the individual’s beliefs, values and
affective states. It is worth noticing that many contributions
are specifically oriented to understand “public opinion” [19],
as the collective result of integration of opinions and attitudes
coming from different sources and exposed to different kinds of
influencing.

As other authors already pointed out [20], many models of
opinion and social influence do not provide careful definitions
of what an opinion is and how it is affected by social influence.
This happens to be true also for theories of persuasion, like
the social impact theory [21], a theory of how social processes
operate at the level of the individual at a given point in time.
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Part of this theory has been developed using computational
modeling by Nowak et al. [22]. In their model, individuals change
their attitudes as a consequence of other individuals’ influence.
In parallel with the idea that social influence is proportional
to a multiplicative function of the strength, immediacy, and
number of sources in a social force field [19, 21] suggest that
each attitude within a cognitive structure is jointly determined
by the strength, immediacy, and number of linked attitudes as
individuals seek harmony, balance, or consistency among them.
Therefore, a single opinion does not exist in a “vacuum” and
its change depends on the interplay of several factors. Their
results show that group dynamics are dependent upon initial
spatial configurations, as well as from the different parameters,
hence opinion change is completely dependent upon interactions
happening at the group level.

1.2. Tackling the Sociophysical Background
The first sociophysical approach to opinion dynamics was the
voter model (VM). It was originally conceived [9] as a model
of competition of species, but it was soon adapted to model
an electoral competition between two candidates [23]. The VM
dynamics is extremely simple: each agent is endowed with a
binary variable which can assume one of two distinct values. In
each elementary interaction an agent is randomly selected and
assumes the opinion of one of its neighbors (again randomly
selected). Initial conditions are also generally set at random. This
model has been thoroughly considered in sociophysics because
it can be solved exactly in every dimension [6] and thanks to its
simplicity and flexibility has been used as a starting point in the
quantitative treatment of social phenomena.

In general, the VM dynamics can freeze only with consensus,
that is, when all the agents come to share the same opinion.
In fact, only in one and two regular dimensions the system is
actually driven toward consensus, following a power-law decay
in 1D and a logarithmic one in 2D. In higher dimensions and
on many complex networks the system is not able to reach
consensus and remains in a disordered metastable state in the
thermodynamical limit [24] (finite size systems eventually reach
consensus thanks to statistical fluctuations, after a freezing time
which diverges rapidly with size).

Interestingly, on small-world networks, the level of cooperation
of themetastable state is proportional to the density of long-range
connections among distant parts of the system [25, 26].

However, its simplicity is also one of the main limitations
of the model. Attempts to overcome its limits included the
application of the original VM in more realistic configurations,
meaning that the VM was tested in different kinds of complex
topologies [25, 27, 28]. Another interesting direction consisted
in adding agents with special features with the aim of explaining
fundamentalisms [29] or the effects of mass media [30].

The presence of fundamentalists or “zealots” who never
change opinion, in general does not enhance consensus: actually,
a zealot forces the whole system toward its opinion in one and
two regular dimensions, where consensus is anyway achieved. On
the contrary, in different topologies we observe the presence of a
small region of localized consensus only in the neighborhood of
the fundamentalist [29, 31, 32].

In the VM interactions are based on imitation, a drastic
simplification of human interactions. In order to make
interaction more realistic, [33] proposed a majority rule (MR):
at each elementary time step a group of individuals is picked
up at random, then all the members adopt the opinion of the
majority of the group itself. This rule was proposed to describe
public debates and interactions among individuals belonging to
different groups. Also with the majority rule, the system can end
up to consensus or to a metastable disordered state, depending
on the details of the topology and the initial conditions.

