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Quantum teleportation circumvents the uncertainty principle using dual channels: a

quantum one consisting of previously-shared entanglement, and a classical one, together

allowing the disembodied transport of an unknown quantum state over distance. It has

recently been shown that a classical bit can be counterfactually communicated between

two parties in empty space, “Alice” and “Bob.” Here, by using our “dual” version of

the chained quantum Zeno effect to achieve a counterfactual CNOT gate, we propose

the first protocol for transporting an unknown qubit counterfactually, that is without

any physical particles traveling between Alice and Bob—no classical channel and no

previously-shared entanglement.

Keywords: interaction-free measurement, Zeno effect, counterfactual communication, entanglement generation,

quantum teleportation

1. INTRODUCTION

In contrast to classical information, quantum states cannot be faithfully copied—as proven by the
no-cloning theorem [1]. In fact doing so would not only violate the uncertainty principle, but
would also violate the rule against faster-than-light signaling [2]. Teleporting an unknown qubit,
whereby an identical version appears elsewhere, was presumed to firmly belong to the realm of
science fiction—until Bennett et al. [3] showed it possible using previously-shared entanglement
and a classical channel, such as a phone line. The original qubit, in accordance with no-cloning,
is duly destroyed in the process. Quantum teleportation has since been extended to systems with
continuous variables [4], and has been demonstrated in numerous key experiments [5–9].

Here, we wonder: Is the disembodied transport of an unknown qubit over distance possible,
even in principle, without recourse to previously-shared entanglement or a classical channel?—and
intriguingly, without physical particles traveling between Alice and Bob? The answer, as we show,
is surprisingly yes.

It has recently been shown that a classical bit can be counterfactually transferred between
two parties in empty space [10, 11]. The key ideas behind direct counterfactual quantum
communication—a version of which has recently been realized experimentally [12]—are
interaction-free measurement [13, 14] and the quantum Zeno effect [15–19]. Interaction-free
measurement is based on the fact that the presence of a blocking object inside an interferometer
destroys interference even if no particle hits the object. This has the interesting consequence that
sometimes the presence of such an object can be inferred without the object directly interacting
with any particles. Noh [20] used this to design a counterfactual quantum key distribution protocol
whereby, for shared random bits, no information-carrying photons travel between Alice and
Bob. The quantum Zeno effect on the other hand refers to the fact that repeated measurement
of an evolving quantum system inhibits its evolution, “freezing” it in its initial state—an effect
reminiscent of the proverbial watched kettle that never boils. The quantum Zeno effect can
arbitrarily boost the efficiency of interaction-free measurements.
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2. METHODS

We start by generalizing the action of the Mach-Zehnder chained
quantum Zeno effect (CQZE) in Salih et al. [10] to the case
of Bob effecting a quantum superposition of blocking and not
blocking the channel, showing first how it can function as
a fully counterfactual, though not practical, CNOT gate, for
only one of Alice’s input states. Consider the Mach-Zehnder
interferometry Zeno setup of Figure 1A. The first concept
we require here is Bob effecting a quantum superposition of
blocking and not blocking the transmission channel [13, 14,
16]. Although this is easier to imagine from a practical point
of view for the Michelson version we discuss later in this
section, this Mach-Zehnder version is easier to explain. Here,
BS stands for beamsplitter. The action of BS on Alice’s photon
is the following, |10〉 → cos θ |10〉 + sin θ |01〉 and |01〉 →
cos θ |01〉 − sin θ |10〉, where the state |10〉 corresponds to the
photon being on the left of BS, the state |01〉 corresponds to
the photon being on the right of BS, and cos θ =

√
R, with

R being the reflectivity of BS. We set θ = π/2N, where N is
the number of beamsplitters. Let the initial combined state of
Bob’s quantum object together with Alice’s photon, impinging
on the first beamsplitter BS from the top left, be (α

∣

∣pass
〉

+
β

∣

∣block
〉

)⊗ |10〉. The state
∣

∣pass
〉

corresponds to Bob’s object not
blocking the channel, and has probability amplitude α. The state
∣

∣block
〉

corresponds to Bob’s object blocking the channel, and has
probability amplitude β .

