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Quantum-like modeling of cognition
Andrei Khrennikov*

Department of Mathematics, Linnaeus University, Växjö, Sweden

This paper begins with a historical review of the mutual influence of physics and

psychology, from Freud’s invention of psychic energy inspired by von Boltzmann’

thermodynamics to the enrichment quantum physics gained from the side of psychology

by the notion of complementarity (the invention of Niels Bohr who was inspired by William

James), besides we consider the resonance of the correspondence between Wolfgang

Pauli and Carl Jung in both physics and psychology. Then we turn to the problem of

development of mathematical models for laws of thought starting with Boolean logic

and progressing toward foundations of classical probability theory. Interestingly, the laws

of classical logic and probability are routinely violated not only by quantum statistical

phenomena but by cognitive phenomena as well. This is yet another common feature

between quantum physics and psychology. In particular, cognitive data can exhibit a kind

of the probabilistic interference effect. This similarity with quantum physics convinced a

multi-disciplinary group of scientists (physicists, psychologists, economists, sociologists)

to apply the mathematical apparatus of quantum mechanics to modeling of cognition.

We illustrate this activity by considering a few concrete phenomena: the order and

disjunction effects, recognition of ambiguous figures, categorization-decision making.

In Appendix 1 of Supplementary Material we briefly present essentials of theory of

contextual probability and a method of representations of contextual probabilities by

complex probability amplitudes (solution of the “inverse Born’s problem”) based on a

quantum-like representation algorithm (QLRA).

Keywords: quantum-like models, cognition and psychology, two slit experiment, order and disjunction effects

1. Introduction

Recently, scientists working in various disciplines (physicists, psychologists, economists,
sociologists) started to apply the mathematical apparatus of quantum mechanics (QM), [1, 2]
especially quantum probability calculus [3] (based on Born’s rule), to multi-disciplinary problems
[4–36]. Some physicists regard such an activity as totally “illegal.” They argue that the mathematical
apparatus of QM was designed specifically for description of particular physical phenomena and it
cannot be used in, e.g., psychology. Why? Some elaborate that the apparatus of QM is relevant
to micro phenomena only (though this viewpoint is debatable even in the quantum physics
community). One aim of this paper is to convince physicists, especially those working in the
quantum information theory and quantum probability, that applications of the methods of QM
to cognition can be justified. We show that the present sharp separation of subjects of physics and
psychology/cognition is only a peculiarity of the present moment, that 19th and the first part of
20th century were characterized by mutual influence of physical and psychological theories and
the fruitful exchange of ideas between the brightest representatives from both sides. One of the
best known examples is the impact made by psychology on QM which resulted in borrowing the
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principle of complementarity [37] by Niels Bohr from William
James’ book [38], see also books of Plotnitsky [39–41]. It
may be less known that, in turn, the idea of complementarity
was elaborated by James under the influence of the 19th
century studies in thermodynamics which led him (as well as
later Freud [42, 43]) to the notion of psychic energy; initially,
complementarity in psychology was about complementarity of
different representations of psychic energy [38].

Meanwhile, we point out that quantum-like modeling of
cognition considered here must be distinguished from theories
of physical quantum brain in the spirit of Hameroff [44], Penrose
[45, 46]. We work in the purely operational framework: it was
found that some experimental studies in cognitive psychology,
economics, and social science generate statistical data which
match well quantum description of measurements and the
corresponding probabilistic outputs (see e.g., [4, 5, 9, 13, 14,
18]). Therefore, it is natural to model cognition with the aid of
QM formalism. The quantum cognition project does not try to
explain the physiological origin of quantum rules for information
processing and probability, similarly to Copenhageners in QM
(following Bohr [37]). As in physics, this approach does not
exclude a possibility to go beyond the operational quantum
formalism. However, for the moment, there is no commonly
accepted “prequantum model of cognition,” cf., however, with
Khrennikov [47].

In this paper we also mark the turning points in the
development of mathematical models for laws of thought starting
with the book of Boole [48] and considering the foundations of
classical probability theory as established by Kolmogorov [49] in
1933.

Then, we briefly review the violations of the laws of classical
logic and probability in quantum statistical experiments, in
particular we discuss the probabilistic structure of the two slit
experiment [50] and adress no-go theorems [1, 51, 52] (von
Neumann, Kochen-Specker, Bell), see also [53]. We demonstrate
that such violations (including the interference effect) also occur
in statistics collected in cognitive experiments. This similarity
with effects in quantum physics convinced scientists from physics
and cognitive science to apply the mathematical apparatus of QM
to modeling of cognition. For illustration we use two concrete
applications [12–18]: the order and disjunction effects. The
paper is concluded with a short review of recent research in
quantum(-like) cognition, in particular, cognitive applications of
the theory of open quantum systems [23, 24, 30, 31] and positive
operator valued measures [4, 7, 36].

We remark that the use of the mathematical apparatus of
QM for problems of cognition is motivated not only by the
existence of non-classical statistical data collected in cognitive
psychology, but also by similarities of basic features of (1)
states of a system under study and (2) possible observations
performed on the system, in physics and cognition. First feature
concerns the representation of a state (e.g., a mental state) as a
superposition of other (basis) states. In quantum(-like) modeling
of cognition, superpositions play the crucial role because they
represent states of very deep uncertainty which can not be
modeled by classical probability distributions. Secondly, the
representation of incompatible quantum physical observables by

non-commuting operators also corresponds well to psychological
intuition, since the majority of observables used in psychology,
in particular, in the theory of decision making, exhibit the
order effect. The property of entanglement of the states of two
(or more) different systems is crucial for most peculiar QM
effects (such as quantum teleportation and quantum computing).
Entanglement also plays an important role in cognitive studies
but as an exhibition of contextuality of cognitive phenomena (in
the spirit of Cabello [54]) rather than physical non-locality (see
also [53, 55–58]).

The problem of a proper interpretation of a quantum state
(represented by a wave function) is still one of themost intriguing
problems of quantum foundations [53]. The present situation is
characterized by a huge diversity of interpretations (which can
be considered as a sign of deep foundational crisis). Working
with applications of the QM formalism in new fields of science
one also meets this problem. In QM there are, roughly speaking,
two big classes of interpretations: (a) quantum state is a physical
state of an individual system; (b) quantum state is a special
(probabilistic) representation of information about the results of
possible measurements on an ensemble of (identically prepared)
systems. The first one can be called the physical interpretation
and the second one the information interpretation. Recently, the
latter became very popular in quantum information theory and
led (in its extreme forms) to subjective interpretation of quantum
states, including quantum Bayesianism of Fuchs [59–61] and
the information interpretation of Zeilinger [62, 63], Brukner
[64]. Such interpretations match the ideology of quantum(-like)
cognition. (Though, as we have seen in QM, the problem of
interpretation is very complex, and it would be too risky to try
to fix firmly the interpretation of quantum(-like) states used
in cognitive studies.) Meanwhile, there is one crucial difference
between conventional QM and quantum cognition. In QM, in
accordance with Bohr’s views, there is a system and an observer,
the latter considered as external with respect to the system.
This ideology, although working successfully in experimental
studies of micro-world phenomena, is problematical where the
possibility of separation between a system under observation
and the observer is questionable, e.g., in quantum cosmology.
Trying to solve this problem, the problem of interpretation of
the “wave function of the Universe,” Hugh Everett proposed
the many worlds interpretation of the wave function, probably
the most exotic among all interpretations. In fact, in quantum
cognition we meet the same problem. The brain is a self-observer;
here it is not easy to separate the system under measurement
from the observer. However, it seems that the information
interpretation in the spirit of Zeilinger-Brukner-Fuchs gives a
possibility to resolve it: in the brain, one information subsystem
makes predictions about the result of the observation on another
information subsystem. Still, the problem of interpretation of
the “mental wave function” is complicated. In this paper, we
do not keep to any fixed interpretation, while we are most
sympathetic to the information interpretation. At the same
time we are very cautious (maybe, too cautious) with respect
to the use of the many worlds interpretation for quantum
cognition, in spite of novel possibilities and yet unexplored
ways.
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FIGURE 1 | Hermann von Helmholtz.

2. From Psychology to Physics and Back

Reviewing a variety of definitions from dictionaries and
encyclopedias, we believe that we can safely state the following.
Physics is the science that deals with the properties of matter.
Psychology is the science that deals with mental processes and
behavior. In accordance with the views of Rene Descartes there
are two basic types of substance, material and mental, and one
is not reduced to the other1. Although during the last century
physical reductionism captured the headlines in psychology,
Descartes’ ideology still penetrates the body of modern science.
Naturally, physics and psychology are considered as different
fields of science as they can be, each with its specific theoretical
and experimental methodologies. It seems that there is nothing
or very little in common between them. Most physics students
would probably not like to spend their time studying psychology
courses and vice versa. However, developments in physics
and psychology are connected much stronger than one can
imagine. We can point to a few big names who contributed to
establishing a connection between the two most fundamental
sciences (one about nature and the other about psyche):
Hermann von Helmholtz (Figure 1), Sigmund Freud (Figure 2),
Gustav Theodor Fechner, William James (Figure 4), Niels Bohr
(Figure 3), Carl Jung, Wolfgang Pauli, Albert Einstein,....

