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The spreading of behavior, such as the adoption of a new innovation, is influenced by

the structure of social networks that interconnect the population. In the experiments

of Centola [15], adoption of new behavior was shown to spread further and faster

across clustered-lattice networks than across corresponding random networks. This

implies that the “complex contagion” effects of social reinforcement are important in such

diffusion, in contrast to “simple” contagion models of disease-spread which predict that

epidemics would grow more efficiently on random networks than on clustered networks.

To accurately model complex contagion on clustered networks remains a challenge

because the usual assumptions (e.g., of mean-field theory) regarding tree-like networks

are invalidated by the presence of triangles in the network; the triangles are, however,

crucial to the social reinforcement mechanism, which posits an increased probability of

a person adopting behavior that has been adopted by two or more neighbors. In this

paper we modify the analytical approach that was introduced by Hébert-Dufresne et al.

[19], to study disease-spread on clustered networks. We show how the approximation

method can be adapted to a complex contagion model, and confirm the accuracy of

the method with numerical simulations. The analytical results of the model enable us

to quantify the level of social reinforcement that is required to observe—as in Centola’s

experiments—faster diffusion on clustered topologies than on random networks.

Keywords: clustered networks, complex contagion, clique networks, clique approximation, social reinforcement,

diffusion of behavior

1. Introduction

Many systems find a natural interpretation as a complex network where nodes identify the
objects of the system and the links between nodes represent the presence of a relationship or
interaction between those objects [1]. Such network characterizations range from friendships on
Facebook [2], connections between web-pages by hyper-links [3], to protein interaction networks
in biological systems [4]. A growing area of interest is the modeling of how behaviors diffuse
across social networks, such as the adoption of innovations [5] or the spreading of information
[6, 7]. Epidemiological models provide a convenient architecture for articulating these spreading
processes where nodes (individuals) can be in one of two states adopter (“infected”) or non-adopter
(“susceptible”).

The diffusion of social behavior is often characterized as either a “simple contagion” or a
“complex contagion” [8]. A simple contagion is any process where a node can easily become
infected by a single contact with an infected neighbor; on the other hand a complex contagion
is a process where a node usually requires multiple exposures before they change state [9]. Simple
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contagions arise naturally in disease spread-models where
a susceptible individual only requires a single contact with
an infected individual to allow a pathogen to propagate.
Traditionally simple contagion models have been applied to
sociological spreading behaviors in order to predict how a
behavior would diffuse across a network [10]. The simplest
example is the SI (susceptible-infected) model, for example,
where infected nodes transmit infection across their links at a rate
β per unit time [11]. Susceptible nodes change state and become
infected (i.e., adopt the behavior) at a rate that scales linearly
with the number of infected network neighbors (see Section 3
for more details). Once infected, a node cannot recover to the
susceptible state (an adopter node can not unadopt a behavior);
the SI model therefore provides an example of a binary-state
monotone dynamic process [11].

The importance of network topology for spreading dynamics,
specifically the density of triangles (clustering) in the network,
has been well established [12]. In social networks, clustering
provides a useful measure for how densely connected local
groups are [13]. A high density of triangles implies a high chance
that “the friend of my friend is also a friend of mine.” It has
been shown that the lower the density of triangles the further
a simple contagion will spread across a network [14], because
each additional infected node has a high chance of linking
to unexposed nodes. Conversely, a high density of triangles
results in a slower spread because the disease travels across
“redundant” links to nodes that have already been infected [15].
The ideal case for efficient propagation of a simple contagion is
a random network where each node’s links connect to different
neighborhoods; random networks necessarily have no presence
of clustering in the topology. If a simple contagion model
(such as the SI model) accurately describes the spreading of
social behaviors then we should observe faster diffusion of such
behaviors on networks with lower clustering. However, in a
groundbreaking experiment by Centola [15], the opposite was
observed. Centola found that the diffusion of adoption spread
further and faster on networks with a high degree of clustering
than on corresponding (same mean degree) random networks,
contradicting the results predicted by simple contagion models.
He observed that nodes who received multiple exposures to the
behavior were more likely to adopt than those who had only
received one exposure, indicating that the behavior spread as a
complex contagion.

In this paper we present a complex contagion model that
reflects the requirement for multiple exposures to effectively
propagate a behavior through a clustered network. Using the
complex contagion model we examine the spreading behavior
produced on networks with varying levels of clustering. Lü
et al. [16] have also numerically examined models for adoption,
but only on small networks, whereas we concentrate on the
large-network limit (N → ∞) where analytic results can
be found. Modeling simple contagions on random networks
is well understood, where analytic results for the fraction
of infected nodes in the steady state are relatively easy to
calculate by standard approximation schemes such as mean-
field (MF) or pair-approximation (PA) methods [17]. However,
accurately approximating diffusion processes on clustered

networks remains a challenge. The presence of clustering
immediately invalidates the assumption of locally tree-like
network structure that MF and PA methods are based upon
[18]. In our context, the presence of triangles is integral to the
reinforcement mechanism of a complex contagion. To address
this we modify the analytic approach introduced by Hébert-
Dufresne et al. [19]. Their framework was used to model disease-
spread processes on clustered networks. We show how the
approximation method can be adapted to a complex contagion
model, and confirm the accuracy of the method with numerical
simulations.

The remainder of the paper is structured as follows. The
clique-based network that forms the basis for our examinations
of complex contagion is outlined in Section 2. The complex
contagion model is described in Section 3. Section 4 presents
the approximation scheme that is used to account for presence
of clustering and the procedure for finding a linearized solution
to the system. In Section 5 we examine the accuracy of the
approximation and the results of the complex contagion model.
Finally, Section 6 presents our conclusions.

