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A natural generalization of the original Dirac spinor into a multi-component spinor is

achieved, which corresponds to the single lepton and the three quarks of the first family

of the standard model of elementary particle physics. Different fermions result from

similarity transformations of the Dirac equation, but apparently there can be no more

fermions according to the maximal multiplicity revealed in this study. Rotations in the

fermion state space are achieved by the unitary generators of the U(1) and the SU(3)

groups, corresponding to quantum electrodynamics (QED based on electric charge)

and chromodynamics (QCD based on color charge). In addition to hypercharge the dual

degree of freedom of hyperspin emerges, which occurs due to the duplicity implied by

the two related (Weyl and Dirac) representations of the Dirac equation. This yields the

SU(2) symmetry of the weak interaction, which can be married to U(1) to generate the

unified electroweak interaction as in the standard model. Therefore, the symmetry group

encompassing all the three groups mentioned above is SU(8), which can accommodate

and unify the observed eight basic stable fermions.
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1. INTRODUCTION

In the prevailing standardmodel (SM) of elementary particle physics (see e.g., the modern textbook
by Schwartz [1] or the earlier one by Kaku [2]) the various fermions involved (one lepton doublet
and three quark doublets, respectively coming in three generations) are assumed to be massless.
This notion is in contradiction to the observations but enforced on the SM by the assumption
that chiral symmetry is broken. The fermions then acquire mass subsequently through the Higgs
mechanism [3, 4], in which the main effect is to give the vector gauge bosons of the weak
interactions mass, but which in addition can also make the fermions massive by help of the Yukawa
coupling terms [1]. The Dirac equation [5] in its standard form is fundamental in all of this and
thought to be well understood. Thus, the massless fermions of the SM are commonly described in
theWeyl representation [6, 7], which involves only the two-component spinors associated with the
Pauli spin matrices [8]. Still it remains unclear whether the neutrinos [9, 10] are Dirac or Majorana
fermions.

However, the assumption of massless fermions appears not to be acceptable any more, in
particular when facing the ample empirical evidence [11] corroborating that even neutrinos have
small but non-zero masses. They are revealed by and consistent with the neutrino oscillations [12]
which have clearly been observed in the last two decades. As a consequence, massive neutrinos have
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to be considered [13]. In order to explain their masses the see-
saw mechanism [12] was invented, which is not compatible with
the SM by involving Majorana mass terms [14–17]. Clearly,
any realistic extension of the standard model (SM) will have to
consider finite fermion masses at the start, an assumption which
causes yet serious conflict with the broken chiral symmetry (and
the gauge fixation) that is seen as the essence of weak interactions.
To remedy these problems one may require substantial revision
of the SM.

Here we make a first step in revisiting thoroughly the
Dirac equation assuming that the mass term is given in the
Dirac equation to highlight its intrinsic symmetry properties.
We show that the Dirac equation for a massive and charged
fermion has a rich hidden intrinsic symmetry that has long
been overlooked theoretically, but in practice already emerged
through experimental evidence and was included in the SM in
the guise of the various SU(N) (with N = 1, 2, 3) external
symmetry groups by which the different massless fermion are
assembled in multiplets. We shall reconsider the Dirac equation
for a massive fermion and scrutinize its intrinsic (not space-time
related) hidden symmetry, together with the resulting symmetry
groups. A corresponding generalization of the original Dirac
spinor into an internal multi-component spinor associated with
the SU(8) symmetry group is achieved, which includes the single
lepton and the three quarks [18] of the first family of the SM of
elementary particle physics in a natural way.