In the following, starting from the second BS, we post-select
before each BS the state corresponding to the photon not
hitting Bob’s object. If the photon hits Bob’s object, we assume
it is absorbed. But the exact nature of the interaction does
not matter, only that the photon is lost; the protocol fails.
Immediately after the first BS, the combined state is rotated
to (α

∣

∣pass
〉

+ β
∣

∣block
〉

) ⊗ (cos θ |10〉 + sin θ |01〉), which
immediately before the second BS, given the photon is not
lost to Bob’s object, becomes (1− |β|2sin2θ)1/2[α

∣

∣pass
〉

⊗
(cos θ |10〉 + sin θ |01〉) + β

∣

∣block
〉

⊗ |10〉]. We have
multiplied by the square root of the probability that the
photon is not lost to Bob’s object, (1− |β|2sin2θ)1/2. And
immediately after the second BS this state is rotated to
(1− |β|2sin2θ)1/2[α

∣

∣pass
〉

⊗ (cos 2θ |10〉 + sin 2θ |01〉) +
β

∣

∣block
〉

⊗ (cos θ |10〉 + sin θ |01〉)], which immediately before
the third BS, given the photon is not lost to Bob’s object, becomes
(1− |β|2sin2θ)[α

∣

∣pass
〉

⊗(cos 2θ |10〉+sin 2θ |01〉)+β
∣

∣block
〉

⊗
|10〉]. And immediately after the third BS, this state is rotated to
(1− |β|2sin2θ)[α

∣

∣pass
〉

⊗(cos 3θ |10〉+sin 3θ |01〉)+β
∣

∣block
〉

⊗
(cos θ |10〉 + sin θ |01〉)].

Thus, after n beamsplitters the combined state has evolved as,

(α
∣

∣pass
〉

+ β
∣

∣block
〉

)⊗ |10〉 →

(1− |β|2sin2θ)(n−1)/2[α
∣

∣pass
〉

⊗ (cos nθ |10〉 + sin nθ |01〉)+
β

∣

∣block
〉

⊗ (cos θ |10〉 + sin θ |01〉)]. (1)

And after N beamsplitters, with N very large, the combined
state of Bob’s quantum object and Alice’s photon becomes
(α

∣

∣pass
〉

|01〉 + β
∣

∣block
〉

|10〉). The factor (1− |β|2sin2θ)(n−1)/2

squared is the probability that Alice’s photon is not lost due

FIGURE 1 | Proposal for counterfactual Mach-Zehnder CNOT. Bob

effects a quantum superposition of blocking and not blocking the channel,

not practical for this Mach-Zehnder scenario, which acts as the CNOT’s

control qubit. (A), Partially counterfactual CNOT gate. Beamsplitters BS are

highly reflective, with reflectivity R = cos
2 π/2N, where N is the total number

of BSs. The gate, however, only works for one of Alice’s inputs (“0”).

Moreover, it is not counterfactual for the part of the superposition where Bob

does not block, in which case the photon passes through the channel. (B),

Fully counterfactual CNOT gate based on the chained quantum Zeno effect

(CQZE). Between successive BSMs, of which there are M, there are N

beamsplitters BSN. While the scheme only works for Alice’s “0” input,

complete counterfactuality is ensured as any photon going into the channel

would be lost due to measurement by Bob’s object or else end up at one of

the detectors D3: the chained quantum Zeno effect. For large enough M

and N, the probability amplitude of the photon being in the channel is

virtually zero.

to measurement by Bob’s object, which brings about the Zeno
effect. We thus have a CNOT gate, with Bob’s as the control
bit,

∣

∣block
〉

≡ |0〉, and
∣

∣pass
〉

≡ |1〉, and Alice’s as the target
bit, |10〉 ≡ |0〉, and |01〉 ≡ |1〉, albeit for only one of Alice’s
possible input states, namely |0〉. Moreover, the scheme is only
counterfactual for the part of the superposition corresponding
to Bob blocking and is not counterfactual for the part of the
superposition corresponding to Bob not blocking, where Alice’s
photon gradually “leaks” into the channel.

