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The human brain is a heterogeneous network of connected functional regions; however,

most brain network studies assume that all brain connections can be described in a

framework of binary connections. The brain is a complex structure of white matter

tracts connected by a wide range of tract sizes, which suggests a broad range of

connection strengths. Therefore, the assumption that the connections are binary yields

an incomplete picture of the brain. Various thresholding methods have been used to

remove spurious connections and reduce the graph density in binary networks. But these

thresholds are arbitrary and make problematic the comparison of networks created at

different thresholds. The heterogeneity of connection strengths can be represented in

graph theory by applying weights to the network edges. Using our recently introduced

edge weight parameter, we estimated the topological brain network organization using a

complimentary weighted connectivity framework to the traditional framework of a binary

network. To examine the reproducibility of brain networks in a controlled condition, we

studied the topological network organization of a single healthy individual by acquiring 10

repeated diffusion-weighted magnetic resonance image datasets, over a 1-month period

on the same scanner, and analyzing these networks with deterministic tractography. We

applied a threshold to both the binary and weighted networks and determined that the

extra degree of freedom that comeswith the framework of weighting network connectivity

provides a robust result as any threshold level. The proposed weighted connectivity

framework provides a stable result and is able to demonstrate the small world property

of brain networks in situations where the binary framework is inadequate and unable to

demonstrate this network property.

Keywords: weighted connectomes, small worldness, complex networks, tractography, brain topology

INTRODUCTION

The brain is a heterogeneous system comprised of a broad range of white matter (WM) connection
strengths [1, 2]. Computational models of neuronal networks account for this heterogeneity by
weighting the network edges. Chavez et al. found that weighted edges enhanced synchronization
between network units [3]. To account for this enhanced synchronization and the broad range
of large and small white matter tracts in the brain, the analysis of brain networks must include
a connectivity weighting parameter to reflect the real underlying organizational structure of the
brain [4, 5]. In addition to producing more realistic network models of the brain, weighting the
edges adds an extra degree of freedom in calculated network parameters.
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The topological organization of structural and functional
brain networks has been extensively studied in vivo with
magnetic resonance imaging (MRI) [6–10] and graph theory
provides an appropriate framework in which to elucidate the
topological organization of brain networks [4]. This approach
has revealed several basic network characteristics of the brain,
such as high clustering, short path lengths, modularity, and
small world organization. In order to generate brain structural
networks, white matter structural connections (network edges)
are estimated from diffusion-weighting MRI (dMRI) using
tractography between gray matter regions (network nodes). The
resulting networks suggest only a small world organization
for brain networks [11–14]. But these studies generally
employ binary connectivity representations, which assume every
connection between nodes is equivalent [11, 15], so the
connection either exists or does not exist, because the strength
of connection is not used to differentiate between connections.
Weighted networks can differentiate the strength of connections,
however weighted connectome studies have focused on the
difference of specific metrics between healthy controls and
pathological subjects. Weighted connectome studies have shown
increased changes in node strength, efficiency, clustering between
patients with various neurological diseases compared to healthy
controls [16–20]. These studies illustrate that global changes
may take place in the organization of network connections in
neurological disorders. This suggests that the small-worldness
topological index may also show these organizational changes in
weighted connectomes.

Complex network models have been employed to describe
various real world networks [21, 22] and weighted network
parameters have been introduced, but a comprehensive weighted
connectivity framework has not been reported which allows
the estimation of brain network topological features, such as
small worldness [23]. The usual binary framework approach
to estimating the topology of brain networks includes the
calculation of network metrics; degree distribution, path length
and clustering coefficients [23]. In separate published works,
all of these metrics have been generalized to their weighted
counterparts. In the next section of this paper, these generalized
metrics are reviewed then used to estimate the topological
features (small worldness) of brain networks. This weighted
network approach leads to a more realistic model of the brain
network and a more robust characterization of the brain network
topology.

NETWORK METRICS

The adjacency matrix, A, is the most basic mathematical
representation of network connectivity [24]. For simple and
undirected graphs, the adjacency matrix is square and symmetric
(i.e., N × N, where N is the number of nodes in the network):

A =







a11 . . . a1n
...

. . .
...

an1 · · · ann






, (1)

Unweighted networks, known as binary networks, are described
in an adjacency matrix by either the presence or absence of an
edge connecting any two nodes where these binary edges have
the value,

aij =

{

1, if an edge connects nodes ni and nj
0,

. (2)

In a weighted networks, the adjacency matrix is modified by
adding a weighting parameter to represent the connection
strength of each edge,

a
′

ij = aij · w(eij). (3)

Here the edge weight, w(eij), characterizes the connectivity
strength between each pair of nodes. The weighted adjacency
matrix allows the calculation of network metrics, analogous
to those derived from the binary adjacency matrix [25], and
is the foundation of a framework to study the topology
of weighted brain networks. Since translational diffusion is
antipodal symmetric, only undirected graphs will be considered
for dMRI-derived connections; hence, the elements of the binary
and the weighted adjacency matrix will be symmetric (i.e., aij =
aji). A simple overall measure of network connectivity, the graph
density (ρ), is defined as the ratio of the number of edges in
the network graph to the maximum number of possible edges.
This parameter is used to quantify gross alterations in networks
resulting from changes, such as a selected threshold.