In socio-physics, a great deal of work focused on the
operational definition of opinion itself. For example, it can be
allowed to assume more than two values [34] or defined as
a continuous variable [6, 10]. These models present a richer
dynamics and the number of possible active and frozen states
accessible to the system is much larger, so that the phenomena
observed are in principle more realistic. Among these models, the
Deffuant Model (DM) [10] deserves attention. Here, an opinion
is defined as a real number ranging from 0 to 1: therefore, it can be
somehow considered a generalization of the VM. A fundamental
feature of DM is the threshold in opinion distance for which only
agents whose opinions are less distant than a given threshold
can interact and then get even closer opinions. This mechanism
resembles the Axelrod’s model of cultural spreading [35], where
agents are able to interact proportionally to their actual cultural
similarity. This leads to a final state with a set of different clusters,
each one consisting of agents sharing the same opinion. The
number of final clusters depends on the initial conditions and on
the model’s parameters, especially the distance threshold [10, 36].
Subsequently, the DM has been furtherly refined, for example
by defining another variable characterizing the “affinity” among
agents [37], so that opinions and affinities coevolve: if there is
a sufficient affinity between agents, their opinions become more
similar, and viceversa. In this version of the model, consensus is
reached more easily than in the original DM.

Although different in several respects, the models mentioned
above share the same feature: opinions are given from the
beginning and evolve exclusively in interaction with other agents
and on the basis of the environment, without any internal
characterization. No hint of what happens within individuals’
minds, how opinions may emerge and evolve internally, is given:
in practice, in sociophysics models we have interacting opinions
rather than interacting individuals.

Aim of this work is to overcome the limitations of
the social sciences, in which no operational models of
opinions are provided, and the limitations of socio-physics just
discussed. Moving from a definition of opinions as cognitive
representations, we will use socio-physics tools in order to put
forward an inter-disciplinary model of opinions which takes into
account the internal dynamics of individuals’ minds and can be
used to analyze opinion spreading and consensus formation.

1.3. A Tripartite Model of Opinion: Truth-value,
Confidence and Sharedness
In this work we want to propose an integrated account in
which we identify not only the specific cognitive features that
characterize opinions, but also the way in which each single
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feature gets modified by interacting with others’ opinions. A
cognitive model of opinions and their dynamics requires to
provide a definition of opinions as mental representations and
to present specific features that make their revision and update
easy and enduring. Moreover, grounding opinions in the mind
allows us to take into account not only direct processes of
revision due to the interactions with others (social influence),
but also revisions based upon changes in one’s own mental
representations supporting that opinion.

On the basis of the previous considerations, opinions are
mental representations characterized by the following features:

• subjective truth-value
• confidence
• perceived sharedness.

We assume that objective truth-value cannot be verified (or it
is not relevant), so we refer to a “subjective truth-value” that
expresses whether and how much someone believes an opinion
to be true. Opinions are epistemic representations that refer
to matters or events that cannot be defined as either true or
false because it is not possible to verify alternative states of the
world [38], as for example the consequences of an event that did
not happen, or the outcomes of an election which has not been
held yet. In many cases opinions are emotionally loaded, and
individuals have positive or negative attitudes that reinforce their
opinions, as for instance about abortion [18]. In that case there
may be not any ascertainable truth about it, but people often have
strong opinions on the basis of their beliefs, culture or personal
experience. In order to convert a subjective truth-value into a
practical quantity, we will express it as a variable indicating how
true an opinion is considered by a given agent.

The second defining feature of our model is the degree of
confidence. This is a subjective measure of the strength of an
opinion and it expresses the exent to which one’s opinion is
resistant to change, like a sort of “opinion inertia.” When an
individual is highly confident, he has a number of reasons
to believe that his/her opinion is right, and the higher the
confidence, the more willing that individual is to defend his/her
opinion against others’. For the sake of simplicity, confidence is
currently expressed as an arbitrarily assigned value. It is worth
stressing the difference between subjective truth-value and degree
of confidence: an individual can be somehow uncertain about
his/her opinion, but struggle fiercely for it (“right or wrong, it’s
my country”); or, viceversa, he can be absolutely certain about
a given issue without defending it publicly (for fear or lack of
interest).