2. Clique-based Networks

The defining characteristic of a complex contagion is the
increased propensity to become infected (adopt) a behavior given
multiple exposures [9]. We expect to observe different spreading
behavior of a complex contagion depending on the level of
clustering on the network. This is because there is a higher
propensity on clustered networks for multiple infected nodes
to have a susceptible node in common when compared against
random networks. Therefore, clustering is the salient feature of
a network that we wish to isolate. To quantify the clustering in a
network we use the global clustering coefficient [20], defined as

C△ =
3× N△
N3

, (1)

where N△ is the total number of triangles in the network and N3

is the number of connected triples of nodes. The case C△ = 0
implies that no paths of length three are closed, meaning that the
network is locally tree-like [21].

When examining the diffusion produced on differing
networks we must be careful to compare like with like so as not
to introduce confounding factors into our analysis. Therefore, we
use networks that allow us to control the clustering, while holding
other topological features (such as the degree distribution)
constant; this is achieved using clique-based networks [1, 19, 22].
In a clique-based network, each clique has n (randomly-chosen)
nodes and each node is a part of m (randomly-chosen) cliques.
For example, a triangle is a clique with n = 3 nodes. Use
of these networks follows, in spirit, the experimental design
used by Centola, where clustered lattices were compared to z-
regular random networks of the same degree to isolate the effects
of clustering (see Appendix A for details on his experiment).
However, the clique-based networks allow us to use analytical
methods that cannot be directly applied to the clustered lattice
networks used by Centola.
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FIGURE 1 | Network topologies, each with degree z = 6. (A) z-regular network (red) with n = 2, m = 6 and C△ = 0; (B) moderately clustered network (blue) with

n = 3, m = 3 and C△ = 0.2; (C) highly clustered network (green) with n = 4, m = 2 and C△ = 0.4.

We examine various different forms of clique motifs. This
is done by varying n and m subject to the constraint that
the degree of each node is fixed, specifically, the degree of
each node is z = (n − 1)(m) = 6 (as in Centola’s main
experiments). We focus on three motif types which are illustrated
in Figure 1. The motif in Figure 1A corresponds to a random
network where each clique contains two nodes and each node
is part of six cliques (n = 2 and m = 6), i.e., each “clique”
is a just a link in the random 6-regular network. The motif
shown in Figure 1B is a triangle, with each node being part
of three cliques (n = 3 and m = 3). The last motif in
Figure 1C is a four clique and each node is part of two cliques
(n = 4 and m = 2). These local topologies result in networks
with clustering coefficients of 0, 0.2, and 0.4, respectively. As
each network is constructed from the aforementioned motifs,
there is no variation in degree or local clustering between
nodes. Thus, we can isolate the effect of clustering on the
spread of a complex contagion between the different networks.
In the next section we define our complex contagion model
which will capture the defining characteristic of a complex
contagion where nodes that receive multiple exposures have
an increased propensity to change state over those who have
received only one.

3. Complex Contagion Model

In this section we define our complex contagion model. First we
briefly define the susceptible-infected (SI) model for comparison
purposes. In the case of the continuous-time SI model (which is
a simple contagion model) an infected node transmits disease
to all its network neighbors at a rate β , where a neighboring
node’s probability of changing state from this contact is β dt in an
infinitesimal time interval of length dt. A susceptible node with i
infected neighbors therefore is exposed to i independent sources
of infection, so the probability that the node does not become
infected in a time interval dt is (1 − β dt)i, with the probability
that the node does become infected being 1 − (1 − β dt)i. We
define the transition rate FSIi by letting the probability of infection
in a small-time interval dt equal FSIi dt. As dt → 0 this probability
becomes, βi dt, and so the transition rate for a node with i
infected neighbors is

FSIi = βi. (2)

FIGURE 2 | Comparison of transition rates, Fi for simple contagion (SI)

and complex contagion (CC). Here β = 5 and i is the number of infected

neighbors.

The transition rate scales linearly with the number i of infected
neighbors, which is reasonable for a biological contagion where
each possible infection event is independent of the others.
However, for a social contagion a node will rarely adopt a
behavior after a single exposure, it is only after several exposures
that a node becomes likely to adopt [15].

As a deliberately simplified model for complex contagion we
therefore propose the following transition rate function:

FCCi =





0 if i = 0,

1 if i = 1,

β if i > 1.

(3)

where β is the rate at which a susceptible node changes state,
given multiple exposures. To model complex contagion with
strong social reinforcement, for example, we can set β ≫ 1.
Figure 2 compares the transition rates for SI and Complex
Contagion [Equations (2) and (3), respectively] as a function
of the number i of infected neighbors of a susceptible node.
Considering Equation (3) and assuming β ≥ 2, if a node
has multiple infected neighbors (i ≥ 2) it has an increased
propensity to adopt in comparison to a node with only one
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infected neighbor (i = 1). In an experiment where the contagion
begins with a small fraction of infected nodes the chance that
a node will receive multiple exposures is much higher on a
clustered network than on an random network, resulting in faster
spread over clustered topologies. As we show below, this very
simple representation of a complex contagion can capture the
spreading behavior observed by Centola while still remaining
amenable to mathematical analysis.

4. Clique Approximation

4.1. Clique Approximation Scheme
Many approximation schemes have been developed in order
to help approximate the relationships between macroscopic
observables (such as the fraction of nodes infected) and stochastic
microscopic (node-level) events, such as the number of infected
neighbors of each node. Such approximation schemes vary in
their level of complexity, with an inherent trade-off between
accuracy and complexity. There are two main approximation
schemes, the mean-field (MF) and pair-approximation (PA)
methods.