Node Connectivity
The node degree, ki, for the i

th node, ni, represents the number
of nodes connected to node, ni, and is calculated from the binary
adjacency matrix as follows,

ki =

N
∑

j=1

aij. (4)

A degree distribution, expressed as the probability that nodes
have a degree, k, in the network of N nodes can be used to
provide a simple representation of connectivity in the network. In
weighted networks, a parameter analogous to degree (Equation 4)
is the node connection strength, si [26],

si =

N
∑

j=1

a
′

ij =

N
∑

j=1

aij · w(eij). (5)

Like the degree distribution, the node connection strength
distribution provides a simple representation of connectivity in
a weighted network.

Mean Geodesic Path Length
Another important network metric is the geodesic path length.
Geodesic paths are useful because they represent efficient
pathways for the transmission of information within the network.
In binary networks, a geodesic path length, dij, is the smallest
number (dimensionless) of edges required to connect node i to

Frontiers in Physics | www.frontiersin.org 2 May 2016 | Volume 4 | Article 14

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Colon-Perez et al. Framework to Study Weighted Connectomes

node j [25]. The mean geodesic path length for a specific node
in the brain has been associated with the efficiency of the overall
network structure [27]. For an undirected binary network, the

mean geodesic path length, d̂i, for node, ni, is defined as,

d̂i =

N
∑

j=1, i 6=j

dij

N − 1
. (6)

Starting from the definition of the binary geodesic path length, a
geodesic path length for weighted networks, dwij , can be defined

using a Dijkstra’s algorithm [28]: first define the paths with the
same and smallest number of edges between nodes ni and nj,
then choose the path with highest sum of edge weights. An
illustration of the algorithm is shown in the graph of Figure 1.
Using the weighted adjacency matrix, the algorithm starts by
determining the low-cost path between nodes connected by one
edge. For the path between nodes n1 and n2, the original form
of Dijkstra’s algorithm would assign the lowest-cost (highest
connection strength) to the path along the edges from n1 to n3,
and n3to n2 because the total connection strength is stronger than
the direct edge between node n1 and n2. For brain networks,
Dijkstra’s algorithm is modified to give highest priority to the
connections with the fewest number of edges then sort those
to find the lowest cost. Therefore, the low-cost path between
nodes n1 and n2 is the direct edge between node n1 and n2. As
the modified Dijkstra’s algorithm continues, the low-cost path
is determined for nodes connected by two or more edges. For
example, the low-cost path from node n1 to n6 is found by
starting at node n1, which has three neighboring nodes, and
two of these nodes have a two-edge path, which connect to
n6. The algorithm compares dw16for the path w(e12) + w(e26)
and w(e13) + w(e36). With the edge weight represented by the
thickness of the edge, a visual inspection of each these paths
in Figure 1 shows that w(e12) + w(e26) < w(e13) + w(e36);
therefore in this example, the low-cost path is dw16 = w(e13) +

w(e36). In general, the process of determining the low-cost paths
starting at node ni begins with directly connected nodes and is
repeated for path lengths with increasing number of steps until all
of the (N − 1) low-cost paths are determined. This results in the
following form of the mean (low-cost) geodesic weighted-path
length for node i;

d̂wi =

N
∑

(j=1, i6=j)

dwij

N − 1
. (7)

In the context of brain networks, a step along the mean geodesic
weighted-path is associated with the strongest connection (i.e.,
highest sum of edge weights) between nodes.

Clustering Coefficient
The motifs of connections within the network provide
information about network structure and how the network
functions. The clustering coefficient, ci, is a measure of the
motif of triangular connections for the ni node, which quantifies
the local connectivity around this node by measuring the

FIGURE 1 | Eleven-node weighted network. Edge thickness represents

the relative edge weight strength, e.g., e13 > e14.

connectivity between the neighboring nodes directly connected
to node i. The clustering coefficient in binary form is given by
[23, 24],

ci =
2Ejm

ki
(

ki − 1
) = 2

ki(ki−1)

[

1
2

∑N
j,m=1 aij ajm ami

]

= 1
ki(ki−1)

∑N
j,m=1 aij ajm ami, (8)

where Ejm (defined in square brackets) is the number of edges
connecting the neighbors of node i (i.e., the number of connected
closed triangles, where the three nodes involving node i are
fully connected). The normalization ki(ki− 1)/2 represents the
number of possible connections among the neighbors of node i.
In the brain, the clustering coefficient has been associated with
specialized processing (e.g., sensory input analysis, such as visual
and auditory) [27] where nearby nodes work together to achieve
complex tasks. Therefore, high clustering of the neighboring
nodes ultimately allows efficient communication and complex
task processing.

Weighted network generalizations of the binary clustering
coefficient in Equation (8) have been reviewed by Saramaki et
al. [29], who conclude that none of the proposed generalizations
provide an all-purpose weighted clustering coefficient, and they
suggest the characterization of a network using a clustering
coefficient should be made from two perspectives: binary and
weighted. Onnela et al. [30] introduced a weighted clustering
coefficient, ci,O in Equation (9) below, that replaces the sum
of triangular binary adjacency coefficients with the scaled edge
weights (scaled by the maximum edge weight in the network, as
shown in Equation 11 below).

ci,O =
1

ki
(

ki − 1
)

N
∑

j,m=1

[ŵ(eij) ŵ(ejm) ŵ(emi)]
1/ 3, (9)

Also Zhang and Horvarth [31], introduced a weighted clustering
coefficient, ci,Z in Equation (10) below, using the sum over
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the product of each triangle of normalized edge weights in the
numerator, but included a normalization factor in the dominator
using scaled edge weights.

ci,Z =

N
∑

j,m=1
ŵ(eij) ŵ(ejm) ŵ(emi)

(

N
∑

j=1
ŵ(eij)

)2

−
N
∑

j=1
ŵ(eij)2

, (10)

where

ŵ(eij) =
w(eij)

max(w(e))
. (11)

As ŵ(eij) → 1 (or w(eij) → 1) in all triangles, both of these
weighted clustering coefficients approach ci, thus ensuring that
the results in weighted networks will yield the expected binary
results when the weighted edges are converted to binary edges. In
this study, these weighted clustering coefficients will be compared
to the binary clustering coefficient, as suggested by Saramaki et al.
[29].