The third feature of our model is perceived sharedness, i.e.,
the extent to which a given opinion is perceived to be shared.
This subjective measure allows us to distinguish between the
actual number of individuals having the same opinion and the
personal experience that an agent can have. Believing that there
are a number of other individuals sharing my opinion does not
mean that this is actually the case, actually I can be part of
a minority and not be aware of the opinion of the majority.
Perceived sharedness may heavily affect degree of confidence,
making people feel more confident because they might feel
supported by the majority. On the other hand, this factor can also

lead an individual to revise his/her opinion because confidence in
it is low and it is also perceived as a minority opinion.

Modeling opinions as results of the interplay among the above
defined internal variables allows us to take into account their
distinctive nature of mental objects. Knowing how opinions
change within individuals’ minds is essential to understand
whether this change can be robust, how far it can travel into
a given social group and how far it can spread. Unlike other
models that treat opinion change as an effect of plain social
influence [22], we are interested inmodeling what happens inside
individuals’ minds. Opinions do not change suddenly, but they
result from interacting internal dynamics and external influences,
as our model is aimed to show.

2. Discrete Opinion Model

2.1. Description
We setN individuals which are characterized, at every time step t,
by their opinions Oi(t) (i = 1, . . . ,N). In the discrete version of
the model, opinions can assume one of two possible values, 0 or
1. Agents are characterized by three internal variables referring to
their opinions: subjective truth-value xi1(t), degree of confidence
xi2(t), and perceived sharedness xi3(t). These variables are defined
as continuous quantities, ranging from 0 to 1.

Agents are located on the nodes of a graph, with the
relationships among them given by the links. At the beginning
of the simulation, agents are initialized as having one of two
opinions which are randomly assigned with equal probability
(with some exceptions which will be pointed out when needed).
Internal variables are assigned at random as well, following a
uniform distribution. For each elementary time step, two agents
are randomly chosen and they are attributed one of two roles:
a listener, say i, and a speaker, j. Speakers are selected among
listener’s neighbors. In each interaction, evolution applies only
to listeners, which, in our asymmetric model, are those who can
revise their opinions. It is worth noticing that in our model, even
though two agents share the same opinion, this can result from
completely different internal variables. In particular, opinions
and internal variables coevolve. People sharing the same opinion
reinforce their beliefs when they meet, conversely interacting
with an agent of opposite opinion may drive individuals to
change it or at least to be less sure of their initial opinion.

In our model, the subjective truth-value and the degree of
confidence of a listener increase (or remain unchanged) when
interacting with a speaker sharing the same opinion. In formal
terms, we implement the dynamics of these internal variables
when Oi(t) = Oj(t) as follows

1. If xi1(t) < x
j
1(t) and xi2(t) < x

j
2(t) H⇒ xi1(t + 1t) = x

j
1(t);

2. If xi1(t) ≥ x
j
1(t) H⇒ xi1(t + 1t) = xi1(t);

3. If xi2(t) ≥ x
j
2(t) H⇒ xi2(t + 1t) = xi2(t);

4. If xi2(t) < x
j
2(t) H⇒ xi2(t + 1t) =

xi2(t)+ 2x
j
2(t)

3 .

In practice, when a listener is paired with a speaker sharing
the same opinion, its subjective truth-value cannot decrease. In
particular, we assume that if the speaker is more confident than
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the listener, the latter is reinforced in his/her opinion; vice versa, a
speaker with a low degree of confidence can marginally influence
a listener. We implemented this rule in the simplest way: the

listener will assume the speaker’s subjective truth-value (x
j
1) if and

only if both confidence and subjective truth-value are larger in the
speaker, otherwise xi1 does not change. Rules 3 and 4 define how
confidence changes as an effect of interactions. If a listener meets
amore confident speaker with the same opinion, this will increase
the listener’s confidence, otherwise it will not be affected. Unlike
subjective truth-value, the listener does not assume the speaker’s
confidence, but there is an adjustment between the two values.