Briefly, the MF approximation assumes that the states of
every node in the network are independent. Pair-approximation
(PA) methods extend the MF approximation to incorporate
information about the pair-wise correlations between susceptible
nodes and their neighbors’ states. For a more detailed discussion
of these methods refer to Porter and Gleeson [11] and references
therein. The MF and PA methods assume that the networks are
locally tree-like (absence of local clustering). Violations of this
assumption results in poor approximations to the true behavior
of the spreading dynamics. As clustering is an integral part of
the networks we consider here, we require the development of an
analytical framework that can take into account both the complex
contagion and the presence of clustering in clique-type networks.
We will refer to this as the clique approximation (CA) scheme.
Figure 3 provides a schematic of the level of local topology that
each approximation scheme takes into account.

We extend the method introduced by Hebert-Dufresne et al.
[19] which they used to study SIS disease-spread dynamics
(where an infected node can transition back to the susceptible
state) on clique-styled networks. Our initial focus is on extending
their method from simple contagions to apply it to complex

contagion models such as Equation (3). In the CA scheme we
track the time-dependent fraction ci(t) of cliques that contain i
infected nodes, where the transition of a clique with i infected
nodes to a clique with i + 1 infected nodes is described by the
time-dependent transition rate γi(t), as illustrated in Figure 4.
Recall from Section 2 that the networks we examine are created
from basic motifs where each clique had n nodes and each node
is part ofm cliques. Consequently, the networks are (1) z-regular
(all nodes have the same degree) and (2) each node has the same
local topology (refer to Figure 1 for examples).

Tracking the dynamical states of cliques, as opposed to nodes,
results in a more complicated system of equations than the MF
or PA methods. The added complexity is required to account for
the presence of clustering in the network. We wish to calculate
the fraction of infected nodes at time t, which we denote ρ(t). To
create an evolution equation for ρ(t) we first calculate the rate
of change of the fraction ci(t) of cliques with i infected nodes at
time t. Note the normalization condition

∑n
i=0 ci = 1 applies at

all times t. The number of nodes that can leave a clique in state
ci−1 and enter state ci is the total number n of nodes in that clique
minus the number of nodes that are already infected at time t, i.e.,
n−(i−1). Similarly, the fraction of nodes that can leave a clique in
state ci and move to a clique in state ci+1 is (n− i)ci. Applying the
relevant transition rates (γi−1 and γi, respectively) at which nodes
change from one clique class to another (Figure 4) results in:

dci(t)

dt
= (n− i+ 1)ci−1(t)γi−1(t)

−(n− i)ci(t)γi(t) (4)

for i = 0, 1, ..., n.

(Note the explicit dependence of variables on t is henceforth
omitted for convenience.) Using Equation (4) we can calculate
dρ/dt by realizing that each clique with i infected nodes
contributes i/n nodes to the total fraction of infected nodes:

dρ

dt
=

1

n

n∑

i=0

i
dci

dt
. (5)

However, Equation (4) is not closed because we need to use an
approximation scheme to write the transition rates γi in terms
of the ci(t) variables. Note that the total fraction of susceptible

FIGURE 3 | Approximation schemes: (A) MF, (B) PA, and (C) CA scheme. The shaded regions represents how much of the local topology is used to approximate

the number of infected neighbors of an updating node.
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FIGURE 4 | Transition of a clique, with n = 3, between states. Note the transition rates γi are time-dependent quantities, given by Equation (9).

nodes in the network at time t is given by 1/n
∑n

i=0(n − i)ci.
We begin by calculating the probability, denoted 5i, that at
time t a chosen susceptible node is in a clique with i infected
neighbors. This probability can be represented as the conditional
probability Pr[iinf |s] = Pr[(iinf )&(s)]/Pr[s]. The numerator is
the joint probability of randomly selecting a susceptible node
from a clique and the clique having i infected neighbors. To
calculate this we first note that the probability of selecting a
clique with i infected nodes is ci and in a ci clique the number
of susceptible nodes is (n− i). Thus, the probability of selecting a
susceptible node from a ci clique is (n−i)/n, yielding the required
probability Pr[(iinf )&(s)] = ci(n − i)/n. The denominator (the
probability of selecting a susceptible node from a clique, Pr[s])
can be obtained calculating the marginal distribution of s (i.e., by
summing ci(n− i)/n over i) yielding

∑n
i=0 ci(n− i)/n. Taking the

ratio of the former to the latter yields the required probability

5i =
(n− i)ci
n∑
j=0

(n− j)cj

. (6)

The probability distribution5i can be succinctly represented as a
probability generating function (PGF) (see [23] for details), which
is a polynomial function defined as

P(y) =
n∑

i=0

5iy
i; (7)

note that the probabilities (5i) can be obtained in the usual way
by repeated differentiation of the PGF:

5i =
1

i !

diP

dyi

∣∣∣
y=0

. (8)

This PGF provides a convenient method for calculating the
probabilities inside a clique. However, a susceptible node in a
chosen clique also receives exposures from infected nodes in
other cliques, see Figure 5. Therefore, any approximation of γi
needs to take into account not only the infected nodes inside a
clique (the green area in Figure 5), but also the probability that
the susceptible node comes into contact with infected nodes in its
neighboring cliques (the blue area in Figure 5). Defining 5m−1

ie
as the probability that a susceptible node in a chosen clique has
ie infected neighbors in its other m − 1 cliques, the probability

FIGURE 5 | Schematic for clique approximation.

distribution 5m−1
ie

has PGF [P(y)]m−1. To approximate γi, we
consider a clique with i infected nodes in it and look at one of
the n − i susceptible nodes to calculate the probability that this
node transitions to the infected state. Such a transition changes
the state of the clique, moving it from the ci class to the ci+1 class.
Consider the m − 1 other cliques that the node is part of, letting
ie be the number of infected nodes present in the neighboring
cliques, then the total number of infected neighbors is i + ie and
the corresponding transition rate is Fi+ie . (Here and henceforth,
we write Fi in place of FCCi ). Of course ie can vary from 0 to
z − (n − 1), therefore to approximate γi we weight Fi+ie by the
probability of observing ie infected neighbors in the neighboring
cliques, yielding:

γi =
z−n+1∑

ie=0

5m−1
ie

Fi+ie . (9)

We assume that an initial fraction ρ0 of randomly-chosen nodes
are in the infected state at t = 0. The probability that a clique
contains i infected nodes at t = 0 is therefore given by the
binomial distribution:

ci(t = 0) =
(
n

i

)
(ρ0)

i(1− ρ0)
n−i, (10)
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which defines the initial conditions for the system given by
Equation (4). With Equation (9) we can now solve Equation (4)
numerically using the initial conditions (10) and thus calculate
the total fraction of infected nodes at a given time for the
networks of interest. In the next section we derive an early time
approximation to the CA scheme to analytically find examples
where quicker diffusion occurs on clustered networks than on the
corresponding randomnetwork, similar to the results of Centola’s
experiments.

4.2. Linearization of the CA Model
In the previous section we derived the CA scheme, which
captured the presence of clustering on clique-type networks. We
wish to gain insight into the early spreading behavior produced
by our complex contagion model (3) on the clustered networks
outlined in Section 2. As previously mentioned, the CA scheme
can be solved numerically using standard differential equation
solvers, however it is also possible to find an approximate
analytic solution to the early-time behavior. This is done by
first perturbing the system (4) about a suitable fixed point and
then linearizing the solution. The fixed point of interest is that
corresponding to no infected nodes in the network (c0 = 1 and
ci = 0 for i ≥ 1). We perturb this fixed point by introducing a
small positive parameter ǫ such that

c0 = 1+ ǫ̃c0,

ci = ǫ̃ci for i > 0,
(11)

where c̃i are time-dependent quantities. Applying Equation (11)
to the system of Equation (4) yields the perturbed system of
equations

ǫ
dc̃0

dt
= −nγ0 − ǫnγ0̃c0

ǫ
dc̃1

dt
= nγ0 + ǫnγ0̃c0 − ǫ(n− 1)γ1̃c1

ǫ
dc̃i

dt
= ǫ(n− i+ 1)γi−1̃ci−1

− ǫ(n− i)γĩci for i > 1.

(12)

The γi’s require the approximation of 5m−1
ie

, the probability that
a susceptible node in a chosen clique has ie infected neighbors
in the remaining m − 1 other cliques. These probabilities were
built from the PGF defined by Equation (7) and applying the
perturbation of Equation (11) to this results in

P(y) = 1+
ǫ

n

n∑

i=0

(
(n− i)̃ciy

i − (n− i)̃ci

)
+O(ǫ2), (13)

where we are considering the asymptotic limit ǫ → 0 throughout
this discussion and neglecting terms of order ǫ2 and higher.
We can find the PGF that corresponds to the distribution of
probabilities for 5m−1

ie
by noting that

[
P(y)

]m−1 = 1+ ǫ
m− 1

n

n∑

i=0

(
(n− i)̃ciy

i − (n− i)̃ci

)
+O(ǫ2).

(14)

Next, we use Equation (14) to retrieve the required probabilities
via the usual method of differentiation (Equation (8)). Using this
relationship we find the first-order approximations

5m−1
0 ≈ 1− ǫ

(m− 1)

n

n∑

i=0

(n− i)̃ci,

5m−1
i ≈ ǫ

m− 1

n
(n− i)̃ci for i = 1 to n.

(15)

We are now able to approximate the γi’s by applying Equation
(15) to Equation (9) and using the fact that F0 = 0 (i.e., nodes
require an infected neighbor before they can become infected),
resulting in the following

γi =
n∑

ie=0

5m−1
ie

Fi+ie

= Fi − Fiǫ
m− 1

n

n∑

ie=0

(n− ie )̃cie

+ ǫ
m− 1

n

n∑

ie=1

(n− ie )̃cieFie+i +O(ǫ2).

(16)

Inserting these rates into Equation (12) and noting that γ0 isO(ǫ)
while γi = Fi +O(ǫ) for i ≥ 1, we obtain the linearization of the
CA system:

dc̃0

dt
= −(m− 1)

n∑

ie=1

(n− ie )̃cieFie +O(ǫ),

dc̃1

dt
= (m− 1)

n∑

ie=1

(n− ie )̃cieFie − (n− 1)F1̃c1 +O(ǫ),

dc̃i

dt
= (n− i+ 1)Fi−1̃ci−1 − (n− i)Fĩci +O(ǫ) for i > 1.

(17)

Now we have a system of equations that describes the early
spreading behavior for a general transition rate function Fi.
We want to use this to find a linearized solution (ρl(t))
that approximates the behavior of the CA scheme. Let C =
(̃c0, ..., c̃n−1)

T and further define dC/dt = f(C, t). The linearized
system (17) is defined by

dC

dt
= JC, (18)

where J is the n× n Jacobian matrix with element ∂fi/∂Cj in the
ith row and the jth column. Note that the c̃n variable does not
feature in our calculation of J because it is fully determined by the
relationship c̃n = 1 −

∑n−1
i=0 c̃i. The general solution of systems

like (18) typically can be written as

C(t) =
n−1∑

j=0

ξje
λjtuj, (19)

where ξj is a constant, λj is the eigenvalue and uj is the
corresponding eigenvector of J [24]. The constants ξj can be
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calculated by using the initial conditions C(t = 0) =
∑n

j=0 ξjuj
(refer to Equation (10) for initial conditions for the system).
The fixed point that we considered was c0 = 1 and ci = 0
for i > 0, where there were no infected nodes on the network.
Our linearized solution is therefore valid for small perturbations
from this, i.e., when the initial fraction of infected nodes is small
(ρ(t) is small and O(ρ2

0 ) terms are negligible). The linearized
approximation to the total fraction of infected nodes at time t
is given by

ρ(t) ≈ ρl(t) =
1

n

n∑

i=0

i c̃i(t). (20)

This formulation now allows us to examine the early-time
spreading behavior that is produced by our complex contagion
model (and see Appendix B for a simple worked example). It is
also possible to find the level of social reinforcement β for which
a clustered network will propagate a complex contagion faster
than a random network. The largest eigenvalue of the Jacobian
matrix (which we denote λmax) appearing in the linearization
Equation (19) provides the largest contribution to the early-time
growth of Equation (20), and so to ρ(t). Thus, by comparing the
λmax value for each network for a given β and noting which
network has the larger value, we can infer the case where the
complex contagion will diffuse faster, at least at early times.
This will be used in the following section in conjunction with
the full CA scheme and the linearized solution to examine the
complex contagion model on networks with various levels of
clustering.