We now show how to achieve complete CNOT
counterfactuality, for Alice’s input state |0〉, using the chained
quantum Zeno effect (CQZE) setup of Figure 1B. Here,
Alice’s photon goes through M beamsplitters BSM , with
θM = π/2M. Between successive BSMs the photon goes
through N beamsplitters BSN , with θN = π/2N. The state |100〉
corresponds to Alice’s photon being on the left of BSM , the state
|010〉 corresponds to the photon being on the right of BSM and
on the left of BSN , and the state |001〉 corresponds to the photon
being on the right of BSN . For them-th cycle,
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(α
∣

∣pass
〉

+ β
∣

∣block
〉

)⊗ |010〉 →

(1− |β|2sin2θN)(n−1)/2[α
∣

∣pass
〉

⊗ (cos nθN |010〉 + sin nθN |001〉)+
β

∣

∣block
〉

⊗ (cos θN |010〉 + sin θN |001〉)].

(2)

And after N beamsplitters BSN , with N very large, the
combined state of Bob’s quantum object and Alice’s photon
becomes (α

∣

∣pass
〉

|001〉 + β
∣

∣block
〉

|010〉). The factor

(1− |β|2sin2θN)(n−1)/2 squared is the probability that the
photon is not lost due to measurement by Bob’s object, which
brings about the Zeno effect. But Alice’s single photon is initially
in the state |100〉, as shown in Figure 1B, with all unused ports
in the vacuum state. After them-th BSM ,

(α
∣

∣pass
〉

+ β
∣

∣block
〉

)⊗ |100〉 →

(1− |α|2sin2θM)(m−1)/2[α
∣

∣pass
〉

⊗ (cos θM |100〉
+ sin θM |010〉)+
β

∣

∣block
〉

⊗ (cosmθM |100〉 + sinmθM |010〉)].

(3)

And after the M-th BSM , with M very large, the combined state
of Bob’s quantum object and Alice’s photon ≃ (α

∣

∣pass
〉

|100〉 +
β

∣

∣block
〉

|010〉). The factor (1− |α|2sin2θM)(m−1)/2 squared is
the probability that Alice’s photon is not lost through detection
by one of her D3s, which bring about the Zeno effect for the part
of the superposition corresponding to Bob not blocking. We thus
have a fully counterfactual CNOT gate, with Bob’s as the control
bit,

∣

∣pass
〉

≡ |0〉, and
∣

∣block
〉

≡ |1〉, and Alice’s as the target bit,
|100〉 ≡ |0〉, and |010〉 ≡ |1〉, again for only one of Alice’s possible
input states, |0〉.

Complete counterfactuality is ensured: Any photon going into
the channel would either be lost due to measurement by Bob’s
object or else end up at one of the detectors D3. This is the
most direct, intuitive definition of counterfactuality. Defining
counterfactuality in terms of weak measurements, for instance,
has proven controversial [21, 22]. Moreover, by Equations (2)
and (3), the probability amplitude of the photonic state |001〉
corresponding to the photon being in the channel is virtually
zero for large enough M and N. Nevertheless, the scheme is not
practical, andmore fundamentally, it only works for one of Alice’s
input states.

Let us now consider a more versatile Michelson version,
showing in principle how to achieve a counterfactual quantum
CNOT gate for all possible input values. Here, the function of BS
in the Mach-Zehnder CQZE setup of Figure 1B is achieved by
the combined action of switchable polarization rotator SPR and
polarizing beamsplitter [10, 23] PBS, as shown in Figure 2. Bob’s
quantum objectQOB exists in a superposition of blocking and not
blocking the channel. Here, H(V) refers to horizontal (vertical)

polarization. The action of SPR
H(V)
i , in Alice’s H(V)-input setup,

on her photon is the following,

∣

∣H(V)
〉

→ cos θi
∣

∣H(V)
〉

+ sin θi
∣

∣V(H)
〉

. (4)

∣

∣V(H)
〉

→ cos θi
∣

∣V(H)
〉

− sin θi
∣

∣H(V)
〉

. (5)

with i = 1, 2 corresponding to SPRs with different rotation
angles. We set rotation angle θ1(2) = π/2M(N), with SPR1(2)
switched on once per cycle when the photon, or part of it rather,
is moving in the direction from SM1(2) toward PBS1(2). This is in
contrast to Salih et al. [10] where switchable polarization rotators
are switched on when the photon is moving in the direction from
switchable mirror SM1(2) toward PBS1(2) and on the way back,
leading to an undesired rotation in the last outer cycle, tiny for
large M. The current scheme avoids this undesired rotation and
resulting error altogether. Switchable mirror SM1(2) is initially
turned off allowing the photon in, but is then turned on forM(N)
cycles before it is turned off again, allowing the photon out.