The various known stable and fundamental fermions come
empirically in the one electron-neutrino doublet and three
colored up- and down-quark doublets. It will be shown that these
different fermions do all result from similarity transformations
of the Dirac equation, but apparently there can be no more
fermions according to the maximal multiplicity revealed in
this study. The corresponding rotations in the fermion state
space are achieved by the unitary generators of the U(1) and
the SU(3) groups, corresponding to quantum electrodynamics
(QED based on electric charge) and chromodynamics (QCD
based on color charge). In addition to hypercharge, the dual
degree of freedom of hyperspin emerges from the consideration
of the duplicity implied by the two related (Weyl and Dirac)
representations of the Dirac equation. This yields naturally
the SU(2) symmetry of the weak interaction, which can
then be married to U(1) to generate the unified electroweak
interaction as in the standard model. The resulting number
of basic fermions and the dimension of their state space as
considered here originate solely from intrinsic symmetry and
appear to be complete. Therefore, the apt symmetry group
encompassing the three above mentioned groups would be
SU(8), which can accommodate and thus unify all observed
massive fermions.

2. MASS SHELL CONDITION AND PAULI
MATRICES

Why do the Pauli matrices occur in the Dirac equation? Their key
property is that they permit to linearize the kinetic energy term
that goes with the momentum squared in the relativistic (and

also non-relativistic) dispersion relation of a particle, which is
given by

E2 − p2 = m2 = PµPµ, (1)

stating the mass shell condition for a free particle.
The relativistic covariant four-momentum operator is
associated with the temporal or spatial derivative as
Pµ = (E,−p) = i∂µ = i(∂/∂t, ∂/∂x). Using the generators
of three-dimensional rotations we can formally take the square
root of the momentum term. In terms of Pauli matrices [8] we
obtain

(σ · p)2 = p212. (2)

The symbol 12 denotes the 2 × 2 unit matrix, and σx, σy, and σz
are the Pauli spin matrices:

σx =
(

0 1
1 0

)

, σy =
(

0 −i
i 0

)

, σz =
(

1 0
0 −1

)

(3)

satisfying the relation:

σiσj + σjσi = 2δij12. (4)

This is how spin emerges in normal quantummechanics, namely
via the spinor representation of the rotation group! To most
people this appears to be well known, yet in the literature and
even in textbooks the fermion spin often is still associated with
relativity, a notion that is obviously not correct. Coming then
to Lorentz invariance, the task appears to linearize the mass
shell condition. Dirac [5] solved this problem by introducing his
famous 4 × 4 matrices. Let us now reconsider them and for that
purpose introduce generally the kinetic helicity operator as

H(p) = σ · p. (5)

For algebraic simplicity we will in the following calculation omit
the argument of H and just use it without annotation if no
confusion can arise. The mass shell condition can now be written
simply as

E2 −H2 = m2 = (βE+ γH)2, (6)

where we introduced two new, genuinely relativistic operators
β and γ . Multiplying the above equation out we obtain the
algebraic requirements that

β2 = 1; γ 2 = −1; βγ + γβ = 0. (7)

Like with the Pauli matrices as the SU(2) generators, these
requirements cannot be satisfied with pure numbers but in
explicit representation require to invoke matrices that should
be real by the following argument. The quantum mechanical
four-vector operator Pµ = i∂µ is purely imaginary, and the
spin operator is complex (σy is purely imaginary). Introducing
complex matrices for β or γ would lead to confusion of relativity
with quantum mechanics. Note that when decomposing the left-
hand side of Equation (6) such that it appears as a squared
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number on the right-hide side, then for consistency the square of
γ must be negative. Thus, γ is playing the role of the imaginary
unit. Furthermore, the algebra of β and γ is not closed but
requires another member which naturally is obtained as α =
βγ and thus anticommutes with the two operators defining it.
Also, by its definition we obtain the results α2 = 1 and that
αβγ = 1. To avoid confusion and to simplify notation we
mention explicitly that we use the same symbols for the operators
and their respective matrix representations.