5. Results

In Section 4.1 we described the clique approximation (CA)
scheme that we use to account for the presence of clustering in
clique-type networks for monotone binary-state dynamics. We
also linearized the CA scheme to approximate the early-time
spreading behavior (Section 4.2). In this section, we compare the
accuracy of the full CA scheme and the linearized approximation
to Monte Carlo (MC) simulations of the complex contagion
model given by Equation (3) (for details on simulations please
refer to Appendix C). This allows us to establish the accuracy
of both the CA scheme and its linearized approximation across
clique-type networks and varying level of social reinforcement (as
parameterized by β).

Recall that we consider three z-regular network topologies
with degree 6 (refer back to Figure 1). First, a random network
(n = 2 and m = 6), which has the lowest density of triangles
(C△ = 0), then amoderately clustered network where each clique
has three nodes and each node is part of three cliques (C△ = 0.2),
and lastly, a highly clustered network where each clique has four
nodes and each node is a part of 2 cliques (C△ = 0.4). Figure 6
presents the results across the three topologies that we consider
and for two values of β . The CA method clearly provides a
highly accurate approximation to ρ(t) across the three network
topologies. The linearized approximation of the CA scheme also
provides accurate approximations for the early-time growth of
ρ(t). However, once the fraction of infected nodes becomes large

during the later stages of spreading the approximation begins to
break down.

Now we examine the spreading behavior that our complex
contagion model FCCi produces on clustered networks. In the
definition of FCCi the parameter β is the rate at which a susceptible
node will become infected if more than one of its neighbors is
infected. As β increases we expect the infection to spread faster
on the two clustered networks than on the random network (at
least at early times) because of the existence of reinforcement
signals from triangles.

For comparison, we consider β = 1, meaning that a
susceptible node with one infected neighbor has the same
infection rate as a susceptible node with multiple infected
neighbors. From Figures 6A,C we see that in this case the
behavior spreads fastest on the random (C△ = 0) network,
because the random network allows the maximum number of
unique exposures from newly infected nodes.

However, for larger values of β it becomes more advantageous
for early-stage spreading to have a non-zero density of triangles
than a tree-like structure in the local topology. By increasing β

to 6 we find this is the case (see Figure 6D). Note that at early
times (before t = 1) the random network consistently infects a
lower fraction of the population than the clustered networks; we
analyze this phenomenon further below.

Empirical observations of spreading behavior on networks
shows that typically only a small fraction of the total network
ever adopts a behavior. Centola [15] observed that the average
percentage of the network that adopted was 38 and 53% for the
random and clustered networks respectively. The networks used
in his experiments were relatively small, with N ≤ 144 nodes.
If our complex contagion model is reflective of the spreading
behavior in real life contagions we should observe the same
behavior for small ρ(t) which corresponds to the early-time
behavior (which we consider in Figure 8). Before we examine
this in detail we calculate the critical reinforcement levels for
which we expect clustered networks to produce faster early time
spreading than the random network (at least in the limit of very
large network size, N → ∞, for which our approximations are
valid).

As mentioned in Section 4.2, by finding the network topology
with the largest λmax for a given β we can identify which network
will produce the fastest diffusion of an early-stage complex
contagion. For the random network topology (C△ = 0) the
largest eigenvalue is λmax = 4. For the moderately clustered
network topologies the largest eigenvalue is λmax = 1/2(2 −
β+

√
4+ 20β + β2), while the highly clustered network topology

has largest eigenvalue λmax = 1/2(−β +
√

β
√
24+ β). By

plotting how these vary with β we can identify the level of
social reinforcement required to produce faster spreading on the
clustered networks than on the random network at early time.
From Figure 7 we note that for β > 4 (respectively, β > 8)
the moderately (highly) clustered network should produce faster
diffusion than the random network. The main limitation of the
predicted critical β ’s is that the exponential growth rate λmax

must dominate in Equation (19) over a sufficient range for its
contributions to become pronounced. To obtain this behavior ρ0
must be very small. This ensures that the initial transient behavior
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FIGURE 6 | Fraction ρ(t) of infected nodes from CA and linearized solution, compared with Monte Carlo simulations (symbols), on random (red),

moderately clustered (blue), and highly clustered (green) networks. (A) β = 1 , CA scheme; (B) β = 6, CA scheme; (C) β = 1, linearized; (D) β = 6, linearized.

Symbols represent the mean of 10 Monte Carlo realizations (the error bars indicate one standard deviation above and below the mean), solid lines represent the CA

results, and dashed lines the linearized approximation. Note that the y-axis of (C,D) are logarithmic. The initial fraction of infected is ρ0 = 10−3, simulated network

sizes are N = 105, using step size dt = 10−3.

FIGURE 7 | Comparison of λmax for varying β on the three network

topologies. The largest eigenvalues for the moderately clustered network

(blue) and the highly clustered network (green) intercept the random case (red)

at β = 4 and β = 8, respectively.