Freud was strongly influenced by works of von Helmholtz on
thermodynamics and especially on the energy conservation law2.
He noted similarities between thermodynamics and the human
psyche and developed a kind of mental thermodynamics known
as psycho-dynamics [42, 43]. Freud actively used the notion of
psychic energy (libido) and the law of its conservation. (Primarily
libido represents the sexual energy. However, according to

1It is also a Buddhist dogma that life is comprised of mind and matter.
2Of course, when discussing this law we have to mention the works of Germain

Henri Hess, James Prescott Joule, and Rudolf Clausius. But, for Freud, the

influence of von Helmholtz’s ideas was especially strong. He started his research

in physiology under the supervision of Ernst Brucke who previously worked with

Hermann von Helmholtz.

FIGURE 2 | Sigmund Freud.

FIGURE 3 | Niels Bohr.

Freud, the sexual energy is one of the forms of the psychic
energy which can be transformed into other forms.) At the
first stage of his psycho-dynamical studies Freud was influenced
by the ideas of Fechner: considering physical facts (related to
human body) and mental facts as sides of one reality. Fechner
concluded that both physical and mental phenomena has to
be described by the same mathematical apparatus [65]. (This
remark is very important for us as foretelling the main idea
of this paper: behavior of both mind and matter nicely fits
the framework of the mathematical formalism of quantum
theory).

The notion of psychic energy played an important role in
theorizing of James [38]. Following physicists (who at that time
were already using the field theory) he started to operate with the
notion of psychic field. This psychic field as well as a physical
field can have different modes. This analogy led James [38]
to the fundamental principle of complementary of information
belonging to different modes of consciousness (the words of
James are italicized):
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FIGURE 4 | William James.

“It must be admitted, therefore that in certain persons, at least, the

total possible consciousness may be split into parts which coexist

but mutually ignore each other, and share the object of knowledge

beteen them. More remarkable still, they are complementary.Give

an object to one of the consciousnesses, and by this very act you

remove it from the other or others. Barring a certain common

fund of information , like the command of language, etc., what

the upper self knows the under self is ignorant of, and vice

versa.”

Above we pointed to the “knowledge transfer” in one direction,
from physics to psychology. However, the opposite also took
place. In particular, the principle of complementaritywas invented
in quantum physics by Bohr under the strong influence of James’
“Principles of Psychology” [38] (cf. the above citation with the
principle of complementarity in QM).

Now we point to the famous correspondence between Pauli
and Jung [66] on comparative analysis of foundations of physics
and psychology. These letters were written in a free style
of discussion between friends (and, in part, a patient and a
psychoanalyst)3. This freedom allowed them to express (in
psychoanalytic manner) many thoughts which would be never
presented in formal scientific discussions and publications. From
the letters it is clear that Jung was deeply influenced by quantum
theory in Pauli’s presentation; e.g., Jung wrote to Pauli:

“As the phenomenal world is an aggregate of the processes of

atomic magnitude, it is naturally of the greatest importance to

find out whether, and if so how, the photons (shall we say)

enable us to gain a definite knowledge of the reality underlying

the mediative energy processes Light and matter both behave

like separate particles and also like waves. This ... obliged us to

abandon, on the plane of atomic magnitudes, a causal description

3At the beginning Pauli wanted to discuss with Jung his psychical problems

which might be a subject of psychoanalytic treatment. However, Jung smartly

redirected Pauli to a young female psychoanalyst and the most part of Pauli-Jung

correspondence is about psyche-physics inter-relation.

of nature in the ordinary space-time system, and in its place to set

up invisible fields of probability in multidimensional spaces.”

Inspired by acausal features of quantum mechanics, Jung
developed his famous theory of synchronicity [67]; the theory
about the experiences of two or more events as meaningfully
related, where they are unlikely to be causally related (The
subject sees it as a meaningful coincidence). The use by quantum
physicists of “invisible fields of probability on multidimensional
spaces” strongly supported Jung’s interest in psychic fields,
invisible, probabilistic, and defined not on the physical space time
R4, but on some kind of “mental space,” cf. [68]. This was a
clue to unification of psychic and quantum physical fields in one
psycho-physical field. The idea was very appealing to both Pauli
and Jung and it was one of the topics of their correspondence.
Jung also discussed field models with Einstein, and Einstein’s
attempts to create a unified pure field model of physical reality
(see e.g., [69]), also supported Jung’s studies on psychical fields.
Finally, however, neither the Einstein dream about a purely field
description of physical reality nor the Jung-Pauli dream about
the unified (quantum) psycho-physical field found a rigorous
mathematical realization.

Our discussion onmutual influence of physics and psychology
can be shortly represented as the following (of course,
incomplete) diagram:

[Hess, Joule, Clausius, and von Helmholtz] → [Freud,
Fechner, James]→ [Bohr]↔ [Pauli]↔ [Jung]← [Einstein]...

3. Modeling of Cognition with
Classical-nonclassical Logic vs.
Classical-nonclassical Probability

Now we concentrate on problems in cognition (keeping
in mind our ultimate goal—the quantum modeling in
cognitive psychology). Recall that “cognition” usually treats
psychological functions of an indvidual from the viewpoint
of information processing. (Sometimes “cognition” is treated
more tendentiously as the “science of mind”). We shall use
mathematics as an instrument for linkage of cognition and
physics.

3.1. From Boolean Logic to Kolmogorovian
Probability
In 19th century George Boole wrote the book “An Investigation
of the Laws of Thought onWhich are Founded the Mathematical
Theories of Logic and Probabilities” [48], see also [70]. This was
the first mathematical model of the thinking process based on the
laws of reasoning nowadays known as the Boolean logic. The role
of Boolean logic in modern science is impossible to overestimate,
it plays the crucial role in information theory, decision making,
artificial intelligence, digital electronics. Boolean logic is the basic
mathematical model of classical logic.

One of the most important features of Boolean logic is that
it serves as the basis of the modern probability theory [49]:
representation of events by sets, subsets of some set �, the
so-called sample space, or space of elementary events. The
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system of sets representing events, say F, allows operations of
Boolean logics; F is the so-called σ -algebra of sets4. It is closed
with respect to the (Boolean) operations of (countable) union,
intersection, and complement (or in logical terms “and,” “or,”
“no”). Thus, the first lesson for a physics student is that by
applying any theorem of probability theory, e.g., the law of large
numbers, one has to be aware that paradigm of Boolean logic is
being used. The set-theoretic model of probability was presented
by Kolmogorov in 1933 [49]; it is based on the following two
natural (from the Boolean viewpoint) axioms:

• (AK1) events are represented as elements of a σ -algebra and
operations on events are described by Boolean logic;
• (AK2) probability is represented as a probabilistic measure.

We remind that a probabilistic measure p is a (countably)
additive function on a σ -algebra F : p(∪∞j =Aj) =

∑∞
j = p(Aj)

for Aj ∈ F,Ai ∩ Aj = ∅, i 6= j, which is valued in [0, 1]
and normalized by 1. We also recall the definition of a random
variable as a measurable function, a : � → R5. In classical
probability theory random variables represent observables.

Thus, the second lesson for a physics student is that probability
is an axiomatic theory, as, e.g., geometry. (My experience of
probabilistic discussions with physicists is that only a few of them
understand this. Majority tries to treat probability heuristically,
e.g., as frequency. This approach may work well in applied
research, e.g., with experimental data. However, it may lead to
paradoxic conclusions in foundational studies, as e.g., in the case
of violation of Bell’s inequality, see [53], for details)6.

3.2. Formula of Total Probability, Bayesian
Analysis
One of the basic laws of the Kolmogorovian model, the formula
of total probability (FTP), will play very important role in our
further considerations. Before addressing FTP, we point to an
exceptional role which is played by conditional probability in the
Kolmogorov model. This sort of probabilities is not derived in
any way from “usual probability”; conditional probability is per
definition given by the Bayes formula:

p(B|C) = p(B ∩ C)/p(C), p(C) > 0. (1)

By Kolmogorov’s interpretation it is the probability of an event B
to occur under the condition that an event C has occurred.One can
immediately see that this formula is one of strongest exhibitions
of the Boolean structure of the model; one cannot even assign
conditional probability to an event without using the Boolean
operation of intersection.