Small Worldness
Many real-world networks have been shown to have high
overall clustering and short average path lengths, which reflect
regional specialization and information transfer efficiency [32],
and are classified as small world networks. Small world networks
are more clustered than random networks, defined with the
Erdös’ and Rényi’s model of random graphs [33], yet display
similar geodesic path lengths. Humphries and Gurney [34]
introduced a small-worldness metric which uses the network-
average clustering coefficient and path length values, relative to
these metrics for random networks, to provide an overview of
connectivity in the entire network. The small-worldness metric
is obtained by taking the ratio of two ratios: (1) the ratio of
the average clustering coefficient (Equations 8–10) of the brain
network, cg , to clustering coefficient, cN , of a random networks,

γ =
cg

cN
, (12)

and (Equation 2) the ratio of average geodesic path length
[average of all nodes for the path of Equations (6 and 7)] of brain
networks, lg , to the average geodesic path length of a random
networks, lN ,

λ =
lg

lN
. (13)

Then the small-worldness metric, sw, is given by the ratio of
Equations (12 and 13),

sw =
γ

λ
. (14)

In a binary framework, small world networks have γ > 1 and λ∼

1 and present a high degree of connections among the neighbors
of any node, compared to a random network, but small average
path lengths are preserved. In weighted networks, any node may

present a strong level of connectivity among its neighbors, while
preserving small path lengths, so that the small-worldness metric
can be used to characterize weighted networks.

MATERIALS AND METHODS

MRI Acquisition
The University of Florida Institutional Review Board approved
this human study. One healthy subject was scanned 10 times
over the course of 1 month, which provided 10 controlled brain
data set from which to determine the network properties across
different MRI acquisitions [35, 36]. In all 10 sessions the subject
was awake and scans were acquired roughly at the same time of
the day (∼7:00 a.m.). The subject was scanned in a 3 T Siemens
Verio system in the Shands Hospital of the University of Florida
[37]. High angular resolution diffusion imaging (HARDI) data
was obtained with a spin echo preparation and an echo planar
imaging [38] readout using the following parameters: TR/TE =

17300/81ms, two scans without diffusion weighting, six diffusion
gradient directions with b-value of 100 s/mm2, and 64 diffusion
gradient directions with b-value of 1000 s/mm2. The diffusion
gradients were distributed following a scheme of electrostatic
repulsion [39]. The diffusion-weighted images covered the entire
brain with an isotropic resolution of 2.0mm, field of view
(FOV) of 256 × 256mm and 73 slices. To increase the spatial
resolution, data were interpolated with cubic convolution [40]
using the CONGRID function in the Interactive Data Language
(IDL; Exelis Visual Information Systems, McLean, VA) to a voxel
dimension of 1mm3. In addition, a high-resolution T1 structural
scan of the entire brain was acquired with TR/TE= 2500/3.77ms,
resolution 1mm isotropic, FOV of 256× 256mm and 176 slices.

Post Processing
The diffusion weighted scans were corrected for eddy current
distortion using FSL’s eddy_correct algorithm [41]. FA and AD
maps were created with in-house software using IDL. The
displacement probability function (DPF) was calculated for
each voxel using a mixture of Wishart distribution (MOW)
[42] implemented with in-house, C-based software. The MOW
distributions were obtained using a distribution of positive
definite matrices (rank-2 tensors) that allow the estimation of
multiple fiber orientations in each MR voxel. Then the fiber
orientations in each voxel are identified as the DPF maxima with
probability of 0.5 or larger.

Using theMOWfiber orientations, deterministic tractography
was performed to generate streamline maps throughout the
entire brain. Tractography was performed following a modified
version of the fiber assignment by continuous tracking (FACT)
algorithm [43], in which the direction with the least angular
deviation along the incoming fiber path was selected to be
continued at each iteration of the tractography process. Fiber
maps were calculated using an in-house, C-based software. Seed
points were placed uniformly throughout the MR voxels to avoid
the ambiguity of random placement of seed points. From each
seed point, one streamline is launched bi-directionally for each
estimated displacement probability maxima contained in the
voxel. Each streamline is propagated by stepping half of the
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MR voxel width in the direction that is most in line with the
streamline’s current direction of propagation. Tractography was
performed with 125 seeds per voxel, a fiber step size of 0.5 of
the voxel size, using the following criteria: no step-to-step track
deviations greater than 50◦, and no tracking into voxels with low
anisotropy values (FA < 0.05). If the estimated track does not
meet these criteria, the streamline is stopped.