Let us now define the rules for the dynamics of the opinion
and the internal variables when a speaker j and a listener i of
different opinions meet. In this case, opinion change depends on
confidence and perceived sharedness. In general, we assume that
people can be better persuaded by more confident speakers, in
line with evidence in social psychology showing that consistent
and confident minorities can influence majorities andmake them
revise their judgements [39]. We also consider that there is a
positive correlation between the speaker’s subjective truth-value
and the probability of convincing the listener. Finally, humans
are sensitive to social pressure, then believing that one’s own
opinion is shared by the majority makes opinion change less
likely [40]. Therefore, we define a simplified rule such that the
probability Pij that i assumes the j’s opinion is zero if speaker’s
confidence is smaller than the listener’s, otherwise it is directly
proportional to the speaker’s subjective truth-value and to the
quantity 1 minus the perceived sharedness. This points to the fact
that an agent is reluctant to change its opinion if thinking to share
it with the majority. Summarizing, it is

Pij =

{

x
j
1(t)[1− xi3(t)] if x

j
2 > xi2

0 if x
j
2 ≤ xi2 ;

(1)

Afterwards, if the listener shifts toward the speaker’s opinion, we
assume that the former also acquires the subjective truth-value of
the latter, but with a confidence level equaling half of the speaker’s
confidence.

xi1(t + 1t) = x
j
1(t)

xi2(t + 1t) = x
j
2(t)/2 .

(2)

On the contrary, if i does not change opinion, the listener’s
subjective truth-value remains unchanged, but the interaction
affects in any case the confidence. More precisely, we assume that
interacting with someone with a different opinion reduces the
listener’s degree of confidence. Therefore, we set the new listener’s
confidence as the average between its own confidence before the
interaction and the speaker’s confidence level in case the latter

was smaller, to half its original value if initially it was xi2 < x
j
2.

xi1(t + 1t) = xi1(t) (3)

xi2(t + 1t) =











xi2(t)+ x
j
2(t)

2 if xi2(t) > x
j
2(t)

xi2(t)
2 if xi2(t) ≤ x

j
2(t) .

(4)

Finally, we implemented perceived sharedness xi3(t) as the total
number of past encounters with other agents sharing the same
opinion an agent i has up to time t, independently of the
outcomes of each interaction. More precisely, each agent records
all past encounters as a listener, determining the frequency of
both opinions: the perceived sharedness at time t is the frequency
of the opinion shared by the agent itself at the same instant t.

Time is measured in Monte Carlo steps. This means that
a single time unit is made up by N single interactions, i.e.,
1t ≡ 1/N.

Certainly, this model must be seen as a first step, and further
studies and in-depth analyses will be useful for a more precise
definition of its parameters.

2.2. Topology
We tested the behavior of our model on two different topologies:
a total connected graph (mean field) and a one-dimensional ring.
We chose them in accordance with the relevant literature [6], in
which these topologies are usually considered as starting points.
Moreover, given the complexity of the relationships among
agents’ internal variables, even simple topologies can be useful in
understanding the basical properties of the model. More complex
topologies will be used in future works.

2.3. Results
For each version of the model, we initially considered a system
of N = 100 agents and tested its behavior starting from three
different initial distributions of agents holding two different
opinions: 〈O0〉 = 0.5, 0.75, and 0.9. The last two distributions
represent an attempt to model a situation in which there is a
conflict between a majoritarian and a minoritarian opinion. We
stress the fact that every measure represents an average over 2000
independent realizations. More details are given in the following
subsections.

2.3.1. Mean Field
In every simulation the system ends up to a substantial
consensus. At the end of each realization, all the agents share the
same opinion, even if there are interesting differences between
individuals’ mental states.