4Here the symbol σ encodes “countable.” In American terminology such systems

of subsets are called σ -fields.
5Here measurability has the following meaning. The set of real numbers R is

endowed with the Borel σ -algebra B: the minimal σ -algebra containing all open

and closed intervals. Then for any A ∈ B its inverse image a−1(A) ∈ F . This

gives a possibility to define on B the probability distribution of a random variable,

pa(A) = p(a−1(A)).
6I see a big problem in the absence of mathematically advanced courses in

probability theory for physics students. It seems that education in physics suffers

from this problem throughout the world.

Let us consider a countable family of disjoint setsAk belonging
to F such that their union is equal to� and p(Ak) > 0, k = 1, ....
Such a family is called a partition of the space�.

Theorem 1 Let {Ak} be a partition. Then, for every set B ∈ F, the
following formula of total probability holds

p(B) =
∑

k

p(Ak)p(B|Ak) (2)

Especially interesting for us is the case where a partition is
induced by a discrete random variable a taking values {αk}. Here,
Ak == {ω ∈ � : a(ω) = αk}. Let b be another discrete random
variable. It takes values {βj}. For any βj, we have

p(b = βj) =
∑

k

p(a = αk)p(b = βj|a = αk). (3)

This formula plays a crucial role in classical decision theory:
knowing probabilities of the a-variable and the corresponding
conditional probabilities for the b-variable one can obtain the
“total probability” for any value of the latter. We also point
out that FTP is the cornerstone for the Bayesian procedure
for probability updating which is also widely used in decision
making.

3.3. Probability-geometry: Comparison of
Evolutions
To understand better the role of the axiomatic nature of the
modern set-theoretic model of probability it is useful to make
comparison with another axiomatic theory - geometry. We
can learn a lot from history of development of geometry. Of
course, the biggest name in geometry is Euclid. His axiomatics
of geometry was considered as the only possible for about 2000
years. It became so common that people started to identify
Euclidean model of geometry with physical space. In particular,
Immanuel Kant presented deep philosophic arguments [71] that
physical space is Euclidean. The Euclidean dogma was rejected
as the result of internal mathematical activity, the study of a
possibility of derivation of one of axioms from others. This axiom
was the famous fifth postulate: given a line and a point not on
the line, there is precisely one line parallel to the given one and
containing the given point. Nikolay Ivanovich Lobachevsky was
the first to understand that this postulate can be replaced with one
of its negations. This led him to a new geometric axiomatics, the
model which nowadays is known as Lobachevsky geometry (or
hyperbolic geometry). Thus, the Euclidean geometry started to be
treated as just one of possible models of geometry. This discovery
revolutionized, first, mathematics (with contributions of Gauss,
Bolyai, and especially Riemann) and then physics (Minkowski,
Einstein, Hilbert).

This geometry lesson tells us that there is no reason to
expect that the Kolmogorovian model is the only possible
axiomaticmodel of probability. One can expect that bymodifying
the Kolmogorovian axioms in the same spirit as Lobachevsky
modified the Euclidean axiomes, mathematicians could create
non-Kolmogorovianmodels of probabilitywhichmay be useful for
various applications, in particular in physics. However, in the case
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of probability the historical pathway of development of geometry
was not repeated. Mathematicians did not have 2000 years to
rethink the Kolmogorovian axiomatics...

3.4. Non-Kolmogorovian Nature of Quantum
Probability; No-go Theorems
New physics, QM, intervened brutally in the mathematical
kingdom. The probabilistic structure of QM did not match
classical probability theory based on the set-theoretic approach
of Kolmogorov. At the first stage of development of QM this
mismatching was not so visible. The first sign can be seen in
Born’s rule:

p(x) = |ψ(x)|2, (4)

where ψ(x) is the wave function and p(x) is the probability
to detect a particle at point x. The wave function is
primary here, not the probability. What is encoded in these
complex amplitudes pre-existing behind probabilities obtained in
quantum measurements? One of the most evident consequences
of Equation (4) is violation of the formula of total probability
(FTP), one of the basic laws of classical probability theory, see
Section 4 for details. In the two slit experiment constructive
and destructive interference of the wave functions corresponding
to passing through different slits is probabilistically represented
as violation of FTP, so to say, interference of probabilities.
(Moreover, in QM only such interference of probabilities can
be observed, nothing closer to probability amplitudes, since
“quantum waves” are not directly approachable).

John von Neumann was the first to pay attention to the
peculiar probabilistic structure of QM as compared to the
probabilistic structure of classical statistical mechanics [1]. In
particular, he generalized Born’s rule to quantum observables
represented by Hermitian operators. For an observable
represented by an operator with purely discrete spectrum, the
probability to obtain the value λ as the result of measurement is
given as

p(λ) = ‖Pλψ‖2, (5)

where Pλ is the projector corresponding to the eigenvalue λ.
(Here A =

∑

λ λPλ).
In his seminal book [1] von Neumann pointed out that,

opposite to classical statistical mechanics where randomness of
the results of measurements is a consequence of variability of
physical parameters such as, e.g., the position and momentum
of a classical particle, in QM the assumption about the existence
of such parameters (for the moment, probably, still hidden
and unapproachable by the existing measurement devices)
leads to a contradiction. This statement presented in Von
Neumann [1] is known as von Neumann no-go theorem, theorem
about impossibility to go beyond the description of quantum
phenomena based on quantum states: it is impossible to construct
a theoretical model providing a finer description of those
phenomena than given by QM7. Thus, von Neumann was sure
that it is impossible to construct a classical probability measure

7This theorem was criticized for unphysical assumptions used by von Neumann

to approach his no-go conclusion; especially strong critique was from the side of

on the space of some hidden variables which would reproduce
probabilities obtained in quantum measurements. Later this
statement was confirmed by other no-go theorems, e.g., of
Kochen and Specker [51] and Bell [52].

3.5. Quantum Logic
These “theorems” are consequences of the mathematical
structure of QM. While classical probability theory is based
on the set-theoretical description, QM is founded on the
premise that events are associated with subspaces (or orthogonal
projectors on these subspaces) of a vector space, complex Hilbert
space. The adoption of subspaces as the basis for predicting
events also entails a new logic, the logic of subspaces (projectors),
which relaxes some of the axioms of classical Boolean logic (e.g.,
commutativity and distributivity).

First time this viewpoint that QM is based on a new type of
logic, quantum logic, was expressed in the book of Von Neumann
[1], where he treated projectors corresponding to the eigenvalues
of quantum observables (represented by Hermitian operators)
as propositions (see also [72]). The explicit formulation of logic
of QM as a special quantum logic is based on the lattice [73]
of all orthogonal projectors. For reader’s convenience, below
we present the mathematical structure of quantum logic (see
[74], for details). However, in principle one can jump directly to
Section 3.6.

3.5.1. Logical Operations on for Projectors
For an orthogonal projector P, we set HP = P(H), its image, and
vice versa, for subspace L of H, the corresponding orthogonal
projector is denoted by the symbol PL.

The set of orthogonal projectors is a lattice with the order
structure: P ≤ Q iff HP ⊂ HQ or equivalently, for any ψ ∈
H, 〈ψ |Pψ〉 ≤ 〈ψ |Qψ〉.

We recall that the lattice of projectors is endowed with
operations “and” (∧) and “or” (∨). For two projectors P1, P2,
the projector R = P1 ∧ P2 is defined as projector onto the
subspace HR = HP1 ∩ HP2 and the projector S = P1 ∨ P2 is
defined as projector onto the subspaceHR defined as the minimal
linear subspace containing the set-theoretic union HP1 ∪ HP2 of
subspacesHP1 ,HP2 : this is the space of all linear combinations of
vectors belonging these subspaces. The operation of negation is
defined as the orthogonal complement: P⊥ = {y ∈ H : 〈y|x〉 =
0 for all x ∈ HP}.

In the language of subspaces the operation “and” coincides
with the usual set-theoretic intersection, but the operations “or”
and “not” are non-trivial deformations of the corresponding
set-theoretic operations. It is natural to expect that such
deformations can induce deviations from classical Boolean logic.

Consider the following simple example. Let H be two
dimensional Hilbert space with the orthonormal basis (e1, e2)
and let v = (e1 + e2)/

√
2. Then Pv ∧ Pe1 = 0 and Pv ∧ Pe2 = 0,

but Pv ∧ (Pe1 ∨ Pe2 ) = Pv. Hence, for quantum events, in general
the distributivity law is violated:

Bell [52], the author of another famous no-go theorem; calmer critical arguments

were presented by Ballentine [2]. (We also remark that, although in the modern

literature the von Neumann statement is called “theorem,” in the German edition

it was called an “ansatz”).
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P ∧ (P1 ∨ P2) 6= (P ∧ P1) ∨ (P ∧ P2) (6)

As can be seen from our example, even mutual orthogonality of
the events P1 and P2 does not help to save the Boolean laws8.