Network Construction
Brain networks were generated from 68 anatomical nodes
segmented [44, 45] using the structural T1-weighted image with
an automatic segmentation algorithm in FreeSurfer (Laboratory
for Computational Neuroimaging, A. A. Martinos Center for
Biomedical Imaging, Charlestown, MA). The structural image
and diffusion weighted images was spatially registered using FSL’s
FLIRT [46] algorithm, using an affine transformation. Employing
FLIRT’s transformation matrix output, the FreeSurfer derived
nodes were then registered to DWI using FSL’s ApplyXFM.

The network edges are defined by streamlines connecting any
two nodes and the edge weight is defined as [37],

w(eij) =

(

Vvoxel

Pvoxel

)(

2

Ai + Aj

) Pvoxel
∑

p=1

M
∑

m=1

χR(fp,m)

l(fp.m)
, (15)

where

χR(fp,m) =

{

1, fp,m ∈ R
0, fp,m /∈ R

, (16)

Vvoxel is the MR voxel volume, Pvoxel is the number of seed
points per voxel,A is the surface area of each node, M is the
number of voxels making up the edge, fp,m is the streamline
originating from seed point p in voxel m, l(fp,m) is length
of fp,m streamline making up the edge, and χR(fp,m), is the
characteristic function for the set R of streamlines connecting
nodes niand nj. The characteristic function removes (i.e., filters)
streamlines that originate within the nodes and voxels that do not
represent the WM path connecting the nodes [37]. This form
of the edge weight calculation eliminates the effect of length
of the streamlines, seeding paradigm, and tractography-specific
experimental factors from the calculation [37]. The inverse sum
along with the characteristic function (Equation 16) yields the
number of streamline fibers connecting the nodes, and the
normalization by the average surface area of the nodes reduces
the bias introduced by node size. This form of the edge weight
allows the quantification of white matter connection strength
between any two nodes in a dimensionless and scale invariant
manner.

In brain networks created from tractography, thresholds are
usually employed to reduce the number of false edges and
the effects of voxel volume averaging in network measures. In
binary networks, thresholding to produce a sparse networks
(i.e., the number of edges is much less than 30% of the
total number of possible edges) is used to estimate better the
topological properties of binary networks, since dense networks
are highly connected and may lead to an almost complete
graph (every node connected to all other nodes in the graph).

But thresholding binary networks introduce two problems
in networks calculations. Firstly the threshold selection is
arbitrary and secondly networks with different thresholds are not
independent samples [47]. Arbitrarily chosen thresholds do not
ensure that small and real edges are included or that artifactual
edges are completely eliminated, since there is no clear criterion
to achieve the elimination of artifactual streamlines. Also, the
statistical results obtained for all binary networks will depend on
the selected thresholds, since binary networks created at different
thresholds are pseudo replicas of group-level networks [47]. This
means that the network results obtained from the same data,
expressed as a sparse network, are also obtained in a dense
network, but not vice-versa. This indicates that there is direct
dependence of the calculated network properties on the applied
threshold, which leads to different results at different thresholds.
In this paper, a threshold parameter is selected that can be
applied to both binary and weighted networks. Then network
metrics (discussed in Section Network Metrics) are calculated at
different threshold levels in order to determine whether weighted
networks allow better estimation of an appropriate threshold or
if it is possible to eliminate thresholds from the analysis.

In this work we will use the streamline fiber count is a
threshold parameter. For the weighted network discussed here,
a high seed density (Pvoxel = 125) is used to maximize the
accuracy of the calculated edge weights [37]. But weighted-
network thresholds should be set low enough so that “weak”
edges are not removed just to create sparse networks. To illustrate
how the streamline-fiber-count threshold approach can be used,
assume that the “smallest” edge that will contribute to the brain
network has a length of 2mm and streamline fibers that are
entirely contained within two voxels. Using parameters from
Equation (15), a maximum of 250 streamlines (M × P = 2× 125
= 250) should be connecting the nodes. Therefore, a threshold
of 25 streamlines would retain all edges that have at least ∼10%
(i.e., 25/250) of the streamlines that can potentially make this
“smallest” edge. Therefore, using the number of streamlines
connecting any two nodes as a threshold parameter, and not the
edge weight value, will allow this threshold to be applied to edges
of both the binary and weighted brain network. Considering the
high volume of seeds-per-voxel used in this study, four threshold
values will be used to examine the effects of thresholding
on calculated binary and weighted network parameters. First
the network metrics will be calculated without applying any
threshold, i.e., any two nodes connected by at least one streamline
will have an edge, then edges that contain at least 25, 50, and 125
or more streamlines will be considered valid edges.

All network metrics described in the previous section are
calculated with in-house code written in R (http://cran.us.r-
project.org/) and the network package in R (http://cran.r-project.
org/web/packages/network/index.html) was used to create and
modify networks, and create relational data within the R
interface. Three dimensional brain networks were displayed with
BrainNet [48].

Null Hypothesis Graphs
Network metrics are influenced by the decisions made when
the network is generated (e.g., identification of nodes and

Frontiers in Physics | www.frontiersin.org 5 May 2016 | Volume 4 | Article 14

http://cran.us.r-project.org/
http://cran.us.r-project.org/
http://cran.r-project.org/web/packages/network/index.html
http://cran.r-project.org/web/packages/network/index.html
http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Colon-Perez et al. Framework to Study Weighted Connectomes

edges). Therefore, to test the significance of differences in the
metrics (i.e., clustering coefficients and path lengths) between
binary and weighted brain networks, these metrics are compared
to the same metrics obtained for a null hypothesis network
[49]. A null-hypothesis binary-network is formed by assigning
edges at random using two constraints: (1) the number of
nodes and (2) the degree distribution remains identical to
the original brain network. Since both the brain network and
null hypothesis network are constrained by the number of
nodes and the degree distribution, differences between them are
not due to local differences in connectivity (i.e., node degree
discrepancies) [7].