(the contributions from the other eigenvalues) dies off quickly
and the exponential growth at rate λmax dominates. Therefore, in
Figure 8 we show the predicted fraction of infected nodes from
the full CA model at early stages for a very small fraction of
infected nodes, ρ0 = 10−8, which would correspond to a very
large network.

Similar to what we observed in Figure 6, the level of social
reinforcement dictates how fast the diffusion spreads on each
network at early times in Figure 8. We also observe that the

order of the networks that provide the fastest diffusion is well
reflected by the comparison of each network’s λmax illustrated
in Figure 7. More specifically, in Figure 8A where β = 2, we
see that the level of social reinforcement is not high enough to
cause faster spreading on the clustered networks than on the
corresponding random network. Increasing β to 5 we observe
faster spreading on the moderately clustered network than on the
random network, with the highly clustered network producing
the slowest diffusion (see Figure 8B). Increasing β further to
10 we observe faster spreading of both clustered networks over
the random network (Figure 8C), again in accordance with what
is expected from Figure 7. Although the critical levels of social
reinforcement predicted in Figure 7 are accurate for ρ0 ≪ 1,
qualitatively similar behavior is produced for larger values of
ρ0 (refer to Figure 6), but with stronger influence of initial
transients.

Finally, we show for completeness that our complex contagion
model can produce faster spreading on a hexagonal lattice
compared with a random network, which mimics Centola’s
experimental setup (see Appendix A for details). The topology
of the hexagonal lattice is illustrated in Figure 10A, and it has
clustering coefficient of 0.4. We simulate the complex contagion
on this network using theMonte Carlomethod on large networks
(N = 105) with the hexagonal lattice structure.

The results of the simulations are compared to the expected
diffusion on a random and highly clustered network of the
same degree (z = 6) using the CA method (see Figure 9).
We find similar results to those noted in the analysis of the
clique-type networks. For low levels of social reinforcement
(β ≤ 3) the random network provides the fastest spreading
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FIGURE 8 | Fraction ρ(t) of infected nodes on three network topologies, using the CA scheme: (A) β = 2; (B) β = 5; (C) β = 10. Note that the y-axis is

logarithmic and ρ0 = 10−8.

FIGURE 9 | Fraction ρ(t) of infected nodes on random network (solid red line), highly clustered clique-type network (solid green line) and hexagonal

lattice (blue points). Solid lines represent the results from the CA method. Symbols represent the mean of 10 Monte Carlo realizations (the error bars indicate one

standard deviation above and below the mean). (A) β = 1; (B) β = 3; (C) β = 4; (D) β = 10. Parameters ρ0, N and dt are as in Figure 6.

FIGURE 10 | Network topologies. Note that Centola used networks of sizes 98, 128, and 144. These networks are wrapped around a torus to maintain the degree

of each node. (A) hexagonal neighborhood; (B) Moore lattice; (C) random graph.

(see Figures 9A,B). However, when β is increased to 4 we
observe faster diffusion on the hexagonal lattice and the highly
clustered network than on the corresponding random network

(see Figure 9C). Both the hexagonal lattice and the highly
clustered network appear to have roughly the same critical level
of social reinforcement for this initial fraction of infected nodes
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(ρ0 = 10−3). By increasing β further to 10 (see Figure 9D) we
find that the hexagonal lattice provides the fastest diffusion at
early time.This is interesting as both the highly clustered network
and the hexagonal lattice have the same clustering coefficient
of C△ = 0.4. This is explained by the difference in structure
between the hexagonal lattice and the highly clustered network.
The hexagonal lattice has a higher density of cycles of length
greater than 3. The highly clustered network on the other hand
has a lower density of cycles of length greater than 3 as each
node is randomly connected to each clique. This results in
faster spreading on the hexagonal lattice at early time than on
the highly clustered network due to the increased chance of
a susceptible node receiving multiple exposures from infected
nodes. This qualitatively reproduces the pattern of spreading
behavior observed by Centola, where for a sufficient level of
social reinforcement it is possible to produce faster spreading on
clustered networks than a random network of the same degree.
In the next section we conclude the paper with a summary,
some comments on the results and provide possible directions
for future research.

6. Conclusion

In this paper we aimed to model—in an analytically tractable
fashion—the spreading of behaviors such as the adoption of
new innovations. Such spreading processes are influenced by
the social networks that connect people. Centola performed an
experiment where he tracked the diffusion of such behavior (the
use of a health forum) across artificially created networks [15].
These networks allowed him to control the level of clustering
(density of cycles of length three) in the local topology and to
isolate its effect on how the behavior diffused (refer to Figure 10).
He observed that nodes that received multiple reinforcing signals
had a higher propensity to adopt compared to those that only
received one signal, which was much more beneficial to the
spreading of the contagion on the clustered networks. This
resulted in the contagion spreading farther and faster on the
clustered-lattices than on the corresponding random networks.

Our goal was to find a suitably simple characterization for
complex contagion that remained amenable to analysis. We
proposed modeling the complex contagion using monotone
binary-state dynamics with the transition rate function defined
by FCCi (see Section 3). Each node is either susceptible (has not
yet adopted) or infected (adopted). This simple characterization
proved to be quite effective in enabling us to obtain analytical
insight. We compared the spreading behavior produced by
the complex contagion model across three topologies with
varying levels of clustering (see Figure 1 for the topologies
and Figure 6 for results). By varying the propensity for a
node to become infected given multiple infected neighbors we
were able to produce faster spreading on clustered networks
then on the random network, which is qualitatively similar

behavior to that observed by Centola (Figure 6B). We also
showed, via simulation, that our complex contagion model could
produce similar spreading behavior between a hexagonal lattice
and comparable random network as the previously mentioned
analytic results for the clique-type networks (see Figure 9).