We remark that for commuting projectors quantum logical
operations have the Boolean structure. Thus, non-commutativity
can be considered as algebraic representation of non-classicality
of quantum logic. In particular, for a single observable
(with purely discrete spectrum) A =

∑

λ λPλ, projectors
corresponding to different eigenvalues are orthogonal and, hence,
commutative. Therefore, deviations from classical logic and
probability can be found only through analysis of results of a few
incompatible measurements.

The idea that cognition and quantumness have something in
common has been discussed during last 80 years, starting with
the philosophic studies of Alfred North Whitehead.

3.6. Toward Quantum Modeling of Cognition
As we have seen, quantum logic relaxes some of the axioms
of classical Boolean logic, e.g., commutativity and distributivity.
Human judgments are not always commutative (order effects
are pervasive) and often violate the probabilistic implications
of the distributive axiom. The principles of QM resonate with
deeply rooted psychological intuitions and conceptions about
human cognition and decision. Therefore, it is natural to
try to use the mathematical apparatus, developed to describe
the aforementioned quantum deformations of Boolean logics,
to model cognition and, in particular, to apply quantum
measurement theory to model decision making. Also, the
mathematical apparatus of QM is actively applied to probabilistic
problems of psychology, cognitive science, social science,
economics, and finances (see e.g., the monographs [4–7]).

We remark that non-commutativity of incompatible
observables can be considered as the algebraic representation
of the principle of complementarity. Thus, the loop in the
inter-relation of physics and psychology was finally closed:
complementarity came back to psychology, but in the advanced
mathematical form.

We remark that in QM probabilities can only be expressed
through elements of quantum logics, see Equation (5). Thus,
non-classicality is a statistical effect. In the same way non-
classicality of human reasoning can be observed only as a
statistical effect. In fact, such an effect has been well known
in psychology for long, but it was interpreted as irrational

behavior of people which was statistically exhibited in the form
of various probability fallacies. Their role (both in psychology
and economics) was emphasized in the influential Tversky (over
30,000 citations), Kahneman (Nobel prize in economics) research

8At first glance, representation of events by projectors/linear subspaces may look

exotic because of the very common use of the set-theoretic representation of

events in the modern classical probability theory. We want to fight this prejudice

and support the view that alternatives are possible and sometimes desirable. The

tradition to represent events by subsets was firmly established by Kolmogorov [49]

only in 1933. We remark that before him the basic classical probabilistic models

were not of the set-theoretic nature. For example, the main competitor of the

Kolmogorov model, the von Mises frequency model [75], was based on the notion

of a collective (see [76], for formulation of QM on the basis of the von Mises

model).

program [77]: the conjunction and disjunction fallacies, order
effects in decisions, over- and under- extension errors in conceptual
combinations, and ambiguous concepts [78, 79].

In author’s works [4, 10] it was pointed out that violation
of FTP can serve as a statistical test of non-classicality of
data generated by both physical and cognitive phenomena. The
coefficient of interference expressed in the probabilistic terms, see
Equation (9) Section 4 can be interpreted as quantitative measure
of non-classicality (non-Kolmogorovness). These papers deal
with an important case of dichotomous observables of the
inverse Born problem: a complex probability amplitude ψ

is reconstructed with the aid of the interference coefficient,
see Appendix 1 in Supplementary Material for a detailed
presentation. This constructive wave function method is especially
important for cognitive applications. In QM the space geometry
is often used to construct the corresponding wave functions,
e.g., for a free particle with a fixed momentum p, ψ(x) = eixp;
generally one can use the Schrödinger equation in R3 with a
potential V(x) and initial and boundary conditions. The main
problem of the quantum cognition project is that a proper notion
of mental space has not yet been elaborated (cf. [68]). We cannot
directly use physics methods, such as introducing functions (e.g.,
energy) on physical space. A possibility to construct a “mental
wave function” directly from data is properly justified. The author
designed an algorithm for inversion of Born’s rule, the so-called
Quantum-like representation algorithm (QLRA) [4], see Section 8
for a few applications.

Author’s article [10] served as the theoretical basis for a
series of experiments on contextual effect (of Gestalt type) in
recognition of ambiguous figures by Conte et al. [13, 14, 18],
see Section 8.1 for brief presentation of these results. Analysis of
obtained statistical data showed that classical FTP is violated and
that the “belief state” of students participated in the experiment
can be described by a complex amplitude ψ and observables by
non-commutative Hermitian operators.

Busemeyer et al. performed extended studies [5, 12, 16, 25–
27, 32–34], see also the monograph of Busemeyer and Bruza [5],
on violation of FTP for well-known data on probability fallacies
obtained in experiments by Shafir and Tversky, Hofstader,
Grosson and other cognitive psychologists [80–84]. It was shown
that such data can be modeled with the aid of the mathematical
formalism of QM [5]. Besides, Busemeyer et al. lauched the
project on quantum(-like) decision making; see also the pioneer
work of Aerts and Aerts [8], the paper of Phothos and Busemeyer
[16] and the series of works of Asano et al. [23, 24, 30, 31, 35].

4. Violation of Formula of Total Probability
and Non-Kolmogorov Probability Theory

The two slit experiment is the basic example demonstrating that
QMdescribes statistical properties ofmicroscopic phenomena, to
which the classical probability theory seems to be not applicable
(see e.g., Feynman and Hibbs [50]). In this section, we consider
the experiment with the symmetric setting: the slits are located
symmetrically with respect to the source of photons, Figure 5.
Consider a pair of random variables a and b. We select a as the
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slit variable, i.e., a = 0 (the photon passes through the upper slit),
a = 1 (the photon passes through the lower slit), see Figure 5,
and b as the position on the photo-sensitive plate, see Figure 5.
Remark that the b-variable has the continuous range of values,
the position x on the photo-sensitive plate.

For the experimental context with both slits open, see
Figure 6, by Born’s rule Equation (4) the probability that a
photon is detected at position x on the photo-sensitive plate is
represented as

p(b = x) =
∣

∣

∣

∣

1
√
2
ψ0(x)+

1
√
2
ψ1(x)

∣

∣

∣

∣

2

=
1

2

∣

∣ψ0(x)
∣

∣

2

+
1

2

∣

∣ψ1(x)
∣

∣

2 +
∣

∣ψ0(x)
∣

∣

∣

∣ψ1(x)
∣

∣ cos θ, (7)

where ψ0 and ψ1 are two wave functions, whose absolute values
∣

∣ψi(x)
∣

∣

2
give the distributions of photons passing through the slit

i = 0, 1, respectively, see Figures 7, 8
The term

δ(x) =
∣

∣ψ0(x)
∣

∣

∣

∣ψ1(x)
∣

∣ cos θ

FIGURE 5 | Two slit experiment.

FIGURE 6 | Context with both slits are open.

represents quantitively the interference effect of two wave

functions. Let us denote
∣

∣ψi(x)
∣

∣

2
by p(b = x|a = i), then

Equation (7) is represented as

p(b = x) = p(a = 0)p(b = x|a = 0)+ p(a = 1)p(b = x|a = 1)

+δ(x), (8)

where the “interference term” δ has the form:

δ(x) = 2
√

p(a = 0)p(b = x|a = 0)p(a = 1)
×p(b = x|a = 1) cos θ .

(9)

Here the values of probabilities p(a = 0) and p(a = 1) are equal
to 1/2, since we consider the symmetric setting. For a general
experimental setting, p(a = 0) and p(a = 1) can be taken as
the arbitrary non-negative values satisfying p(a = 0) + p(a =
1) = 1. In the above form, the classical probability law—FTP, see
Equation (3),

p(b = x) =
∑

i

p(a = i)p(b = x|a = i), (10)

is violated, and the interference term Equation (9) quantifies
the violation. The additional interference term appears not

FIGURE 7 | Context with only slit1 is open.

FIGURE 8 | Context with only slit0 is open.
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only in the two slit experiment, but in any experiment with
arbitrary incompatible quantum observables represented by non-
commuting Hermitian operators A,B : [A,B] 6= 0 (see [53], for
details).

Now consider two random variables of any origin, from
physics, cognitive science, biology, sociology. Let FTP be violated.
Of course, for a classical probabilist this is impossible, but plenty
of such data exist, see Section 3.6. Here p(b = x) 6=

∑

i p(a =
i)p(b = x|a = i), i.e., a kind of (probabilistic) interference term
appears:

δ(x) = p(b = x)−
∑

i

p(a = i)p(b = x|a = i), (11)

The point is that we cannot use the Kolmogorov probability
model. For example, psychologists can look for special
psychological explanations of such strange data, e.g.,
altruism. However, such a psychological “resolution” does
not change the mathematical problem: how to describe such
data mathematically? The previous analysis of quantum
measurements of the interference type (more generally of pairs
of incompatible quantum observables) demonstrated that the
appearance of the interference type term matches the predictions
of quantum probability theory, where probabilities are based
on complex probability amplitudes. Therefore, it is natural to
use this non-classical probability theory to model phenomena
generating data with non-trivial interference terms which
violate FTP. This was one of the starting points for quantum
probability theory to impact mathematical modeling of cognition
[4, 5, 10, 12].