To create weighted null hypothesis networks, a third
constraint is used to account for the additional degree of freedom
resulting fromweighting the edges. This third constraint requires
that the edge weight distributions in the null hypothesis and
original brain network are the same [14]. The process of creating
the null hypothesis network starts by storing lists of the edge
weight values and the node degree distribution (binary) for each
brain network [49]. Then starting with the same number of
nodes as the brain network, the edges are randomly connected
in node pairs, while preserving the node degree distribution.
As each edge is assigned, an edge weight is randomly selected
from the edge weight list to create the null hypothesis network.
Ultimately, this creates a random network with the same node
degree distribution (i.e., binary null hypothesis network) and
edge weight distribution (i.e., weighted null hypothesis network)
as the calculated brain network.

RESULTS

Both binary and weighted brain networks are shown in Figure 2

at the threshold of 125 or more fibers. The mean binary graph
density at different thresholds for all 10 networks, derived from
the 10 dMRI measurements of a single subject, are shown in
Figure 3. As the threshold increases, the graph density is reduced
from ∼51% (0 threshold) to ∼30% (125 threshold). The level
of variation (error bars in Figure 2) is consistent across all
thresholds with coefficients of variation from 3.5 to 3.8%. From
this point on, the order of all threshold comparisons will be from
0, 25, 50, to 125.

FIGURE 2 | Brain networks. Representative (A) binary and (B) weighted

network. The nodes in the binary network are scaled by the node degree and

in the weighted network by the connection node strength.

Node Connectivity
The averages of binary network degree, over all nodes in all
networks at each threshold, are shown in Table 1, and Figure 4

shows the average degree value for each node averaged across
all 10 networks. These average degree values decrease with
increasing threshold, as expected for a binary network, since an
increase in the threshold reduces the number of edges (as shown
for graph density in Figure 3). The overall shape of the network-
averaged node degree values in Figure 4 is maintained at all
thresholds (e.g., in particular the highest degree nodes were the
same at all thresholds).

The nodes with the highest degree are the left (L) superior
parietal lobe (Node 28), the right (R) superior frontal cortex
(Node 62) and L superior frontal cortex (Node 27). The average
node degree of L superior parietal lobe is 56.8, 47.1, 45.1, and
41.6, as the threshold increases, the average degree of R superior
frontal cortex is 56.3, 43.6, 40.8, and 36.2, and the average degree
of L superior frontal cortex is 53.5, 43.3, 39.7, and 35.9. As
the threshold increases, the node degree of paracentral lobules
(Node 16 and 50) do not change (this is the only node that
did not change degree with threshold changes) and the node
degree shows reductions of up to 62% (frontal pole, Nodes 31 and

TABLE 1 | Average node degree (k̂) values (Equation 4) with associated

standard deviation (σ) for binary network and average node connection

strength (Ŝ) values (Equation 5) and standard deviation (σ) for weighted

networks.

Binary Weighted

k̂ σ Ŝ (10−2) σ (10−3)

0 36.0 4.49 6.88 7.40

25 24.4 3.49 6.88 7.40

50 21.9 3.14 6.88 7.40

125 19.1 2.81 6.88 7.40

The values were calculated by averaged across all nodes in all 10 networks. The average

coefficient of variation is 9.36% for connection strength for all nodes in all networks at all

thresholds.

FIGURE 3 | Graph density vs. threshold. Density is obtained by taking the

ratio of the number of edges in a graph to the total possible number of edges

in the graph. The threshold is the number of steamline fibers below which an

edge is removed from the network.
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65). The cumulative degree distributions are shown in Figure 5,
showing a shift of the distribution toward lower degree values as
the threshold increases.

The average connection strengths for all nodes over all
networks are shown in Table 1 and are relatively constant. As
the threshold increases, the connection strength for some nodes
do not change and the average node connection strength with
the greatest change is only 0.24%, because the edge weight value
of the weakest edges are more than 100 orders of magnitude
smaller than the majority of nodes. Connection strength for each
node averaged over all the networks and variations (Figure 6)
did not significantly change as the threshold is varied. This is in
stark contrast with the node degree result (Figures 3, 4), which
displays clearly visible differences with changes in the threshold.

FIGURE 4 | Degree values for each node, averaged across the 10

networks at threshold values of 0 (A), 25 (B), 50 (C), and 125 (D). See

Supplemental Data for the list of nodes. The three largest degree values are (x)

L superior parietal lobe (Label 28), (o) R superior frontal cortex (Label 62), and

(+) L superior frontal cortex (Label 27).

FIGURE 5 | Cumulative degree distribution averages over all nodes in

all network at threshold values of 0, 25, 50, and 125 streamlines or

more.