In Figure 1 we show how average opinion behaves over time.
It is worth noticing that an initial asymmetry, even if small,
allows the majoritarian opinion to invade the whole system and
to become dominant. That means that the opinion which at
t = 0 is majoritarian, even slightly, always ends up being the
only survived one. This result contrasts with the classical mean
field voter model, in which the initial average opinion is always
conserved [6, 7].

On the other hand, in Figure 2we show the behavior over time
of the averaged internal variables with 〈O0〉 = 0.5. Among these,
perceived sharedness shows a noticeable behavior: it takes longer
to reach its final level (which equals 1 since all the agents share
the same opinion eventually). In other words, the system reaches
consensus even before agents realize they all agree, showing
an interesting dynamics between the micro- and the macro-
level. This result is remarkable especially if we think of real-
world situations, in which there is usually a gap between what
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individuals know locally and the global and emergent behavior
of the system in which they are embedded. This delay is due to
the early encounters at the initial stages of the dynamics, kept in
memory by the agents, which drive the individuals to maintain a
distorted idea of the others’ views for a longer time. It is worth to
notice that the persistence of the initial opinion and impressions
in human mind is a well-known phenomenon, already discussed
in the psychological literature [41, 42].

In order to be sure that the observed results do not depend
on the size of the system, we also repeated the same simulations
with N = 250: we did not observe any significant differences
increasing the number of agents in the population.

It must be noticed that even if this dynamics leads the system
to consensus, in half of the realizations there is one agent who
maintains its minoritarian opinion. This resistance to social

FIGURE 1 | Average opinion as a function of time for a system of

N = 100 on a totally connected graph for three different initial

conditions. Figure presents values averaged over 2000 independent

realizations.

FIGURE 2 | Time behavior of average internal variables for a system of

N = 100 on a totally connected graph and initial average opinion

〈O0〉 = 0.5. Averages over 2000 independent realizations.

influence happens when the agent with the largest initial degree
of confidence has the opposite opinion of the majority: from
Equation (1) follows that such agent can never change opinion.
Such a result could help explaining extremisms in real-world
scenarios, where no matter the kind of social influence and
persuasion someone is exposed to, there are always individuals
who stick to their opinions.

2.3.2. One-dimensional Ring
We tested our model also on a one-dimensional ring with the
same number of agents (N = 100).

Figures 3, 4 show how average opinion (for three different
initial conditions) and internal variables (for 〈O0〉 = 0.5)
change over time, respectively. Concerning the average opinion,
qualitatively these results are similar to the mean field case, even

FIGURE 3 | Average opinion as a function of time for a system of

N = 100 on a one-dimensional ring for three different initial conditions.

Averages over 2000 independent realizations.

FIGURE 4 | Behavior over time of average internal variables for

a system of N = 100 on a one-dimensional ring and initial

average opinion 〈O0〉 = 0.5. Averages over 2000 independent

realizations.
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though here the invasion of the initially majoritarian opinion
is much slower. This behavior is confirmed in Figure 5, where
we compare the time behavior of active bonds (i.e., the links
between two agents with opposite opinion) in our model and
in the one-dimensional voter model [6, 26], in which, at each
time step, a randomly selected agent simply imitates the opinion
of one of its neighbors. This makes the system reach consensus
through a power-law decay with exponent 1/2 (and a final quick
exponential convergence time depending on the square of the
system size), whereas a different behavior is observed in our
model. After an initial power-law decay with exponent β close
to 2/3 (a numerical fit reports β = 0.65± 0.01), the active bond
density decreases much more slowly (maybe tending to a steady
state), as shown in the inset of the same figure.