We remark that (Equation 11) can be (tautologically)
rewritten in the form similar to the formula for quantum
interference (Equation 8) and the interference term can be always
represented similarly: Equation (9):

δ(x) = 2λ(x)
√

p(a = 0)p(b = x|a = 0)p(a = 1)p(b = x|a = 1).
(12)

The only difference is that for arbitrary data we cannot guarantee
that |λ(x)| ≤ 1. Thus, for arbitrary statistical data, we have FTP
with the interference term:

p(b = x) =
∑

i

p(a = i)p(b = x|a = i)

+ 2λ(x)
√

p(a = 0)p(b = x|a = 0)p(a = 1)p(b = x|a = 1).
(13)

5. Savage Sure Thing Principle, Disjunction
Effect

STP [85] If you prefer prospect B0 to prospect B1 if a possible
future event A happens, and you prefer prospect B0 still if future
event A does not happen, then you should prefer prospect B0
despite having no knowledge of whether or not event A will
happen.

Savage’s illustration refers to a person deciding whether or not
to buy a certain property shortly before a presidential election,
the outcome of which could radically affect the property market.

“Seeing that he would buy in either event, he decides that he
should buy, even though he does not know which event will
obtain,” [85], p. 21.

The crucial point is that the decision maker is assumed
to be rational. Thus, the sure thing principle was used as
one of foundations of rational decision making and rationality
in general. It plays an important role in economics in the
framework of Savage’s utility theory.Mathematically Savage’s STP
is a simple consequence of FTP. Thus, this principle, widely
used in economics, is mathematically based on the classical
probability (and Boolean logic). In particular, the Bayes formula
for conditional probabilities (Equation 1) plays the crucial role.
Therefore, rationality determined by this principle is Bayesian
rationality.

Experimentally observed [80, 81] violations of STP were
interpreted by Shafir and Tversky as a new effect, the disjunction
effect (see also Hofstader [82, 83] and Croson [84]). STP was
also confronted by a number of famous (in cognitive psychology,
economics, and decision making) paradoxes, Ellsberg, Allais, and
Simpson paradoxes [6].

As was discovered by professor of cognitive psychology
Jerome Busemeyer, statistical exhibiting the disjunction effect
can be treated as non-classical, violating FTP, and hence
these data has to be described by some non-Kolmogorovian
probability model, e.g., quantum probability. Detailed analysis
of data collected in Shafir and Tversky [81] and Tversky
and Shafir [80] experiments as well as experiments of
other cognitive psychologists was performed by the author
Khrennikov [4]: FTP is violated; the corresponding quantum
representations were constructed. Belowwe consider the simplest
experiment.

In Section 8.3 we produce the quantum-like representation
for statistical data obtained in one of experiments on disjunction
effect which was performed by Tversky and Shafir [80]. By using
the constructive wave function approach and QLRA, see Section
3.6 and Appendix 1 Supplementary Material, we construct the
representation of data with the aid of a complex probability
amplitude, “belief state,” “mental wave function,” such that
experimental probabilities (frequencies) are given by the Born
rule.

6. The General Scheme of Representation
of Measurements in Quantum Physics and
Cognition

In this section we repeat the discussion [36] on similarity between
the schemes of representation of measurements in quantum
physics and cognition.

On a very general level, QM accounts for the probability
distributions of measurement results using two kinds of entities,
called observables A and states ψ (of the system on which the
measurements are made). Let us assume that measurements are
performed in a series of consecutive trials numbered 1, 2, . . .. In
each trial t the experimenter decides what measurement to make
(e.g., what question to ask), and this amounts to choosing an
observable A. Despite its name, the latter is not an observable per
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se, in the colloquial sense of the word. Still, it is associated with
a certain set of values, which are the possible results one can get
when measuring A. In a psychological experiment these are the
responses that a participant is allowed to give, such as Yes and
No.

The probabilities of these outcomes in trial t (conditioned on
all the previousmeasurements and their outcomes) are computed
as some function of the observable A and of the state ψ (t) in
which the system (a particle in quantum physics, or a participant
in psychology) is at the beginning of trial t,

p(A = v in trial t |measurements in trials 1, . . . , t − 1) =

F
(

ψ (t),A, v
)

. (14)

This measurement changes the state of the system, so that at the
end of trial t the state isψ (t+1), generally different fromψ (t). The
change ψ (t) → ψ (t+1) depends on the observable A, the state
ψ (t), and the value v = v (A) observed in trial t,

ψ (t+1) = G
(

ψ (t),A, v
)

. (15)

On this level of generality, a psychologist will easily recognize in
Equations (14, 15) a probabilistic version of the time-honored
Stimulus-Organism-Response (S-O-R) scheme for explaining
behavior [86]. This scheme involves stimuli (corresponding
to A), responses (corresponding to v), and internal states
(corresponding to ψ). It does not matter whether one simply
identifies A with a stimulus, or interprets A as a kind of
internal representation thereof, while interpreting the stimulus
itself as part of the measurement procedure (together with
the instructions and experimental set-up, that are usually
fixed for the entire sequence of trials). What is important is
that the stimulus determines the observable A uniquely, so
that if the same stimulus is presented in two different trials
t and t′, one can assume that A is the same in both of
them.

QM is characterized by linear representation of observables—
by Hermitian operators; pure states are represented by
normalized vectors of complex Hilbert space H. Consider an
observable which ismathematically represented by theHermitian
operator A with purely discrete spectrum: A =

∑

v vPv, where
Pv is the projector onto the eigensubspace corresponding to the
eigenvalue v. Then

p(A = v in trial t |measurements in trials 1, . . . , t − 1) =

F
(

ψ (t),A, v
)

= ‖Pvψ (t)‖2 (16)

and

ψ (t+1) = G
(

ψ (t),A, v
)

=
Pvψ

(t)

‖Pvψ (t)‖
. (17)

This state transform expresses the von Neumann-Lüders
projection postulate of QM and represents the quantum state
update as a back reaction on measurement.

Nowadays these transformations are actively used in
psychology; for example, to describe the order effect [32].

7. Short Review on Various Directions of
Research on Quantum Modeling of
Cognition

As was emphasized in Khrennikov [4], some statistical data
from psychology cannot be described by the standard von
Neumann model in which observables are represented by
Hermitian operators and state transformations (resulting from
the back actions of measurements) by the von Neumann-Lüders
projection postulate. As well as in quantum physics, one
have to use generalized quantum observables represented by
positive operator valued measures (POVMs) with corresponding
state transformers [4, 36]. In quantum physics POVM-type
observables naturally arise in the framework of theory of open
quantum systems describing interaction of a quantum system
with an environment; especially useful is the Markovian
approximation in the form of the Gorini-Kossakowski-
Sudarshan-Lindblad equation. This advanced formalism
was widely applied to problems of cognition, in psychology,
social and political sciences [23, 24, 30, 31, 87]. In this framework
the process of decision making is represented as the process of
interaction of a concrete psychological function with a mental
environment: decision making as decoherence. This approach
was used to model irrational behavior of players in games of the
Prisoner’s Dilemma type. In such games the rational behavior is
associated with selection of the Nash equilibrium as the optimal
strategy. However, there were found numerous experimental
evidences that players can select strategies different from the
Nash equilibrium [80, 81]. Such behaviors were modeled with
the aid of theory of open quantum systems in a series of works of
Asano et al. [23, 24, 30, 31].

As was already pointed out, no-go theorems play a crucial role
in distinguishing classical and quantum probabilistic behaviors.
In quantum physics the Bell-type inequalities are explored as
experimental tests. In cognitive science the first experimental
violation of a Bell-type inequality (in the form of the Wigner
inequality) was reported in the article of Conte et al. [14, 18],
see also [5]. In quantum physics the Leggett-Garg inequality
was explored to test compatibility of macroscopic realism
with QM. Harald Atmanspacher and Thomas Filk used this
inequality [28] to study the problem of bistable perception (see
also [88]).

Violations of the Bell-type inequalities can be coupled to the
problem of contextuality, e.g., [53]. The contextual interpretation
of the aforementioned results on violations of these inequalities
in cognitive science and psychology is most natural. Cognition
is irreducibly contextual. The contextual modeling of cognition
was performed on the large scale in the monograph [4] in
which a general contextual theory of probability was developed.
Theory of contextual probability contains quantum probability
as a special case. Recently Ehtibar Dzhafarov initiated extended
studies on contextuality and Bell-type inequalities in psychology
and psychophysics [89, 90].
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8. Examples of Applications of the
Mathematical Formalism of Quantum
Theory

Here we present some examples of application the mathematical
formalism of quantum theory to psychology and decision
making.