The node strength distribution is almost unchanged and these
changes are negligible in as the threshold is changed, as shown
in Figure 7. These results indicate that thresholding does not
have a significant effect on node connection strength using the
edge weight of Equation (15). The nodes with the highest average
connection strength at all thresholds are the L fusiform [Node
6, s(n) = 0.128], L insula [Node 34, s(n) = 0.127], the R caudal
anterior cingulate [Node 36, s(n) = 0.125] and the L posterior
cingulate [Node 22, s(n) = 0.123]. These nodes are connected
by large coherent WM tracks (represented by large edge weights)
that connect these nodes to the rest of brain.

Figure 8 shows a representative single-network, binary
adjacency matrix and a weighted adjacency matrix as the
threshold is increased. In Figure 8A, the binary adjacency matrix
displays significant variation as the threshold increases, while
no noticeable difference is observed in the weighted adjacency
matrix shown in Figure 8B. Also the most strongly connected
nodes stand out in the weighted adjacency matrix. The highest
edge weights in the weighted adjacency matrices, averaged
over all the networks (shown in the top-right and bottom-left
quadrant), represent inter-hemispheric connections, through the
corpus callosum, between the L and R caudal anterior cingulate
cortex [Nodes 2 and 36 (black circle), w(e) = 0.0919], the L
and R rostral anterior cingulate cortex [Nodes 25 and 59 (blue
circle), w(e) = 0.0564], the L and R medial orbitofrontal cortex
[Nodes 13 and 47 (green circle), w(e) = 0.0553], and L and
R posterior cingulate [Nodes 22 and 56 (purple circle), w(e) =
0.0508]. All of these edges represent important inter-hemispheric
connections that facilitate information transfer from the right
to the left side of the brain. In addition, the next six highest
edge weights in the adjacency matrix correspond to strong
intra-hemispheric connections with values ranging from 0.0353

FIGURE 6 | Connection strength of each node averaged across the 10

networks as the threshold increases: (A) threshold 0, (B) 25, (C) 50, and

(D) 125. See Supplemental Data for the list of nodes. The three largest node

connection strengths are (x) L insula (Node 34), (o) L caudal anterior cingulate

(Node 36), and (+) L posterior cingulate (Node 22).
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FIGURE 7 | Cumulative node connection strength distribution

averaged over all nodes for all networks at threshold values 0, 25, 50,

and 125 streamlines or more.

to 0.0455 (see Supplementary Materials for a complete listing of
all edge weights, node degrees and node connection strengths).

Mean Geodesic Path Length
Figure 9 shows the mean geodesic path length distribution
for the binary (Figures 9A–D) and weighted networks
(Figures 9E–H) at all thresholds, which suggests that these
brain networks are organized to favor shorter path lengths. As
thresholds increases, the distribution shifts to longer (binary)
and stronger (weighted) path lengths, since shortcuts (“weak”
edges) are removed from the network. For all nodes in the
binary network at all thresholds, the mean geodesic path length
is shorter than 2.5 edges, even at the highest thresholding where
the graph density was reduced by 20% (see Figure 3). The mean
geodesic path length, for all nodes averaged over the 10 binary
networks, is shown in Table 2, and ranges from 1.51 to 1.79
as the threshold increases. L superior parietal lobe (Node 28),
which the highest degree values (see Figure 4 and Supplementary
Materials), has the shortest mean geodesic path lengths 1.16, 1.31,
1.34, and 1.39, for 0–125 thresholds, respectively. The R superior
frontal cortex (Node 62), which has one of the three highest
degree values, has the second shortest mean geodesic path lengths
of 1.17, 1.36, and 1.41 (0, 25, and 50 thresholds) in networks with
high density, while the L lateral occipital lobe (Node 10) displays
the second shortest mean geodesic path length value of 1.48 at
the lowest density (125 threshold). The average mean geodesic
path length over the entire null hypothesis network displayed
similar and slightly shorter path lengths, ranging from 1.50 to
1.72, than brain networks, which ranges from 1.51 to 1.79. The
short brain path lengths suggest a path of only a few nodes is
require to deliver information efficiently in these brain networks,
which may suggest a reduction in the probability of information
being distorted as it travels through the network.

A broad range of mean geodesic weighted-path lengths
were obtained, as shown in Figures 9E–H, with values ranging
from 8 × 10−4 to 3 × 10−3. Removing weak edges did not

TABLE 2 | Average binary mean geodesic path length (<d>), average

mean geometric weighted-path length (<dw>), and averaged clustering

coefficient.

Threshold Average Mean Geodesic Path length

Binary Weighted

<d> σ <dw> (10−3) σ (10−3)

0 1.51 0.07 1.08 0.16

25 1.68 0.07 1.28 0.25

50 1.72 0.07 1.37 0.29

125 1.79 0.07 1.57 0.37

Threshold Clustering coefficient

Binary Weighted

cB σ cO(10
−3) σ (10−3) cZ (10

−2) σ (10−2)

0 0.74 0.04 4.42 1.86 5.25 1.24

25 0.67 0.05 7.51 2.71 5.25 1.24

50 0.65 0.06 8.46 2.96 5.25 1.24

125 0.63 0.06 10.1 3.33 5.25 1.25

The values were calculated by averaged across all nodes in all 10 networks and the

standard deviation (σ ) in the distribution of values is also included.