The Michelson CQZE setup of Figure 2 takes H(V) polarized
photons as input, with PBSH(V) passing H(V) photons and
reflecting V(H) as shown. Alice sends an H(V) photon into the
H(V)-input CQZE setup. By a similar evolution to Equations (2)
and (3), in the part of the superposition corresponding to Bob not
blocking the channel, Alice’s exiting photon is H(V) polarized,
while in the part of the superposition corresponding to Bob
blocking the channel, Alice’s exiting photon is V(H) polarized.

This means that Alice can encode her bit using polarization.
She encodes a “0”(“1”) by sending an H(V) photon into the
corresponding H(V)-input CQZE setup. But can Alice encode a
quantum superposition of “0” and “1”?

Crucially, the answer is yes. She first passes her photon
through PBSL in order to separate it into H and V components
as shown in Figure 3A. The H(V) component is then fed into
the corresponding H(V)-input CQZE setup. Bob can block or
not block the transmission channel—or a quantum superposition
of blocking and not blocking—for both H and V components
which are recombined using PBSR, Figure 3A. The polarization
of Alice’s exiting photon is determined by Bob’s bit choice. This is
our dual chained quantum Zeno effect.

Starting with Equations (2) and (3), and adapting for
the Michelson CQZE setup of Figure 2, the probability that
the photon avoids detection by detector D3 in all cycles is
(1− |α|2sin2θM)M . And the probability that the photon avoids
being lost due to measurement by Bob’s object in all cycles is
∏M

m=1(1−|β|2sin2mθMsin2θN)
N for largeN. Thus, the ideal case

efficiency of this counterfactual CNOT gate is,

(1− |α|2sin2θM)M
M
∏

m=1

(1− |β|2sin2mθMsin2θN)
N . (6)

In Figure 4 we plot this maximum efficiency for differentMs and
Ns, for α = β = 1/

√
2. Given perfect implementation, we see

that efficiency approaches unity forN >> M >> 1. For instance
forM = 50 and N = 1250, ideal efficiency is already 95%.

Complete counterfactuality is ensured: Any photon going into
the channel would either be lost due to measurement by Bob’s
object or else end up at detector D3. Moreover, the probability
amplitude of the photonic state corresponding to the photon
being in the channel is virtually zero for large enoughM and N.

Unlike theMach-Zehnder scenario discussed above where, for
Bob not blocking, the last BSM causes an undesired rotation—
tiny for large M—in this Michelson implementation, a small
number of outer cycles M does not lead to output errors from
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FIGURE 2 | Proposal for fully counterfactual CNOT gate based on Michelson CQZE. By using polarizing beamsplitter PBSH(V ) that passes H(V ) photons and

reflects V (H), this setup can take H(V ) input from Alice, i.e., “0”(“1”), but not yet a superposition. Bob implements his qubit as a superposition of blocking and not

blocking the channel using his quantum object QOB. Switchable mirror SM1(2) is initially turned off allowing the photon in, but is then turned on for M(N) outer(inner)

cycles before it is turned off again, allowing the photon out. The combined action of switchable polarization rotators SPR and polarizing beamsplitters PBS achieves

the function of beamsplitters BS in the Mach-Zehnder version of Figure 1. MR stands for mirror, and OD for optical delay. Again, complete counterfactuality is ensured

as any photon going into the channel would either be lost due to measurement by Bob’s object QOB or else end up at detector D3: the chained quantum Zeno effect.

For large enough M and N, the probability amplitude of the photon being in the channel is virtually zero.

the counterfactual CNOT gate, but would instead lead to more
instances of the gate failing through photon loss. However, a
small number of inner cycles N would lead to output errors as
well as more photon loss, as would imperfect implementation.

Salih et al. [10], Figure 4, contains an analysis for the case
of transferring classical bits counterfactually in the presence of
imperfections, for the two cases of Bob blocking the channel and
that of Bob not blocking the channel. We see that the CQZE is
sensitive to rotation errors by polarization rotators SPR as well as
noise randomly blocking the channel. We expect a similar effect
for our counterfactual quantum CNOT gate. A detailed analysis
in the presence of imperfections, more crucial for a large number
of cycles implementation, is left to a future study.