8.1. Recognition of Ambiguous Figures
Let us explain our experiment on recognition of ambiguous
figures [13], see also [4], and its connection with Gestalt
psychology.

It is well known that, starting in 1912, Gestalt psychology
moved a devastating attack against the structuralism
formulations of perception in psychology. The classical
structuralism theory of perception was based on a reductionistic
and mechanistic conception that was assumed to regulate the
mechanism of perception. For any perception there exists a set of
elementary defining features that are at the same time necessary
(each of them) and jointly sufficient in order to characterize
perception also in cases of more complex conditions. The
Gestalt approach introduced instead a holistic new approach,
showing that the whole perception behavior of complex images
can never be reduced to the simple identification and sum of
elementary defining features defined in the framework of our
experience.

During the 1920s and 1930s Gestalt psychology dominated
in the study of perception. Its aim was to identify the natural
units of perception, explaining it in a revised picture of the
manner in which the nervous system works. Gestalt psychology’s
main contributions have provided some understanding of the
elements of perception through the systematic investigation of
some fascinating features, such as the causes of optical illusions,
the manner in which the space around an object is involved in the
perception of the object itself, and, finally the manner in which
ambiguity plays a role in the identification of the basic laws of the
perception.

In particular, Gestalt psychology also made important
contributions to the question of how it is that sometimes we see
movements even though the object we are looking at is not really
moving. As we know, when we look at something we never see
just the thing we look at. We see it in relation to its surroundings
(underlying context). An object is seen against its background.
In each case we distinguish between the figure, the object or the
shape, and the space surrounding it, which we call background or
ground, see Figures 9, 10, 11.

The psychologist Rubin was the first to systematically
investigate this phenomenon, and he found that it was possible
to identify any well-marked area of the visual field as the figure,
leaving the rest as the ground.

However, there are cases in which the figure and the ground
may fluctuate and one is forced to consider the dark part as the
figure and the light part as the ground, and vice versa, alternately.

Subjects of the experiment respond (recognize the image)
based on subjective and context-dependent factors, and output
of the experiment is principally probabilistic. The early work

FIGURE 9 | Ambiguity Figure 1A.

FIGURE 10 | Ambiguity Figure 1B.

of Rubin, which observed the importance of the figure–
ground relationship, marked the starting point from which
Gestalt psychologists began to explain what today is known
as the organizing principles of perception. A number of
organizing or grouping principles emerged from such studies of
ambiguous stimuli. Three identified principles may be expressed
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FIGURE 11 | Ambiguity Figure 2.

as similarity, closure and proximity. Gestalt psychologists
attempted to extend their work also at a more physiological
level, postulating the existence of a strong connection between
the sphere of the experience and the physiology of the system,
by admitting the well-known principle of isomorphism. This
principle establishes that the subjective experience of a human
being and the corresponding nervous event have substantially the
same structure.

In our experiment, we examined subjects by Tests a and b in
order to test quantum-like behavior. For Tests a and bwe used the
ambiguity figures of Figures 9, 10 as they were widely employed
in Gestalt studies:

• (a) Are these segments equal?
• (b) Are these circles equal?

Thus, the a-test is based on the following cognitive task: look
at Figure 9 and reply to question (a). The b-test is based on
Figure 10: look a this figure and reply to question (b).

The reasons for using such ambiguity tests here for analyzing
quantum-like behavior in perception may be summarized as
it follows. First of all, the Gestalt approach was based on the
fundamental acknowledgment of the importance of the context
in the mechanism of perception. Quantum-like behavior also
postulates this basic importance and role of the context in the
evolution of the considered mechanism, see Section 4. Finally,
we have seen that in ambiguity tests, the figure and the ground
may fluctuate during the perception. Consequently, a non-
deterministic (a quantum-like) behavior should be involved.

Ninety-eight medical students of University of Bari (Italy)
were enrolled in this study, with about equal distribution of
females and males, aged between 19 and 22 years, after giving
their informed consent to participate in the experiment. In the
first experiment a group of 53 students was subjected in part
to Test b (presented with Test b only) and in part to Tests a
and b (presented with Test a and soon after presented with Test
b with prefixed time separation of about 2 s between the two
tests). The same procedure was employed in the second and third
experiments for groups of 24 and 21 students, respectively. All
the students of each group were subjected to Test b or to Test
a followed by Test b. The ambiguity figures of Test b or Test a

followed by b appeared on a large screen for a time of only 3 s, and
simultaneously the students were asked to mark on a previously
prepared personal schedule their decision as to whether the
figures were equal or not. Test a after Test b presentation had the
objective of evaluating whether the perception of the first image
(Test a) can alter the perception of the subsequent image (Test b).
All the experiments were computer assisted and in each phase of
the experiment the following probabilities were calculated:

pb(+), pb(−), pa(+), pa(−),
p(b = +|a = +), p(b = −|a = +), p(b = +|a = −),

p(b = −|a = −).

Here the role of context, say C, is played by the selection
procedure of a sample for the experiment. All probabilities
depend on C.

A statistical analysis of the results was performed in order to
ascertain whether coefficients of interference λβ are non-zero or
zero in Tests b, a and b|a. The first experiment gave the following
results

Test b : pb(+) = 0.6923; pb(−) = 0.3077,

Test a : pa(+) = 0.9259; pa(−) = 0.0741,

Test b|a : p(b = +|a = +) = 0.68; p(b = −|a = +) = 0.32,

p(b = +|a = −) = 0.5; p(b = −|a = −) = 0.5. (18)

The calculation of conditional probability gave the following
result with regard to pb(+):

pa(+)p(b = +|a = +)+pa(−)p(b = +|a = −) = 0.6666. (19)

The second experimentation gave the following results:

Test b : pb(+) = 0.5714; pb(−) = 0.4286,

Test a : pa(+) = 1.0000; pa(−) = 0.0000,

Test b|a : p(b = +|a = +) = 0.7000; p(b = −|a = +) =
0.3000,

p(b = +|a = −) = 1.0000; p(b = −|a = −) = 0.0000. (20)

The calculation of the conditional probability gave the following
result with regard to pb(+):

pa(+)p(b = +|a = +)+ pa(−)p(b = +|a = −) = 0.7. (21)

Finally, the third experimentation gave the following results:

Test b : pb(+) = 0.4545; pb(−) = 0.5455,

Test a : pa(+) = 0.7000; pa(−) = 0.3000,

Test b|a : p(b = +|a = +) = 0.4286; p(b = −|a = +) =
0.5714;

p(b = +|a = −) = 1.0000, p(b = −|a = −) = 0.0000. (22)

The calculation of the conditional probability with regard to
pb(+) gave the following result:

pa(+)p(b = +|a = +)+pa(−)p(b = +|a = −) = 0.6000. (23)
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The mean value ± SD of pb(+) resulted in pb(+) = 0.5727 ±
0.1189 in Test b and calculated using Equations (18), (20),
and (22), while instead a mean value of 0.6556 ± 0.0509
resulted for pb(+) when calculated in Test b|a and thus using
Equations (19), (21), and (23). The two calculated mean values
are different and thus give evidence of quantum-like behavior of
cognitive mental states as they were measured by testing mental
observables by Tests b, a, and b|a. Student’s t-test showed that
the probability that the obtained differences between the two
estimated values of pb(+) by Test b and by Test b|a are accidental,
does not exceed 0.30. Thus, with probability 0.70 the coefficients
of supplementarity are non-zero and, hence, students behave
(think) in a quantum-like way (with respect to observables based
on the ambiguous figures). We also found that these coefficients
are bound by 1, so behavior is trigonometric, see Appendix 1 in
Supplementary Material.

As the final step, we calculate cos θβ on the basis of
the coefficient of interference λβ given by Equation (13) in
Supplementary Material. In our experiments we obtained

cos θ+ = −0.2285, θ+ = 1.8013

and

cos θ− = 0.0438, θ− = 1.5270,

which are quite satisfactory phase results indicating quantum-
like behavior for the investigated mental states.

The above results present a preliminary evidence of the
existence of quantum-like behavior in the dynamics of some
mental states. Luckily, we were able to capture mental conditions
of subjects in which the context influenced decision making
in an essential way. We have established equivalence between
quantum-like entities and corresponding cognitive entities.

As the performed experiment suggests a quantum-like
behavior of cognitive entities, a consequence could be that
cognitive entities as well as quantum entities exhibit a highly
contextual nature. In the same manner as quantum entities are
influenced by the routine physical act of measurement, cognitive
entities are influenced by the act of measurement (decision). In
the case of cognitive entities, the measurement is characterized
by cognitive interaction.