None of these results could have been obtained without
tackling the problem of approximating monotone binary-state
dynamics on clustered networks. As described in Section
4.1, standard approximation schemes (mean-field and pair
approximation) perform poorly in the presence of clustering.
They are heavily dependent on the assumption that the network
is locally tree-like (that is no cycles of length three in the
network). However, the use of clustered networks is crucial
to the examination of the complex contagion model, as the
presence of triangles are central to the social reinforcement
mechanism that we wished to examine. This necessitated the
development of the CA method which accurately accounted for
the effects of clustering in the local topology of the clique-based
networks we examined (see Section 4 for details). The CAmethod
proved to be highly accurate for these types of topologies. A
linearized approximation to the early-time spreading behavior of
the complex contagion model was obtained. Using this we were
able to calculate critical levels of social reinforcement required for
the contagion to spread faster on clustered networks than on the
corresponding random network (refer to Figure 7).

The characterization of a complex contagion spreading
process by a single-parameter function in Equation (3) provided
a suitable balance between simplicity and realistic behavior.
However, the approximation scheme we develop is applicable
to any Fi function, and so more realistic models can easily
be examined in this framework. Further examination of more
realistic characterization of complex contagions should also be
developed, for example including a time-decay in the memory of
each node. It is reasonable to assume that the true mechanism
that governs complex contagion depends on the interplay
between the strength of social reinforcement and also temporal
effects, such as the timing between exposures.

Author Contributions

JG and PF designed the research and developed the
approximation schemes; DOS and GOK performed the
calculations and numerical simulations; DOS led the writing of
the paper.

Acknowledgments

This work was partly funded by Science Foundation Ireland
(awards 11/PI/1026 and 12/IA/I683), the Irish Research Council
(award GOIPG/2014/887) and by the European Commission
through FET-Proactive project PLEXMATH (FP7-ICT-2011-8;
grant number 317614).

Frontiers in Physics | www.frontiersin.org 10 September 2015 | Volume 3 | Article 71

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


O’Sullivan et al. Modeling complex contagion on clustered networks

References

1. Newman ME. Properties of highly clustered networks. Phys Rev E (2003)

68:026121. doi: 10.1103/PhysRevE.68.026121

2. Ugander J, Backstrom L, Marlow C, Kleinberg J. Structural diversity

in social contagion. Proc Natl Acad Sci USA. (2012) 109:5962–6. doi:

10.1073/pnas.1116502109

3. Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stata R,

et al. Graph structure in the web. Comput Netw. (2000) 33:309–20. doi:

10.1016/S1389-1286(00)00083-9

4. Maslov S, Sneppen K. Specificity and stability in topology of protein networks.

Science (2002) 296: 910–3. doi: 10.1126/science.1065103

5. Aral S, Muchnik L, Sundararajan A. Distinguishing influence-based contagion

from homophily-driven diffusion in dynamic networks. Proc Natl Acad Sci

USA. (2009) 106:21544–9. doi: 10.1073/pnas.0908800106

6. Baños RA, Borge-Holthoefer J, Moreno Y. The role of hidden influentials in

the diffusion of online information cascades. EPJ Data Sci. (2013) 2:1–16. doi:

10.1140/epjds18

7. Nematzadeh A, Ferrara E, Flammini A, Ahn YY. Optimal network

modularity for information diffusion. Phys Rev Lett. (2014) 113:088701. doi:

10.1103/PhysRevLett.113.088701

8. Borge-Holthoefer J, Baños RA, González-Bailón S, Moreno Y. Cascading

behaviour in complex socio-technical networks. J Complex Netw. (2013)

1:3–24. doi: 10.1093/comnet/cnt006

9. Centola D, Macy M. Complex contagions and the weakness of long ties. Am J

Sociol. (2007) 113:702–34. doi: 10.1086/521848

10. Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, et al.

Identification of influential spreaders in complex networks. Nat Phys. (2010)

6:888–93. doi: 10.1038/nphys1746

11. Porter MA, Gleeson JP. Dynamical systems on networks: a tutorial (2014).

arXiv preprint arXiv:1403.7663.

12. Newman ME, Park J. Why social networks are different from other types of

networks. Phys Rev E (2003) 68:036122. doi: 10.1103/PhysRevE.68.036122

13. Watts DJ, Strogatz SH. Collective dynamics of small-worldnetworks. Nature

(1998) 393:440–2. doi: 10.1038/30918

14. Shirley MD, Rushton SP. The impacts of network topology on disease spread.

Ecol Complex. (2005) 2:287–99. doi: 10.1016/j.ecocom.2005.04.005

15. Centola D. The spread of behavior in an online social network experiment.

Science (2010) 329:1194–7. doi: 10.1126/science.1185231

16. Lü L, Chen DB, Zhou T. The small world yields the most effective information

spreading. N J Phys. (2011) 13:123005. doi: 10.1088/1367-2630/13/12/123005

17. Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks.

Phys Rev Lett. (2001) 86:3200. doi: 10.1103/PhysRevLett.86.3200

18. Gleeson JP. Binary-state dynamics on complex networks: pair approximation

and beyond. Phys Rev X (2013) 3:021004. doi: 10.1103/PhysRevX.3.

021004

19. Hébert-Dufresne L, Noël PA, Marceau V, Allard A, Dubé LJ. Propagation

dynamics on networks featuring complex topologies. Phys Rev E (2010)

82:036115. doi: 10.1103/PhysRevE.82.036115

20. Newman MEJ. Networks: An Introduction. New York, NY: Oxford University

Press (2010). doi: 10.1093/acprof:oso/9780199206650.001.0001

21. Newman MEJ. The structure and function of complex networks. SIAM Rev.

(2003) 45:167–256. doi: 10.1137/S003614450342480

22. Miller JC. Percolation and epidemics in random clustered networks. Phys Rev

E (2009) 80:020901. doi: 10.1103/PhysRevE.80.020901

23. Johnson NL, Kemp AW, Kotz S. Univariate Discrete Distributions. Vol. 444.

Hoboken, NJ: John Wiley & Sons (2005). doi: 10.1002/0471715816

24. Drazin PG. Nonlinear Systems. Vol. 10. Cambridge, UK: Cambridge

University Press (1992).