Consequently, in terms of 2 × 2 matrices we only have
two reasonable options for β and γ , and thus α. The matrices
chosen in the Weyl representation are taken as our standard and
defined as

α =
(

−1 0
0 1

)

, β =
(

0 1
1 0

)

, γ =
(

0 1
−1 0

)

. (8)

Note that α and β are connected by the similarity transformation
that is enabled by the unitary operatorU(γ ) = 1√

2
(1−γ ), which

obeys U† = UT = U−1. Then α = UβU−1, and of course
U commutes with γ . Therefore, we can use either the standard
Dirac or the chiral Weyl representation, for which the gamma
matrices as defined as 4× 4 matrices as follows:

γ
µ
W = (β12, γσ ), (9)

γ
µ
D = (−α12, γσ ). (10)

Note that in both γ appears at the spin (defining kinetic helicity)
term. One also obtains γ µW = Uγ

µ
DU−1, a relation that is well

known in the literature.
Now, we can also reconsider the so-called chiral (matrix)

operator defined as γ 5 = iγ0γxγyγz in any representation. Using
the fact that σxσyσz = i12, it takes in Weyl representation the
form:

γ 5
W = −βγ 312 = α12, (11)

and obeys (γ 5)2 = 14, where 14 stands for the 4× 4 unit matrix.
Similarly, we obtain

γ 5
D = −αγ 312 = β12. (12)

By use of γ 5, appropriate projection operators can be defined
as PR,L = 1

2 (14 ± γ 5), which are idempotent and represent a
decomposition of the identity operator. We obtain in the Weyl
representation:

PR,L = 1

2
(12 ± α)12 (13)

With their help, any spinor field can be decomposed into its right-
and left-chiral component, which means we have ψ = PRψ +
PLψ = ψR+ψL. Left and right chiral projections are at the heart
of symmetry breaking and essential for the weak interactions as
considered in the SM. By its definition, γ 5 anticommutes with all
gamma matrices, which means {γ 5, γ µ} = 0, where the curly
brackets denote the anticommutator. Consequently, we obtain

γ µPR,L = PL,Rγ
µ. Moreover, the operation with γ 5 on the

Dirac equation flips the sign of mass. This property of chirality
(symmetry operation based on γ 5) will become important in the
subsequent section.

3. THE INTRINSIC SYMMETRIES

3.1. Space-time Symmetry
The main purpose of this section is to discuss the hidden
intrinsic symmetries of Dirac’s equation, which was revisited in
the previous section in order to provide the necessary material
for the subsequent derivations. Before we present them let us
for completeness also briefly review the external space-time
symmetries, with emphasis on chirality. Time inversion of a
scalar field is defined as Tφ(t) = φ(−t) and space inversion alike
as Pφ(x) = φ(−x). Close inspection of the Dirac equation in
Weyl representation, when being written out (we omit the unit
matrix at the time derivative to ease the notation) explicitly as

i

(

β
∂

∂t
+ γσ · ∂

∂x

)

ψ = mψ, (14)

shows that the temporal and spatial terms in Equation (14) are
invariant under the time-reversal and parity operators if they are
defined as T = τT and P = βP. Furthermore, the kinetic helicity
term remains invariant under the operation of C = γ τ . Here we
introduced the spin flip operator τ that is defined as τ = −iσyC,
andC denotes the complex conjugation operator that transmutes
a complex number z into its conjugate z∗. This operator turned
out to be convenient when treating the complex two-component
Majorana equation [17]. It is anti-unitary, obeys τ † = −τ = τ−1

and τ 2 = −1 and anticommutes with all Pauli matrices,

{τ, σ } = 0, (15)

which means τ flips the spin by changing the sign of σ from
plus to minus when being commuted with it. So what C does is
to change the sign of the imaginary unit, but more essentially
it reverses the spin and also changes the sign of the charge
(coupling constant) in the covariant derivate which means
CDµ(q) = Dµ(−q)C. Therefore, traditionally [2] this operator

was named charge conjugation which transforms ψ into ψC =
Cψ = − iγyψ∗, where the asterisk means complex conjugation
and the phase factor in front is apt convention. If we nowmultiply
the three symmetry operators we get CPT = γ τβPτT = αPT,
which is the usual CPT operation [1] under which all bilinear
forms of the Dirac equation are invariant.