Note that in their experimental implementation of the CQZE
of Salih et al. [10], in the single-photon regime, Cao et al.
[12] managed to mimic the action of switchable mirrors,
whose direct realization would have been challenging, by using
slightly tilted semi-reflective mirrors. They post-selected only the
photons that emerged in the correct spatial and temporal modes
corresponding to the desired number of cycles.

Now, consider the most general case where Alice sends a
photon in the superposition λ |H〉 + µ |V〉, with Bob’s object
in the superposition α

∣

∣pass
〉

+ β
∣

∣block
〉

. We get the following
superposition for Alice’s exiting photon, from the upper path H-
input CQZE module and the lower path V-input CQZE module,
Figure 3B,

λ(α
∣

∣pass
〉

|H〉 + β
∣

∣block
〉

|V〉)⊗
∣

∣upper path
〉

+
µ(α

∣

∣pass
〉

|V〉 + β
∣

∣block
〉

|H〉)⊗
∣

∣lower path
〉

.
(7)

All we need now is to combine the two photonic states
from the upper and lower paths. This is done by replacing
PBSL in Figure 3A by a 50:50 beamsplitter BS, as shown
in Figure 3B. We define the upper path as above or to
the right of BS, and the lower path as below or to
the left of BS. Let’s rename the states (α

∣

∣pass
〉

|H〉 +
β

∣

∣block
〉

|V〉) and (α
∣

∣pass
〉

|V〉 + β
∣

∣block
〉

|H〉) as |տ〉 and |ւ〉,
respectively. We can rewrite the exiting state, Equation (7), as
(λ |տ〉

∣

∣upper path
〉

+ µ |ւ〉
∣

∣lower path
〉

). Feeding this state
into BS, which applies a π/2-rotation to the path qubit,
gives,

1/
√
2(λ |տ〉 + µ |ւ〉)⊗

∣

∣lower path
〉

+

1/
√
2(λ |տ〉 − µ |ւ〉)⊗

∣

∣upper path
〉

.
(8)

Which means we can obtain the desired state λ |տ〉 + µ |ւ〉
with 50% probability upon measuring the path qubit. We will
shortly deal with the other 50%. This measurement is carried
out at D0, Figure 3B, without destroying the photon when
ideal [24, 25]. If the photon is not detected there we know it
is in the other path traveling toward the left, in the correct
state. So starting with the most general input states we have
got,

(α
∣

∣pass
〉

+ β
∣

∣block
〉

)⊗ (λ |H〉 + µ |V〉) →
λ(α

∣

∣pass
〉

|H〉 + β
∣

∣block
〉

|V〉)+
µ(α

∣

∣pass
〉

|V〉 + β
∣

∣block
〉

|H〉).
(9)
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FIGURE 3 | Proposal for fully counterfactual general input CNOT gate based on a dual CQZE. (A), Alice sends a photon in the qubit state α |H〉 + β |V〉, while
Bob’s quantum object QOB is in the qubit state λ |pass〉 + µ |block〉. Alice’s incoming photon is first separated into H and V components using polarizing beamsplitter

PBSL, which are then, respectively fed into the H-input and V-input CQZE modules from Figure 2. (B), For Alice’s exiting photon, PBSL is replaced by a 50:50

beamsplitter BS. If it is not detected at D0, then the photon exits toward the left in the correct state. For the case of Alice initially sending an H photon, as in the first

step of our protocol, there is no need for BS, the photon exits toward the left in the correct state. S stands for single photon source.

Rewriting using the equivalent binary states we get,

(α |0〉 + β |1〉)⊗ (λ |0〉 + µ |1〉) →
λ(α |0〉 |0〉 + β |1〉 |1〉)+
µ(α |0〉 |1〉 + β |1〉 |0〉).

(10)

We have thus shown in principle how to achieve a fully
counterfactual quantum CNOT gate using our dual CQZE
setup.

3. RESULTS AND DISCUSSION

We now show in principle how to counterfactually transport
an unknown qubit. Using two CNOT gates, the network of
Figure 5A swaps the input states (α |0〉+β |1〉) and |0〉, effectively
transferring α |0〉 + β |1〉 from one side (top) to the other
(bottom) [26].