Mathematical modeling of the experiment considered above
was beased on a behavioral similarity between cognitive and
quantum-like entities, so we were able to make direct use of
an abstract quantum-like formalism and apply it to cognitive
entities. Moreover, we were able to account for quantum-like
dynamics of the cognitive entities. The numerical results of
the previous experiment give us an opportunity to delineate
basic features of cognitive entities not known in the past. Let
us outline this approach in more detail. We can introduce a
complex quantum-like amplitude, which represents the state
of our cognitive entity expressed in relation to some selected
mental observables. Let us suppose that we selected the mental
observable b, belonging to a given cognitive entity. Suppose also
that b can assume only two possible values (b = +,−). This

complex quantum-like amplitude can be produced by QLRA,
Appendix 1 in Supplementary Material. The Born rule holds

|ψ(±)|2 = pb(±). (24)

The complex quantum-like amplitude can represent the state
of our cognitive entity in relation to the considered mental
observable b.

The experiment indicates a methodological way for quantum-
like processing of future experiments. We will briefly reconsider
the case of the experiment we have performed, showing how
to calculate quantum-like complex amplitudes and thus to give
a quantum-like characterization of the state of the cognitive
entity that was employed in the experiment. Let us consider in
detail the model entities of our experiment. As we indicated
previously, we managed to calculate two different values for
cos θ(+) and cos θ(−), whose meaning is now clear. In our case,
as we found above, cos θ+ = −0.2285, θ+ = 1.8013 and cos θ− =
0.0438, θ− = 1.5270, which nicely corresponds to quantum-like
behavior of the investigated cognitive entity. As a final step, we
present a detailed calculation of the quantum-like model of the
mental state of the cognitive entity as characterized during the
course of the experiment.

By using the obtained data, we can write a mental wave
function ψ = ψC of the mental state C of the group of students
who participated in the experiment—corresponding to a mental
context denoted by the same symbol C. QLRA, see Appendix 1 in
Supplementary Material, produces

ψ(β) =
√

p(a = +)p(b = β|a = +)
+ eiθ(β)

√

p(a = −)p(b = β|a = −). (25)

The ψ is a function from the range of values {+,−} of the
mental observable b to the field of complex numbers. Since b
may assume only two values, such a function can be represented
by two-dimensional vectors with complex coordinates. Our
experimental data give

ψ(+) =
√
0.8753× 0.6029

+eiθ(+)
√
0.1247× 0.5 ≈ 0.7193+ i0.2431 (26)

and

ψ(−) =
√
0.8753× 0.3971

+eiθ(−)
√
0.1247× 0.5 ≈ 0.5999+ i0.2494. (27)

8.2. Quantum Representation of Order Effect in
Psychology
For example, in a typical opinion-polling experiment, a group of
participants is asked one question at a time, e.g., A = “Is Bill
Clinton honest and trustworthy?” and then B = “Is Al Gore honest
and trustworthy?” or in the opposite order, B and then A[91]. The
corresponding probability distributions, p(A = i,B = j) - “first
the B-question with the result j and then the A-question with the
result i” and p(B = j,A = i) - “first theA-question with the result
i and then the B-question with the result j” do not coincide.
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For classical probability theory this is a problem. Here the
observables A and B have to be represented by functions A,B :

�→ 0, 1 (random variables). Set Ai = {ω ∈ � :A(ω) = i},Bj =
{ω ∈ � : B(ω) = j}. Then

p(A = i,B = j) = p(Ai ∩ Bj) = p(Bj ∩ Ai) = p(B = j,A = i).
(28)

The order effect is washed out as the result of commutativity
of conjunction. For comparison with the quantum approach,
it is useful to write the previous equality by using conditional
probabilities:

p(A = i,B = j) = p(B = j)p(A = i|B = j)

= p(A = i)p(B = j|A = i) = p(B = j,A = i). (29)

In the quantum model of the opinion poll, observables are
represented by Hermitian operators, A =

∑

i= 0,1 iPi,B =
∑

j= 0,1 jQj. Here

p(A = i,B = j) ≡ p(B = j)p(A = i|B = j), (30)

p(B = j,A = i) ≡ p(A = i)p(B = j|A = i). (31)

Opposite to Equation (29) which is a consequence of Equation
(28), these are the definitions of the “sequential probabilities.”
Here the joint probability distribution is, in general, not well
defined. Quantum conditional probability is defined as the
probability with respect to the state obtained as the update of
the initial state ψ after the first measurement (and crucially
dependent on the first measurement result)

p(A = i|B = j) =
‖PiQjψ‖2

‖Qjψ‖2
, p(B = j|A = i) =

‖QjPiψ‖2

‖Piψ‖2
.

The order effect takes place if and only if ‖PiQjψ‖2 6= ‖QjPiψ‖2,
or 〈[Pi,Qj]ψ |ψ〉 6= 0. If the operators do not commute, then such
a state ψ exists.

8.3. “Hawaii Experiment”
Tversky and Shafir [80] considered the following psychological
test demonstrating the disjunction effect. They showed that
significantly more students report that they would purchase
a non-refundable Hawaii vacation if they knew that they had
passed or failed an important exam than report they would
purchase if they did not know the outcome of the exam (So, a
student is going to travel to Hawaii in any event, whether she
passed exam or not, but only under the condition that she knows
the result).

There can be introduced the following two variables; a = 1
(exam passed), a = 0 (exam failed) and b = 1 (go to Hawaii),
b = 0 (not to go to Hawaii). The data [80] has the form:

p(b = 1) = 0.32 and hence p(b = 0) = 0.68 (these are
the probabilities in the context of uncertainty). Then we also
have p(a = 0) = p(a = 1) = 0.5. In the experiment 50% of
students were informed that they passed/not passed the exam.
The general structure of the experiment was the following. There
were two groups of students; one was used for the unconditional
measurement of the b-variable and generated the probabilities

p(b = 0), p(b = 1) and the second group was used for the
conditional measurement of b: under the conditions a = 1 or
a = 0. The data collected in the second setting was

p(b = 1|a = 1) = 0.54, p(b = 1|a = 0) = 0.57;
p(b = 0|a = 1) = 0.46, pb = 0|a = 0 = 0.43.

The transition probabilities can be represented in the form of

the following matrix: Pb|a =
(

0.54 0.57
0.46 0.43

)

. These data violate

FTP and the degree of violation is given by the coefficients of
interference, see Equation (11): δ(1) = 0.17, δ(0) = −0.17.
(We remark that always

∑

x δ(x) = 0). These coefficients can
be represented in the form Equation (9) (as for interference
of wave functions in the two slit experiment) with θ1 =
1.3, θ0 = 2. For dichotomous variables, the data easily allow
to reconstruct the quantum(-like) state and observables, by
using the constructive wave function approach and QLRA,
see Appendix 1 in Supplementary Material. We present the
formula giving the “belief state” ψ of students in the basis of
eigenvectors of the Hermitian operator B representing the b-
observable, i.e., B = diag(0, 1). It has the form: ψ(x) =
√

p(a = 0)p(b = x|a = 0) + eiθx
√

p(a = 1)p(b = x|a = 1). By
inserting the values of probabilities and angles into this
expression we obtain the vector with complex coordinates, x =
0, 1. The direct calculation shows that Born’s rule Equation
(4) holds, i.e., p(b = x) = |ψ(x)|2, x = 0, 1. Thus,
statistical data from this cognitive psychology experiment can
be mathematically represented with the aid of the quantum
formalism.

8.4. Categorization-decision Experiment
One of the most elucidating examples of quantum theory as
applied to psychology is the experiment on interference of
categorization in decision making. Statistical data collected in
such experiments exhibits non-classical feature in the form of
violation of FTP with high statistically significance. In particular,
it is impossible model such data with the aid of classical Markov
dynamics. Therefore, it is natural to proceed with the quantum-
like model justifying violation of laws of classical probability
theory. In coming presentation of this model we follow the paper
[92].

Often decision makers need to make categorizations before
choosing an action. For example, a military operator has to
categorize an agent as an enemy before attacking with a drone.
How does this overt report of the category affect the later
decision? This paradigm was originally designed to test a Markov
model of decision making that is popular in psychology [93].
Later it was adapted to investigate quantum-like interference
effects in psychology [17, 92].