Finally there is another important symmetry operator which
reverses the sign of the mass. We name this new symmetry
operator asM = α12 (here in the Weyl representation) the mass
conjugation. We emphasize that M is based on the operation
of chirality as introduced in Equations (11) and (12). Written
in terms of Dirac matrices this transformation corresponds to

ψM = Mψ = γ 5ψ . To our best knowledge mass sign-reversal
or conjugation has not been considered before in the discussion
of the space-time symmetries of Dirac’s equation. However, it
turns out to be important to permit formally negative masses.
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Consequently, we extend the CPT invariance to include M such
that MCPT = αγ τβPτT = PT is obtained, which is the pure
space time symmetry of the Klein-Gordon [19, 20] equation,

(

∂2

∂t2
− ∂2

∂x2
+m2

)

φ = 0. (16)

It does not depend on the sign of the mass, since it was obtained
from the quadratic mass shell condition (Equation 1). Its space-
time and related symmetries including an electromagnetic field
are composed in Table 1.

With this table we conclude the discussion of the known
external or space time symmetry of the Dirac equation, and turn
to its intrinsic symmetry which is the key theme of this paper and
related to various possible representations.

3.2. Combinatorial Symmetry Yielding
Quarks
As we already stressed in connection with the discussion of the
chirality or mass reversal M, there are formally many possible
choices of the signs at the three basic components of the Dirac
equation. We refer to the mass shell condition (Equation 6)
written in terms of the normal quantum mechanical operators of
energy E and of kinetic helicity H given by Equation (5), and the
genuine relativistic operators β and γ . At the mass term we have
the trivial unity operator. When linearizing (taking the “square
root” so to speak) we obtain 23 = 8 possible sign combinations.
In the standard Dirac equation only one of them is considered,
namely all terms are conventionally assumed to have a positive
sign. Out of the eight options in total, four are redundant because
they correspond to a simple multiplication of the whole operator
equation by aminus sign. The following four decompositions still
remain:

−βE− γH = m
+βE− γH = m
−βE+ γH = m
+βE+ γH = m

(17)

Note that according to Equations (5) and (8) these four equations
are of course 4 × 4 matrix equations. Here we have chosen the
four options with a positive sign at the mass, the other four with a
negative sign at themass producemerely redundant duplications.
Only the bottom equation was chosen by Dirac, the others were
not considered. However, they should not be disregarded because
they have an equivalent physical meaning and represent three

TABLE 1 | Symmetry operations.

Symmetry Operator Effect Spin Name

T Tτ t → −t σ → −σ Time reversal, including spin

reversal

P Pβ x → −x Space inversion or parity

C γ τ e → −e σ → −σ Charge conjugation,

including spin reversal

M α m → −m Mass conjugation or chirality

more independent fermionic degrees of freedom! They were
simply overlooked but should be treated as equivalent to Dirac’s
choice. There seems to remain another ambiguity, the sign of γ .
We could also have defined it by its transposed matrix to start
with. However, as inspection of Equation (17) shows, the system
is unaffected by reversing the sign of γ .

In bold conclusion, the full linearization of Equation (6)
produces not one but four independent fermions, and only just
four and not more, because of the combinatorial possibilities
remaining when removing the redundancy in the different
“roots” of the mass shell condition.

Letting the above operator equations then act on spinor
fields produces four Dirac-type equations, the bottom one in
Equation (17) giving the standard Dirac equation (Equation 14)
of the literature. For the sake of clarity we write the four versions
explicitly

(−βE− γH)ψα = mψα
(+βE− γH)ψβ = mψβ
(−βE+ γH)ψγ = mψγ
(+βE+ γH)ψ = mψ

(18)

Mathematically speaking, the bottom equation already yields
all the solutions that exist to the well known standard Dirac
equation, which describes a Dirac spinor field containing
particles and antiparticles, both having two opposite kinetic
helicity states. Operating, respectively, from the top with α, β ,
and γ on the other three equations shows that their spinors are
related:ψ = αψα = βψβ = γψγ . Note that the chiral symmetry
is not broken, since the effects of the operator α is accounted for.
So all four solutions describe fermions having the same mass.
These particles have already been detected experimentally. The
last is the electron, and the other three are the quarks, which
as shown here all are the natural outcome of Dirac’s equation
when the combinatorial symmetry is taken seriously. Also, there
are exactly four fermions obtained in this way, a lepton and
three quarks (following the established nomenclature, although
the name assignments are at this point still arbitrary) as indicated
by the indices α, β and γ , which signify their connection with the
standard Dirac equation.