3. Continuous Opinion Model

3.1. Description
We also present another version of the model in which
opinions are continuous, so that an opinion is a real variable
ranging between 0 and 1 (initially randomly assigned to each
agent following a uniform probability distribution). The model
dynamics is the same we described above, but we extended its
scope by adding a new rule for opinion revision. Here, when
the listener accepts the speaker’s opinion, opinion changes in
accordance with Deffuant’s rule [10, 36]:

Oi(t + 1) = Oi(t)+ µ[Oj(t)− Oi(t)] ; (5)

with µ = 0.5. In order to determine the perceived sharedness,
we consider opinions up to 0.5 as of “negative” kind and from 0.5
as “positive,” so that xi3(t) is the number of past encounters with

FIGURE 5 | Behavior over time of the (average) active bond density for

the cognitive opinion model (CM) on a one-dimensional ring and initial

average opinion 〈O0〉 = 0.75. System size: N = 100 (full black line) and

N = 1000 (full red line). Comparison with the voter model with the same

parameters (dashed lines: black for N = 100, red for N = 1000). The blue

dashed line represents a power decay with exponent 1/2, the blue straight

one a power decay with exponent 2/3. Inset: time behavior of the active bond

density for CM with N = 100 up to t = 105. Averages over 2000 realizations.

other agents sharing the same kind of opinion an agent i has up
to time t, starting from t = 0. The internal variables are assigned
at random, following a uniform distribution, also in this version
of the model.

3.2. Results
3.2.1. Mean Field
In the continuous version of the model, when the graph is totally
connected, the system reaches final consensus, even though
conserving the average initial opinion, as we can see in Figure 6.
On the other hand, internal variables behave as in the discrete
case, as shown in Figure 7. This means that when we apply
a mean field topology, the model shows the same behavior,
regardless of the way in which opinions are implemented (either
as discrete or as continuous variable): the system achieves final
consensus with high levels of subjective truth-value and degree
of confidence, reached even before the agents realize they have
already ended up sharing the same opinion.

4. Discussion

Opinions are a complex issue for a variety of reasons and
they represent a very interesting case of the micro-macro
link: opinions are mental objects that get modified by social
processes and then re-enter the mental space. More specifically,
internal representations of individuals, such as beliefs, goals, and
intentions, give rise to the complex dynamics at the macro-
level, which feed backs into the lower level. However, pivotal
to understanding the dynamics of opinions is the definition of
specific features, which characterize how opinions are created
and modified within individual minds.

In this work, we have outlined the micro-level of opinions
and started to explore their dynamics. We identified three
main constitutive features of opinions within individuals’ minds.
The first internal variable is the subjective truth-value, which
describes how much the individual believes her/his opinion
to be true. Saying that opinions have a subjective truth-value
does not mean that individuals do not believe in them or that
they cannot be strongly opinionated. This feature is crucial
because it accounts for the fact that opinions get more frequently
influenced by interactions with others through social influence,
but they can also be easily revised according to changes in one’s
own mental representations, without any external influence. The
second feature is what we called degree of confidence, which
defines to what extent an individual trusts his/her opinion and
howmuch the opinion is resistant to change. The last variable we
introduced is perceived sharedness, i.e., the extent to which one
believes others share the same opinion, thus providing support
for it. Perceived sharedness does not necessarily overlap with the
actual sharedness, and there can be a gap between how much
someone believes an opinion to be shared and the actual number
of individuals sharing it.

Our results show that the interaction of these variables at the
micro-level generates interesting macro-dynamics. Compared
with the voter model, we observe interesting differences. The
voter model dynamics has two main features: the magnetization
is conserved, but in a mean field topology and one dimension,
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FIGURE 6 | Behavior of the opinion for a system of N = 100 individuals on a totally connected graph; continuous opinion. Averages over 2000

independent realizations. (A) Time evolution of the average opinion for four different initial conditions (from top to bottom of the figure: 〈O0〉 = 0.75, 0.6, 0.5,

0.45, respectively), average over 2000 independent realizations. (B–D) Evolution of the opinion of each agent during a single realization, for initial average

opinion 〈O0〉 = 0.3, 0.5, and 0.7, respectively.