Can we use our counterfactual CNOT gate in this
network—with Bob’s quantum object as the control qubit—
to counterfactually transport an unknown state from Bob to
Alice? The problem with the network is that the control qubits
of the two CNOT gates are on opposite sides. But there is a
way around it. By means of four Hadamard gates, the network
of Figure 5B interchanges the control and target qubits of a

CNOT gate [27]. Applying this to the network of Figure 5A
we get the network of Figure 5C which forms the basis of our
protocol,

(α |0〉 + β |1〉)⊗ |0〉 CNOT−→

α |00〉 + β |11〉 H⊗2

−→

α |++〉 + β |−−〉 CNOT−→

α |++〉 + β |+−〉 H⊗2

−→
|0〉 ⊗ (α |0〉 + β |1〉).

(11)

What about the case of Alice’s exiting photon ending up on
path D0, which has 50% probability? From Equation (8), the
combined state of Bob’s object and Alice’s photon in this path is,
λ(α

∣

∣pass
〉

|H〉 + β
∣

∣block
〉

|V〉)− µ(α
∣

∣pass
〉

|V〉 + β
∣

∣block
〉

|H〉),
which in binary is, λ(α |0〉 |0〉+β |1〉 |1〉)−µ(α |0〉 |1〉+β |1〉 |0〉).
This is equivalent to the output of a CNOT gate but with
Alice applying a Z-gate to her input qubit. Incorporating this
in the network of Figure 5C we get the network of Figure 5D.
It turns out that an X-gate is needed at the end for the state
α |0〉 + β |1〉 to be transferred from one side (top) to the other
(bottom),
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FIGURE 4 | Ideal case efficiency of counterfactual CNOT. The efficiency

of an ideally implemented counterfactual CNOT gate, with Alice encoding a

quantum superposition of “0” and “1,” plotted against the number of outer and

inner cycles M and N, with M up to 75, and N up to 1500. Bob’s control qubit

is assumed an equal superposition here. Efficiency approaches unity for

N >> M >> 1. Errors or loss caused by imperfect optical elements and by

noise in the channel, as well as decoherence of Bob’s quantum object, all of

which have an adverse effect, are ignored here.

FIGURE 5 | Network for quantum state transfer. (A), By means of two

CNOT gates a qubit α |0〉 + β |1〉 can be transferred from one side (top) to the

other (bottom). Our counterfactual CNOT gate has Bob’s as the control qubit,

which is a problem since in this network the control qubits of the two CNOT

gates are on opposite sides. (B), By means of four Hadamard gates the

control and target qubits of any CNOT gate can be interchanged. (C) Applying

(B) to (A), the control qubits of both CNOT gates are now on the same side,

Bob’s. This network forms the basis of our protocol for counterfactually

transporting an unknown qubit. (D), In case of a Z-gate before the right hand

side CNOT, we need an X-gate at the end in order for the state α |0〉 + β |1〉 to
be correctly transferred. This network is relevant to one of the two possible

paths for Alice’s exiting photon from the Dual CQZE setup of Figure 3B.

(α |0〉 + β |1〉)⊗ |0〉 CNOT−→

α |00〉 + β |11〉 H⊗2

−→

α |++〉 + β |−−〉 I⊗Z−→

α |+−〉 + β |−+〉 CNOT−→

α |−−〉 + β |−+〉 H⊗2

−→

α |11〉 + β |10〉 I⊗X−→
|1〉 ⊗ (α |0〉 + β |1〉).

(12)

We have finally arrived at our protocol for counterfactually
transporting an unknown qubit.

3.1. Protocol for Counterfactual Quantum
Transportation
Alice starts by sending an H-photon into the dual CQZE
setup of Figure 3, with Bob’s quantum object, his qubit to be
counterfactually transported, in a superposition of blocking and
not blocking the channel: α

∣

∣pass
〉

+ β
∣

∣block
〉

. Alice then applies
a Hadamard transformation to (the polarization of) her exiting
photon, as does Bob to his qubit. Alice sends her photon back
into the dual CQZE setup. If her exiting photon is not found in
path D0, she knows it is in the other path traveling toward the
left. She applies a Hadamard transformation to (the polarization
of) her photon, as does Bob to his qubit. The photon is now in
the state α |H〉 + β |V〉. If Alice’s exiting photon is found instead
in path D0, she first applies a Hadamard transformation to (the
polarization of) her photon, as does Bob to his qubit. She then
applies an X-transformation to her qubit. The photon is now in
the state α |H〉 + β |V〉. Bob’s qubit has been counterfactually
transported to Alice. His original qubit ends up in the state |0〉
or |1〉 randomly; in other words destroyed.