Clearly, the lepton state space is one-dimensional and
associated with the U(1) symmetry group, whereas the quark
state space is three-dimensional and thus genuinely related with
the SU(3) group describing mixing among the quark color
states themselves. The fundamental gauge-field theory for each
fermion is quantum hypercharge dynamics (QYD) coupling to
their hypercharges with generators Yα , Yβ , Yγ , and Y . They
are all represented by the unit operator (matrix) multiplied by
their individual hypercharges yα , yβ , yγ , and y, respectively
for the three quarks and the lepton, and measured in units of
the elementary electric charge e. For a detailed discussion of
hypercharges in the SM see for example, the Tables 29.1, 30.1 in
the modern textbook of Schwartz [1].

When considering each fermion on its own, for example the
lepton, we may choose its hypercharge to be either y = 1 or
y = −1, but apparently SU(4) group theory prefers −1. The
opposite charge is implied respectively for the antiparticle by
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the charge conjugation symmetry of Dirac’s equation. However,
since there is equality among the leptons and quarks, according
to their individual Dirac equations and as seen from their
hypercharge gauge-field theory QYD, these four fermions are
allowed to mix among themselves. The corresponding unifying
symmetry group is SU(4) [2, 21], which is unitary and four-
dimensional in its fundamental representation. Thus, we can
define a related hypercharge operator Y4 as a purely diagonal
4 × 4 matrix, which has the yα , yβ , yγ and y on its trace,
and can conveniently be written as Y4 = diag{yα, yβ , yγ , y}
with the lepton at the end. Since all fifteen generators of
the SU(4) are given by traceless matrices, each nontrivial
operator that does not involve the unit matrix 14 must also
be represented by a traceless matrix, while being a linear
combination of these generators. In fact Y4 can be directly
chosen as being proportional to the generator λ15 [21]. Thus,
we obtain Y4 = diag{ 13 ,

1
3 ,

1
3 ,−1}. Consequently, the trace

of Y4 must vanish, yielding the group-theoretical requirement
that

yα + yβ + yγ + y = 0. (19)

Conventionally, also suggested by the SU(4) group theory, we
choose y = −1 for the electron, and therefore the quark
hypercharges must sum up to +1. As there is equality [imposed
by SU(4)] among the quarks, their hypercharges must be the
same, yα = yβ = yγ = 1

3 . The fractional charges simply reflect
that there are three quarks and the dimension of their subspace is
3, associated with SU(3) in its fundamental representation. This
quantization of charges, which in U(1) could still be continuous,
emerges solely from the intrinsic symmetry of the Dirac equation,
and appears to be fundamental and does not require to consider
the various SM anomalies [1], which are usually exploited to
corroborate the assignments of fermion hypercharges. When
assembling the four fermion species into a large spinor 9† =
(ψ†
α, ψ

†

β , ψ
†
γ , ψ

†), we can write the combined Dirac equation
concisely as

i

(

β̃
∂

∂t
+ γ̃σ · ∂

∂x

)

9 = m9, (20)

where the beta matrix is diagonal in the large spinor space,
β̃ = diag{−β, β,−β, β} and the gamma matrix alike, γ̃ =
diag{−γ,−γ, γ, γ }. Multiplication of Equation (20) by the
diagonal matrix Ũ = diag{α, β, γ, 1}, transmutes all negative
signs in β̃ and γ̃ into positive ones, and the spinor components
of 9 into standard Dirac spinors. Writing the large spinor as a
quadruplet, with the first three indices referring to the quarks
and the last one to the lepton, we obtain the Dirac equation in
the standard form,

iγ µ∂µ9 = m9, (21)

yet for the full fermion quadruplet which now has a convenient
form to be used in connection with the Yang-Mills theory [1,
2, 22]. Given the number of four fermion degrees of freedom,
we conclude that the SU(4) symmetry group unifies leptons and
quarks.