significantly modify the node strengths (Table 1) or the weighted
connectivity matrix (Figure 8), since weak edges only made
a small contribution to these values. As threshold changes,
the mean geodesic weighted-path length did not share the
robustness displayed by the node strength and the weighted
connectivity matrix. The mean geodesic weighted-path lengths
yields significantly stronger paths as thresholds are increased
because weak paths get replaced with stronger paths made up
of larger edge weights. Unlike node strength, the weighted path
length displays a higher sensitivity to thresholding and shifts the
bulk of the distribution to higher values, i.e., to stronger paths,
as the thresholds are increased. This effect can also be observed
in the average mean geodesic weighted-path lengths obtained at
different thresholds (Table 2). The effect of thresholding becomes
evident when looking at the strongest paths at each threshold.
The strongest path lengths are the R caudal anterior cingulate
cortex (Node 36) at high graph densities (0 and 25 threshold), the
L caudal anterior cingulate cortex (Node 2) in the 50 threshold
network, and the L transverse temporal cortex (Nodes 33 and
67) at low graph density (125 threshold). Table 2 shows that the
values of the brain network mean geodesic weighted-path lengths
range from 1.08 × 10−3 to 1.57 × 10−3, while mean geodesic
weighted path lengths of the null hypothesis graphs are larger;
in the range from 1.40× 10−3 to 2.23× 10−3.

Clustering Coefficient
The distribution for clustering coefficients is shown in Figure 10

(in column orientation as threshold increases from top to
bottom) for the binary clustering coefficients, ci, from Equation
(8) (Figures 10A–D in linear-linear scale), for the weighted
clustering coefficient, cO from Equation (9) (Figures 10E–H in
log-log scale), and for the weighted clustering coefficient, cZ,from
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FIGURE 8 | Representative single network binary (A) and weighted (B) adjacency matrices. The binary matrices are at thresholds of 0, 25, 50, and 125 from

top left to bottom right. Weighted adjacency matrix does not visually change with threshold so only the matrix without threshold is shown in (B). Black, blue, green,

and purple circles are the largest edge weights corresponding to interhemispheric connections between left and right caudal anterior cingulate, rostral anterior

cingulate, medial orbitofrontal, and posterior cingulate cortices, respectively.

Equation (10) (Figures 10I–L in log-log scale). As the threshold
increases, the distribution of the binary clustering coefficient, cB,
shows a high level of clustering, ranging from 0.4 to about 1. The
distribution broadens as the threshold increase, which implies
that “weak” edges are removed resulting in some nodes losing
the strength of the surrounding communities. The nodes with
the highest binary clustering coefficient across all thresholds were
the L transverse temporal cortex (Node 33) and the L banks
of the superior temporal sulcus (Node 1), with mean values all
above 0.95 for all thresholds. The distribution of the weighted
clustering coefficient, cO, varies only slightly as the threshold
is changed. This variation may be attributed to fact that this
clustering coefficient uses node degree in the formula and the
streamline count threshold parameter will directly affect the value
of the node degree. For the weighted clustering coefficient cO, the
most clustered nodes are the L transverse temporal cortex (Node
33), banks of the superior temporal sulcus (Nodes 1 and 35),
and the R transverse temporal cortex (Node 67). At the highest
graph density, the banks of the superior temporal sulcus become
the third most clustered nodes, while R transverse temporal
cortex becomes the second. The distribution for the weighted
clustering coefficient, cZ , does not change visibly as the threshold
changes, which is similar to the thresholding stability of the node
strength and weighted connectivity matrices. For the clustering
coefficient cZ , the most clustered nodes are the L and R banks of
the superior temporal sulcus (Nodes 1 and 35) and the L and R
parahippocampal gyrus (Nodes 15 and 49).

Table 2 reports average of the clustering coefficients over the
entire network. The average binary clustering coefficient, cg,
decrease from a value of 0.74–0.63 with increasing threshold,
while null hypothesis average clustering coefficient decreased
even more from a value of 0.66–0.39 (values not included in
Table 2). Average weighted clustering coefficients cO ranges from
4.42 × 10−3 to 10.1 × 10−3 and cZ is 5.25 × 10−3 using
at all thresholds. The weighted null hypothesis network has

significantly smaller weighted clustering coefficients than those
in the brain network. The weighted null hypothesis cO results
range from 1.04 × 10−3 to 2.81 × 10−3, and cZ has the same
value of 1.82 × 10−3 at all thresholds. The high level clustering
suggests that the brain is not a random network and follows
principles of efficient network structures [23]. Since the brain
network displays a more clustered organization than the null
hypothesis network, this implies that the brain is arranged to
allow enhanced communication between communities of nodes
(i.e., nodes sharing similar neighbors) and allow brain regions to
work together to achieve faster information processing.

The weighted clustering coefficients displayed little variation
in their distribution and the average value cZ did not vary
as thresholds were changed, which is similar to the small
dependence on threshold of node strength and the weighted
connectivity matrix. From these results, one can reason that
thresholds are not critical to construct weighted networks; since
these network parameters are stable and differences from the null
hypothesis are obtained in all graph densities.

Small Worldness
For both the binary and weighted networks, the ratio of the brain
network mean path length to null hypothesis mean path length,
λ, and the ratio of the brain network mean clustering coefficient
to the null hypothesis mean clustering coefficient, γ, are shown
in Table 3. As expected, the binary network displayed γ > 1 and
λ ∼ 1, which yields a small world parameter, sw, with a value >1
indicating that this binary networks displays the small world
property [34]. The weighted approach also displayed γ > 1 and
λ ∼ 1 yielding sw > 1.