3.2. Fidelity
Let us now look at the fidelity of our counterfactual transport as
a function of the number of outer and inner cyclesM and N. We
have mentioned that a small number of inner cycles N would
lead to output errors for our counterfactual CNOT gate. These
output errors only occur for the case of Bob blocking the channel
as the number of inner cycles is irrelevant for the case of Bob
not blocking the channel. Take the case of Alice sending an H-
photon into the counterfactual CNOT gate, with Bob blocking.
For asymptotically large N, with N >> M, and given perfect
implementation, the counterfactual CNOT outputs a V-photon.
However, for finite N we have the recursion relations [10],

ǫ[m,N] = cos(
π

2M
)ǫ[m− 1]− sin(

π

2M
) cosN(

π

2N
)η[m− 1].

(13)

η[m,N] = sin(
π

2M
)ǫ[m− 1]+ cos(

π

2M
) cosN(

π

2N
)η[m− 1].

(14)
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FIGURE 6 | Ideal case fidelity of counterfactual transport. The fidelity of

our protocol for counterfactually transporting an unknown qubit plotted

against the number of outer and inner cycles, M and N, for M up to 10 and N

up to 100, with α = β = 1√
2
. Implementation imperfections are ignored.

Where η[M,N] is the unnormalized probability amplitude for
the photon exiting in the correct state |V〉, and ǫ[M,N] is the
unnormalized probability amplitude for the photon exiting in the
incorrect state |H〉. We have the initial conditions η[0,N] = 0,
and ǫ[0,N] = 1. The case of Alice sending a V-photon into the
counterfactual CNOT gate is analogous. Using Equation (11) we
get the following expression for the fidelity of our counterfactual
qubit transport,

Fidelity =
[

|α|2

2
(1+ η[M,N]+ ǫ[M,N])

+
|β|2

2
(1+ η[M,N]− ǫ[M,N])

]2

. (15)

For example, for M = 2 and N = 50, with α = β = 1√
2
,

we already have a fidelity of 99%. Figure 6 plots fidelity, which

simplifies to (1+η[M,N])2

4 for α = β = 1√
2
, against M and N, for

M up to 10 and N up to 100.
We have so far not said anything about how Bob may

practically implement his qubit. Tremendous recent advances

mean that there are several candidate technologies. Perhaps most
promising for our purpose here are trapped-ion techniques [28–
30], whereby a carefully shielded and controlled ion can be
placed in a quantum superposition of two spatially separated
states—one of which in our case blocks the channel. Trapped
ions offer relatively long decay times, needed for a large-
number-of-cycles implementation of the protocol. Moreover,
the Hadamard transformation, key to this protocol, can be
directly applied by means of suitable laser pulses. Note that in
our protocol a smaller number of outer cycles, as explained
above, does not lead to output errors, but rather to more
instances of photon loss. This opens the door for practical
implementation by post-selecting Alice’s photon not lost. Such an
implementation also helps with decoherence of Bob’s quantum
object by shortening the time required for qubit transport. It
also helps with errors caused by imperfect optical elements and
by noise in the channel—as a larger number of cycles would
amplify such errors. Shorter qubit transport time could pose a
different challenge however. Switchable optical elements such
as switchable mirrors and polarization rotators, implemented in
the single-photon regime, need to be turned on or off quickly
enough to achieve the precise timing described in the protocol.
The question of whether our protocol is implementable using
current technology is an interesting one whose answer has to
wait.

We have proposed a protocol for the counterfactual,
disembodied transport of an unknown qubit—much
like in quantum teleportation except that Alice and Bob
do not require previously-shared entanglement nor a
classical channel. No physical particles travel between
them either. Here, Bob’s qubit is gradually “beamed up” to
Alice. In the ideal asymptotic limit, efficiency and fidelity
approach unity as the probability amplitude of the photon
being in the channel approaches zero. This brings into
sharp focus both the promise and mystery of quantum
information.
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