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 O’Sullivan, O’Keeffe, Fennell and Gleeson. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org 11 September 2015 | Volume 3 | Article 71

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


O’Sullivan et al. Modeling complex contagion on clustered networks

Appendix

A. Centola’s Experimental Design

Centola investigated the effects of network structure on
the spread of behavior through artificially structured online
communities. These networks were carefully created to allows
for direct comparison between random graphs (low C△) and
clustered lattices (high C△).

In his experiment each network represents the connections
of an artificially created on-line health community. Each
participant created an anonymous on-line profile, they were
then linked to other participants according to a predefined
topology (see Figure 10 for examples). Each participant could
not communicate with each other directly but were informed of
their activities. Participants made decisions on whether or not
to adopt a behavior based on their neighbors’ activity, in this
case the registration to a health forum. The diffusion process
was initiated by selecting a random seed node, which signaled
(via an automatically sent email) its neighbors, encouraging
them to register for the forum. Every time a participant
adopted the behavior (registered to the forum), messages were
sent to his network neighbors. As the number of nearest
neighbors that registered increased, the participant receivedmore
signals. Several trials were conducted on two different clustered
topologies and two unclustered topologies.

The Hexagonal lattice and Moore lattice corresponded to the
clustered topologies used, each having a fixed degree of six and
eight for all nodes with a clustering coefficient of 0.4 and 0.43
(see Figures 10A,B), respectively. Each clustered topology was
then compared to a random network, where each node has the
same degree but the links were randomly assigned, as illustrated
in Figure 10C (a random network with fixed degree). Random
graphs have the lowest clustering coefficients of all the graphs that
Centola used.

B. Linearization - Worked Examples

In this section we provide a simple example of the linearized
approximation of the CA scheme described in Section 4.2. The
spreading dynamics that we will approximate is the behavior
of our complex contagion model defined in Section 3 on a
z-regular random network (zero clustering case). Recall that
random networks can be described by n = 2 and m = 6, where
each node in the network has degree six (see Figure 1). Applying
these values to the linearized system of Equation (17) we have

dc̃0

dt
= −5

2∑

ie=1

(2− ie )̃cieF
CC
ie

+O(ǫ),

dc̃1

dt
= 5

2∑

ie=1

(2− ie )̃cieF
CC
ie

− (2− 1)FCC1 c̃1 +O(ǫ).

(A1)

Recall that we do not require the c̃n variable as it is fully
determined by the other c̃i variables. The next stage in this

approximation is to compute the Jacobain matrix for this system:

J =
(
0 −5
0 4

)
. (A2)

Matrix (A2) has eigenvalues λ1 = 4 and λ2 = 0, each
with associated eigenvectors u1 = (−5, 4)T and u2 =
(1, 0)T , respectively. Applying these to Equation (19), we
obtain

C(t) = ξ1e
λ1tu1 + ξ2e

λ2tu2. (A3)

The constants (ξ1 and ξ2) can be easily obtained by noting that
C(t = 0) =

∑n
j=0 ξjuj must equal the initial conditions of

Equation (10). We ignore O(ρ20) terms, which yields ξ1 = ρ0/2
and ξ2 = 1− ρ0/2. With these constants we are able to calculate
the linearized approximation to the fraction of infected nodes on
a z-regular random network given by Equation (20) as

ρl(t) =
3

2
ρ0e

4t −
ρ0

2
. (A4)

Notably, in this simple example we find that β (FCCi for i ≥ 2)
does not feature in the result, this is a direct consequence of
the assumption that the local topology generated by n = 2 and
m = 6 is locally tree-like. Equation (A4) provides an accurate
approximation to the early-time spreading behavior of a complex
contagion on a tree-like network of degree 6, provided that the
initial fraction of infected nodes is small (see Figure 6).

C. Simulation Method

To simulate monotone binary-state dynamics we use Monte
Carlo (MC) simulation. To represent the network in the
simulations we use an adjacency matrix A, where

Aij =
{
1 if there is a link between nodes i and j,

0 otherwise,
(A5)

defines an N × N matrix, where N is the number of nodes.
Given this matrix we know the connections between nodes. We
track the state of each node using the vector v (a N × 1 vector).
The element vi is 0 if the node is susceptible and 1 if infected.
To initialize the simulation we randomly assign a fraction ρ0 of
nodes to the infected state at time 0. We wish to simulate the
dynamics for the complex contagion model defined in Section 3
by Equation (3). The transition rates in these models depend on
the number of infected neighbors of a node. Let η be an N × 1
dimensional vector where ηi is the number of infected neighbors
of node i. The vector of ηi values can be easily calculated using
the matrix multiplication

η = Av. (A6)

The probability that node i will change state is given by p =
Fηidt, where Fηi is the transition rate for node i (which has ηi

infected neighbors). This gives the update rule for the state of
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node i, where vi = 1 if p > u, for u drawn from a uniform
distribution on [0, 1]. The fraction of infected nodes is then
updated (ρ(t + dt) = 1

N

∑
v) and time, t, is advanced by dt.

These steps are repeated until either ρ(t) = 1 or until a maximum
time is reached (tmax). This process yields one realization of the

dynamics, it is repeatedM times (the number of MC realizations)
and the ensemble-average fraction of infected nodes is calculated
to approximate the expected behavior of the dynamics. The
parameters used for simulations are as follows unless otherwise
stated: N = 105, ρ0 = 10−3, tmax = 3, dt = 10−3 andM = 10.
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