We begin by briefly summarizing the methods used in the
experiments (see [92], for details) . On each trial of several
hundred training trials, the participant is first shown a picture
of a face that may belong to a “good guy” category (category G)
or a “bad guy” category (category B), and they have to decide
whether to “attack” (action A) or “withdraw” (action W). The
trial ends with feedback indicating the category and appropriate
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action that was assigned to the face on that trial. There are
many different faces, and each face is probabilistically assigned
to a category, and the appropriate action is probabilistically
dependent on the category assignment. Some of the faces are
usually assigned to the “good guy” category, while other faces
are usually assigned to the “bad guy” category. The category
is important because participants are usually rewarded (win
points worth money) for “attacking” faces assigned to “bad
guys” and they are usually punished (lose points worth money)
for “attacking” faces assigned to the “good guys;” likewise they
are usually rewarded for “withdrawing” from “good guys” and
punished for “withdrawing” from “bad guys.” Participants are
given ample training during which they learn to first categorize
a face and then decide an action, and feedback is provided on
both the category and the decision. Although the feedback given
at the end of each trial is probabilistic, the optimal decision is to
always “attack” when the face is usually assigned to a “bad guy”
category, and always “withdraw” when the face is usually assigned
to a “good guy” category. The key manipulation occurs during a
transfer test phase which includes the standard “categorization–
decision” (C-D) trials followed by either “category alone” (C-
alone) trials or “decision alone” (D-alone) trials. For example, on
a “decision alone” trial, the person is shown a face, and simply
decides to “attack” or “withdraw,” and recieves feedback on the
decision. The categorization of the face on the D-alone trials
remains just as important to the decision as it is on C-D trials, and
some implicit inference about the category is necessary before
making the decision, but the person does not overtly report this
implicit inference.

Note that the C-D condition in the psychology experiment
allows the experimenter to observe which “path” the participant
follows before reaching a final decision. This is analogous to
a “double slit” physics experiment in which the experimenter
observes which “path” a particle follows before reaching a final
detector. In contrast, for the D-alone condition in the psychology
experiment, the experimenter does not observe which “path” the
decision maker follows before reaching a final decision. This is
analogous to the “double slit” physics experiment in which the
experimenter does not observe which “path” the particle follows
before reaching a final detector9.

According to the Markov model proposed in Townsend et al.
[93], for the D-alone condition, the person implicitly performs
the same task as explicitly required by the C-D condition. More
specifically, for the D-alone condition, once a face (denoted f )
is presented, there is a probability that the person implicitly
categorizes the face as a “good” or “bad” guy. From each category
inference state, there is a probability of transiting to the “attack”
or “withdraw” decision state. So the probablity of “attack” in
the D-alone condition (denoted as p(A|f )) should equal the
total probability of “attacking” in the C-D condition (denoted
as pT(A|f )). The latter is defined by the probability that the
person categorizes a face as a “good guy” and then “attacks”

9We remark that here the picture of path is used only for illustrative purpose;

therefore we placed path in quotation marks. In QM there is no such a concept as a

“path” (trajectory) of a particle. We can only ascertain, and this is only statistically,

a singular event of an electron “passing” through a slit. In fact this way of seeing

the situation provides an even better parallel here.

plus the probability that the person categorizes the face as
a “bad guy” and then “attacks” (pT(A|f ) = p(G ∩ A|f ) +
p(B ∩ A|f )). Using this categorization-decision paradigm, one
can examine how the overt report of the category interferes with
the subsequent decision. An interference effect of categorization
on decision making occurs when the probability of “attacking”
for D-alone trials differs from the total probability pooled
across C-D trials. The Markov model for this task originally
investigated by Townsend et al. [93] predicts that there should
be no interference, and the law of total probability should be
satisfied.

Beginning with our first study [17], we have conducted a
series of four experiments on this paradigm (see 92, for review).
All results of these experiments show similar results, but we
briefly report a summary of findings from the fourth experiment
that included 246 participants (a minimum 34 observations per
person per condition). For a face more likely assigned to the
“god guy” category (we denote these faces as g), the law of total
probability is approximately satisfied (pT(A|g) = 0.36, p(A|g) =
0.37). However, for a face more often assigned to the “bad guy”
category (we denote these faces as b), the probability of “attack”
(i.e., the optimal decision with respect to the average payoff)
is systematically greater for the D-alone condition as compared
to the C-D condition” violating the law of total probability
(p(A|b) = 0.62 > pT(A|b) = 0.56)10. More surprising, the
probability of “attack” for the D-alone condition (which leaves
the “good” or “bad” guy category unresolved) was even greater
than the probability of “attack” given that the person previously
categorized the face as a “bad guy” (p(A|b) = 0.62 > p(A|b,B) =
0.61) on a C-D trial! For some reason, the overt categorization
response interfered with the decision by reducing the tendency to
“attack” faces that most likely belonged to the “bad guy” category.
These violations of the law of total probability contradict the
predictions of the Markov model proposed by Townsend et al.
[93] for this task.

A detailed quantum-like model for the categorization-
decision task is presented in [17], and here we only present a
brief summary following the paper [92]. The human decision
system is represented by a unit length state vector |ψ〉 belonging
to 4-dimensional Hilbert space spanned by four basis vectors.
(Here we use Dirac’s symbolic notations, see Appendix 2 in
Supplementary Material).

Each basis vector represents one of the four combinations of
categories and actions (e.g., |GA〉 is a basis vector corresponding
to category G and action A). The state

∣

∣ψf

〉

= ψGA |GA〉 +
ψGW |GW〉 + ψBA |BA〉 + ψBW |BW〉 is prepared by the face
stimulus f that is presented during the trial. The question about
the category is represented by a pair of projectors for good
and bad categories CG = |GA〉 〈GA| + |GW〉 〈GW| ,CB =
(I − CG). The question about the action is represented by a
pair of projectors for attack and withdraw actions DA =
UDC |GA〉 〈GA|U†

DC + UDC |BA〉 〈BA|U†
DC,DW = (I − DA),

where UDC is a unitary operator of transformation from the
categorization basis to the decision basis.

10This difference is statistically significant: t(245) = 4.41, p = 0.0004. Also the same

effect was replicated in 4 independent experiment
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Following [92], we obtain that the probability of first
categorizing the face as a “bad guy” and then “attacking” equals

p(B,A|f ) = p (B) · p (A|B) =
∥

∥CB

∣

∣ψf

〉∥

∥

2 · ‖DA |ψB〉‖2, with

|ψB〉 =
CB

∣

∣ψf

〉

∥

∥CB

∣

∣ψf

〉∥

∥

, and combining the terms in the product we

obtain p(B,A|f ) =
∥

∥DA · CB ·
∣

∣ψf

〉∥

∥

2
; similarly, the probability

of first categorizing the face as a “good guy” and then “attacking”

equals p(G,A|f ) =
∥

∥DA · CG ·
∣

∣ψf

〉∥

∥

2
; and so the total probability

of attacking under the C-D condition equals pT(A|f ) =
∥

∥DA · CG ·
∣

∣ψf

〉∥

∥

2 +
∥

∥DA · CB ·
∣

∣ψf

〉∥

∥

2
.

The probability of attack in the D-alone condition equals

[92] p(A|f ) =
∥

∥DA ·
∣

∣ψf

〉∥

∥

2 =
∥

∥DA · (CG + CB)
∣

∣ψf

〉∥

∥

2 =
∥

∥DA · CG

∣

∣ψf

〉

+ DA · CB

∣

∣ψf

〉∥

∥

2 =
∥

∥DA · CG

∣

∣ψf

〉∥

∥

2 +
∥

∥DA · CB

∣

∣ψf

〉∥

∥

2+ Int, where Int = 2 · Re
[〈

ψf |CGDACB|ψf

〉]

. If
the projectors for categorization commute with the projectors
for action (e.g., UDC = I), then the interference is zero, Int = 0,

and we obtain p(A|f ) =
∥

∥DA · CG

∣

∣ψf

〉∥

∥

2
+

∥

∥DA · CB

∣

∣ψf

〉∥

∥

2 =
pT

(

A|f
)

, and the law of total probability is satisfied. However, if
the projectors do not commute (e.g., UDC 6= I), then we obtain
an interference term. We can select the unitary operator UDC

which produces an inner product Int = −0.06, and account for
the observed violation of the law of total probability.

9. Conclusion

We demonstrated that the mathematics developed to solve
QM problems is highly suitable to solving particular problems

(and paradoxes) in psychology and social sciences in general
[6], cf. with the views of G. T. Fechner, see Section 1. The
reason is that psychologists, like quantum physicists, must
work with contextualized probabilistic systems that are highly
sensitive to measurement, as well as “entangled” systems that are
strongly interconnected and difficult to decompose into separate
and independent parts. Our point (we call it the quantum-
like paradigm [4], see also [94, 95]) is that the mathematical
formalisms of quantum theory are highly suitable for such
complex systems.

This inspires us to say that Descartes’ dualism between the
two substances, material and mental, can be resolved through
construction of the general mathematical model based on
quantum information and probability and applicable both to
physics and cognition.
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