3.3. Representation Symmetry Yielding
Hyperspin Doublets
In spite of the revelation of the intrinsic SU(3) symmetry of
quarks in the Dirac equation and the SU(4) symmetry unifying
lepton and quarks, we have not yet exhausted all possibilities.
We recall the two versions of the Dirac gamma matrices in
Equations (9) and (10), referred to as the Weyl and Dirac
representations. Why does this duality exist? Following the
reasoning of the previous section, there must be a physical
meaning to this fact, which has its origin in the two choices of
α and β for the relativistic, real matrix operators appearing at
the energy E in Equation (6). In contrast, the antisymmetric real
matrix operator γ appearing at the kinetic helicity H is the same
in the both representations. Facing this puzzling duplication of
the Dirac equation, again the logical consequence should be that
this duality indicates two intrinsic degrees of freedom. Thus,
there must be yet another set of lepton and three quarks, which
come in doublets related to this representation duality. We may
call this double degree of freedom appropriately hyperspin, as its
symmetry group is SU(2). Let us scrutinize this notion. We can
write

i

(

β
∂

∂t
+ γσ · ∂

∂x

)

9W = m9W, (22)

i

(

−α ∂
∂t

+ γσ · ∂
∂x

)

9D = m9D, (23)

and combine the two large spinors into a doublet 9̂† =
(9†

W, 9
†
D). We recall that α and β are related by the similarity

transformation α = UβU−1, where U(γ ) = 1√
2
(1 − γ ),

and therefore, like in the previous section, we can write in the
Weyl representation after Equation (9) the grand-multiplet Dirac
equation finally as

iγ µ∂µ9̂ = m9̂, (24)

since U(−α)U−1 = β . Here the doublet spinor is 9̂† =
(

9†,

(

1√
2
(1− γ )9

)†
)

, and we can choose without loss of

generality 9 = 9W. The upper component in the hyperspin
doublet by construction encompasses a lepton and three quarks,
and the lower component alike, with the previously assigned
hypercharges−1 and 1

3 . Apparently, the symmetry group for the
doublets is SU(2) which has three generators.

The overarching symmetry group is then SU(8) which
corresponds to the eight independent fermion degrees of
freedom. We identified SU(8) from inspecting the representation
multiplicity of the Dirac equation. In conclusion, grand
unification, originally proposed by Pati and Salam as a
combination of SU(4) with SU(2) [23] or by Georgi and Glashow
as SU(5) [24], is suggested to be governed by SU(8) which turns
out to be the natural unitary transformation leading to mixing of
all eight different fermions.

Returning to the standard Dirac equation for a moment, we
could have, by use of Pµ = (E,−px,−py,−pz), linearized the
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mass shell condition generally in the following way:

(±γ0)E+ (±γx)px + (±γy)py + (±γz)pz = ±m. (25)

Following our previous reasoning, we obtain 25 = 32
combinations of the possible plus and minus signs in front of the
gammas and the mass term, at which we can select the positive
sign, since the minus leads to redundant duplication. Thus,
we are left with 16 intrinsic independent degrees of freedom.
This number corresponds to the four fermions, one lepton and
three quarks, each of them having four degrees of freedom in
terms of particle and antiparticle with two spin orientations or
kinetic helicity states. Yet there is in principle a multitude of
possible similarity transformations, such as the one leading to
the Majorana representation [2, 9]. However, this seems not to be
physical in the sense that it breaks helicityH into its components
and violates charge conjugation by requiring the Majorana field
to be charge-self-conjugated [7, 10]. If we want the helicity
operator to remain intact, which we consider indispensable,
we have to go back to our decomposition (Equation 6), which
allows only two similarity transformations and thus implies the
hyperspin doublet introduced above.