FIGURE 7 | Time behavior of the average internal variables for a

system of N = 100 on a totally connected graph and initial average

opinion 〈O0〉 = 0.5; continuous opinion. Averages over 2000 independent

realizations.

consensus is reached for every finite system size [6, 7]. Thismeans
that, even though in each realization all agents end up sharing
the same opinion (0 or 1), the average over the ensemble always
conserves the initial average opinion. In our discrete model,
instead, as shown in Figure 1, this is true only for totally random
initial configurations (i.e., 〈O0〉 = 0.5). On the contrary, if
simulations start with an even small asymmetry between the two
opinions, the most spread one outcompetes the other.

FIGURE 8 | Probability distribution of the time needed to reach

consensus τ for the cognitive opinion model (black) and the voter

model (red). Mean-field case, system size N = 100, initial average opinion

〈O0〉 = 0.5.

Another difference between the voter dynamics and our
cognitive model consists in the amount of time needed to reach
the final totally ordered state, which strongly depends on the
system topology. On a totally connected graph our model is faster
than VM. Actually, even though the convergence to the final
configuration is in both cases exponential, the distribution of
consensus times τ , i.e., the time needed to reach the consensus,
is rather different, as shown in Figure 8. Both distributions have
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indeed the same mode and an exponential tail, but due to its
longer tail, the average τ for the voter model is almost two times
larger. Moreover, the latter has a much larger standard deviation
(στ ≃ 44 for the voter model, and (στ ≃ 5 for the cognitive one),
meaning that also consensus times very far away from the average
are likely to be observed.

Conversely, in one dimension we observe that our cognitive
model is slower than the voter one. Actually, as it is easy
to understand from Figure 5, the active bond density starts
decaying similarly to the voter model (even though with a
different power-law exponent), but after a certain time t∗ it
reaches a sort of plateau whose level decreases slightly on the
system size. In short, for our model the time behavior of active
links can be written as follows:

na(t) ∝

{

t−β if t . t∗

g(t) if t & t∗ ,
(6)

where g(t) is a decreasing function of time. From Figure 5, it
is possible to infer that the decay exponent is β ≃ 0.65. On
the other hand, the behavior of g(t) and the value of t∗, which
a priori could also depend on N, are very hard to be assessed
precisely. Their determination would require the numerical study
of much larger systems up to very large times, averaged over
more than thousands of realizations, but such effort would go
beyond the scope of this work. Anyway, while an exact form
of the Equation (6) may be obtained only through further
investigations, the main trend (that is, a slow convergence to the
consensus with cognitive dynamics of opinions) is already clear.

In mean field topology our model shows that final
consensus is achieved faster, and this is true even when taking
into consideration continuous opinions. Actually, comparing
Figure 7 with the results for similar systems reported in
Weisbuch et al. [36], it can be easily noticed that the latter needs
muchmore time to reach the final ordered state, if compared with
our results.

Our work represents a first attempt to merge two related but
usually distant approaches. Cognitive modeling allowed us to

define the basic elements of an opinion as amental representation
characterized by specific features, whereas we used the tools
of socio-physics to model the dynamics of opinion spreading.
Further investigation is needed in order to better understand
opinion change and to set more properly the parameters at stake,
but also to predict whether these changes will be stable and
under what conditions. In particular, we need to investigate more
exstensively the interplay among different dynamics. Opinions
change in the mind possibly under social influence, and the social
cognitive dynamics of opinions affects the way they spread and
the configuration of the space of opinions.

On the other hand, the initial topologymay bear consequences
on opinion change and on mental features that characterize
existing opinions. Furthermore, the interplay between opinions
and other mental objects, like other types of beliefs, ought
to be addressed, and the external validation of the cognitive
model against real-world data should be also achieved. Finally,
a well-determined comparison between cognitive and classical
socio-physical opinion models, here outlined, would be useful

to understand more correctly merits and limits of both
approaches.
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