All fermions considered so far carry hypercharges, yet the
neutrino has no electric charge. Why is this so? The solution to
this problem has been given by the theory of weak interactions.
It was invented by Weinberg [4], Glashow [25], and Salam [26]
making the crucial assumption that the basic fermion fields are
right- and left-chiral two-component Weyl fields as obtained
by the chiral projection discussed in Section 2. They are then
assembled into hypercharged left-chiral doublets transforming
under SU(2) and right-chiral singlets transforming under U(1),
and thus chiral symmetry is maximally broken. How can one
generate the electric charges as observed? This is achieved by
unifying these two symmetries into the electroweak interaction
as now described in many textbooks [1, 2].

However, with the hyperspin doublets introduced in the
previous subsection, the weak interaction emerges naturally
without breaking the chiral symmetry, and moreover with
implementation of the full Dirac spinor for a massive fermion.
Let us discuss just the lepton doublet which is given by ψ̂† =
(

ψ†,

(

1√
2
(1− γ )ψ

)†
)

.

As SU(2) is two-dimensional, the hypercharge operator is to
be defined as Y = y

212. The generators of SU(2) are given by the

spin three vector S = 1
2σ , and thus the general global phase of ψ̂

can be written as

exp
(

ig′ϑ ′Y + ig(ϑ · S)
)

. (26)

Here we use conventional notation with g′ for the hypercharge
coupling constant and g for the hyperspin coupling constant,
and the corresponding constant scalar and vector theta angles
which are real. We just need to consider the two diagonal-matrix
generators Y and Sz = 1

2σz, which can be mixed by a rotation of
their phase-angle space (here we took ϑz = ϑ) such that

(

ϑ ′

ϑ

)

=
(

cos θ − sin θ
sin θ cos θ

) (

ω′

ω

)

. (27)

Here θ is the associated rotation angle that is still to be
determined. Inserting the new coordinates into the operators
appearing in the phase factor (Equation 26) of the spinor ψ , and
letting ϑx = ϑy = 0, we obtain

g′ϑ ′Y + g(ϑ · S) = Qω′ + Rω. (28)

with the new matrices

Q(y) = 1

2

(

y g′ cos θ + g sin θ 0
0 y g′ cos θ − g sin θ

)

, (29)

and similarly

R(y) = 1

2

(

−y g′ sin θ + g cos θ 0
0 −y g′ sin θ − g cos θ

)

. (30)

Close inspection of Equations (29) and (30) shows that if
g′ cos θ = g sin θ = e for a particular angle θW these matrices
become more transparent. The condition implies that tan θW =
g′

g , which defines the Weinberg-Glashow angle [4, 25]. Once it is

fixed by the ratio of the coupling constants, the entity Q(y) turns
out to be the electromagnetic charge operator given by

Q(y) = e

2

(

y+ 1 0
0 y− 1

)

, (31)

with the electric charge obtained as e = gg′/
√

g2 + g′2. Similarly,
we get

R(y) = 1
√

g2 + g′2

(

−yg′2 + g2 0
0 −yg′2 − g2

)

, (32)

For the lepton doublet, with y = −1 for the electron, we therefore
obtain

Q(−1) = e

(

0 0
0 −1

)

, (33)

corresponding to the uncharged neutrino (top) and the
negatively charged electron (bottom). For the three quarks with
y = 1

3 , we get

Q

(

1

3

)

= e

( 2
3 0
0 − 1

3

)

, (34)

corresponding to the positively charged up-quark (top) and the
negatively charged down-quark (bottom). The electric charges of
the three color variants of up and down quarks are of course the
same.

3.4. Relation to the Observed Mass Pattern
The observed fermion mass pattern can be explained by breaking
the rotation symmetry of the SU(8) spinor state at the cost
of introducing (at most) 8 different coupling constants and
a scalar field, as is implemented in the standard model by
introducing the Higgs field coupled with the fermion field. We
add a coupling term between the 8-component spinor 9̂ and a
scalar field φ with 8 coupling constants in a diagonal matrix in
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the form diag(c1, c2, · · · , c8)φ 9̂ to the r.h.s. of the generalized
Dirac equation. If the scalar field takes two different vacuum
expectation values as a realization, it is possible to obtain different
masses for fermions.

The first case is the symmetric (or zero) vacuum expectation
value, φ = 0. The SU(8) symmetry is retained in the spinor
and the original generalized Dirac equation is restored with all
the fermion species having the same mass m. The second case is
a non-zero vacuum expectation value, φ = φ0 6= 0, breaking
the SU(8) symmetry in the spinor. Combination of the original
mass term with the coupling term yields an effective mass term
as diag

(

(m+ c1φ0), (m+ c2φ0) · · · , (m+ c8φ0)
)

9̂ . Therefore,
m + ciφ may be regarded as the effective mass for each fermion
species.

4. CONCLUSION AND DISCUSSION

We have shown that the different variants of how to decompose
the mass shell condition (Equation 6) leads plausibly to eight
different but coequal representations of the Dirac equation,
which can in a physically meaningful way be interpreted as
describing eight massive fermions. The corresponding large
Dirac spinor ψ̂ assembles them, while being arranged in four
doublets of leptons (neutrino and electron) and quarks (up and
down), coming in three forms (which traditionally are refereed
to as color-charge variants). Of course, the quark ordering is
arbitrary and thus general rotations according to SU(3) in the
quark state space are permitted and mixing among them is
allowed.

The intrinsic symmetry group for the massive hypercharged
fermion is SU(8), which breaks into subgroups. There is SU(2)
for the “Dirac-Weyl doublets” of the fermions. The lepton and
quarks can mix among themselves according to the symmetry
group SU(4). The eight fermion species all have at this stage
the same mass, as we started from the mass-shell condition
(Equation 6) with a given single mass. Naturally, this mass would
be seen as the electron mass, which is the only one that has
precisely been measured, and which sets a fundamental spatial
scale for the fermions by the electron Compton wavelength.
Consequently, one may speculate that the measured or inferred
fermion mass splitting is expected to occur as the result of
coupling with the scalar field φ. The SU(8) symmetry is broken
by the scalar field in this scenario.

Whereas the fermions of the SM (except for the electron
the theory of which was invented long ago by Dirac [5])

and their complex physical properties were gradually
established on experimental grounds, no basic theoretical
derivation like for the electron was presented before for
the characteristics of quarks. Here we have shown that a
new equation is indeed not necessary as the generalized
Dirac equation already contains these fermions, including
their spin, isospin, and electric as well as color charge. The
generalized Dirac equation actually encompasses the eight
stable fundamental fermions of the first family of the SM,
owing to its rich intrinsic symmetry which was revealed in this
paper.

SU(8) in our model comes solely from the intrinsic symmetry
of the generalized Dirac equation, and is different from the
other unification scenarios based on the SU(8) group, such
as the boson-fermion balanced SU(8) unification incorporating
graviton and gravitinos [27], the SU(8) unification including
flavors or chiral family [28, 29], or the SU(8) unification including
supersymmetry [30]. Still, it is worth noting that the generalized
spinor in our model has the same construction as that proposed
by Yablon [31]. One cannot argue that the 4 different versions
of the Dirac equation derived here are the same, simply because
they deliver the same observables. The wave function or the
spinor is not the same among the 4 versions, and the intrinsic
states (or spinors) are in apparent degeneracy, as far as the
energy of the free fermion fields is concerned. The association
of the lepton field with the quark fields is not arbitrary in our
generalized Dirac equation. As described in the hypercharge
operator Y4 = diag( 13 ,

1
3 ,

1
3 ,−1), the SU(4) symmetry group,

as a subgroup of SU(8), gives the fractional charge in a natural
way, which justifies its association with a single lepton and three
quarks.
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