DISCUSSION

This work uses a weighted-network framework to characterize
brain topological features, such as small worldness, and compares
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FIGURE 9 | Mean geodesic path length distributions: Binary path lengths at threshold 0 (A), 25 (B), 50 (C), and 125 (D), and weighted path length at

threshold 0 (E), 25 (F), 50 (G), and 125 (H).

TABLE 3 | Weighted and binary network small worldness (sw) and

associated parameters.

Threshold γ σ λ σ sw σ

BINARY

0 1.13 0.07 1.01 0.05 1.12 0.08

25 1.39 0.11 1.02 0.04 1.36 0.12

50 1.47 0.12 1.03 0.04 1.43 0.13

125 1.60 0.14 1.04 0.04 1.53 0.15

WEIGHTED (cO)

0 4.24 1.79 0.77 0.12 5.51 2.47

25 3.84 1.39 0.78 0.15 4.95 2.04

50 3.68 1.29 0.73 0.16 5.08 2.08

125 3.61 1.18 0.70 0.17 5.13 2.08

WEIGHTED (cZ )

0 2.89 0.68 0.77 0.12 3.76 1.05

25 2.89 0.68 0.78 0.15 3.72 1.15

50 2.89 0.68 0.73 0.16 3.99 1.27

125 2.89 0.69 0.70 0.17 4.10 1.38

Metrics: γ, see equation 12, λ, see equation 13, sw, see equation 14, and σ is the standard

deviation.

the results to a binary-network framework. The characterization
of brain network properties for both binary and weighted edges
are improved when a high number of seeds per voxel are used
in dMRI tractography [37, 50]. But employing a large number

of seeds per voxel may increase the probability of observing
spurious connections [51], which may lead to an anomalous
high density of edges in these networks. Also high density
networks lead to complications when estimating the small world
organization [34], so thresholding is used to eliminate the
undesired connections that may affect the network measures.
It is unlikely that any particular threshold would completely
eliminate all false positive from a constructed network. Therefore,
networks with properly weighted edges reduce the effect of false
positive connections and the use of thresholds might be avoided.
Although this work as focused on the use of thresholding (as
known as sparsification) to reduce the number of spurious
connections, alternatives methods (pruning) have been proposed
in order to better preserve the topological features of the network
[52]. These methods might serve as ideal methods for eliminate
weak or false positives in connectome studies, but similar
networkmetric comparison results, between binary and weighted
networks, would still hold.

As pointed out above, the use of weighted brain network
analysis may eliminate the need for thresholding to obtain
topological properties in weighted connectomes. In this study as
the threshold changes, the variability in connectivity (i.e., degree
vs. node strength) across the 10 networks was less in weighted
networks (<10%) than in binary networks (< 15%), as shown
in Figures 3, 5. Also removing the edges with a low number
of streamlines removes low edge weights (e(w) ∼ 10−6), which
are small compared to the strong edge weights in the network
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FIGURE 10 | Clustering coefficient distributions. Binary clustering coefficient at threshold: 0 (A), 25 (B), 50 (C), and 125 (D). Weighted clustering coefficient, cO
(see Equation 9), at threshold: 0 (E), 25 (F), 50 (G), and 125 (H) and weighted clustering coefficient, cz (see Equation 10), at threshold: 0 (I), 25 (J), 50 (K), and 125 (L).

(e(w) ∼ 10−2). Figure 11 shows the differences between binary
and weighted adjacency matrices as the threshold changes. The
binary adjacency matrix shows a significant number of changes
throughout the network. In contrast, the weighted adjacency
matrix shows very few changes and the level of the change is
negligible. The binary network metrics were highly susceptible
to thresholding, as shown in Figures 4, 5, 8A, 9A–D, 10A–D.

In contrast, the weighted network metrics displayed far less
variation across thresholding, as shown in Figures 6, 7, 10E-L
with the exception of the weighted path length (Figures 9E–H).
Specific attention is drawn to Figures 5, 7, which show the
cumulative distribution of connectivity metrics (node degree and
node strength), and the effect of thresholding in the node degree
while the node strength have negligible changes. The clustering
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FIGURE 11 | Differences with and without thresholds in binary and weighted adjacency matrices. Top row shows the binary matrix changes as edges are

removed with increasing threshold. Bottom row shows the associated weighted differences. Left Column shows the difference between the unthresholded

(0-threshold) and threshold of 25 streamlines or more (25-threshold). Middle column shows the difference between 0-threshold and 50-threshold. Right column shows

difference between 0-threshold and 125-threshold.

coefficient introduced by Zhang (Equation 10) displayed a higher
resilience to thresholding than the one introduced by Onnela
(Equation 9). This might result from Onnela’s normalization by
the node degree, k, which is a binary measure, while Zhang’s
coefficient is an entirely weighted-description of clustering. The
binary geodesic path lengths increase as thresholds increase due
to the removal of weak edges that serve as shortcuts in dense
graphs. In contrast to the other weighted metrics, the geodesic
weighted-path length was susceptible to changing thresholds, as
shown in Figures 9E–H. Thresholding removes direct “weak”
connections between any two nodes as the threshold increases;
therefore, weak and short path lengths are replaced with longer,
stronger paths. Consequently, the new weighted path length will
be significantly stronger than the original “weak” connection.
Nonetheless, it still displayed similar weighted path lengths to the
null hypothesis networks suggesting effective paths between any
two nodes.

Since weak connections are eliminated with thresholding,
these connections have not been given attention in brain network
studies. But Granovetter argues that weak ties are extremely
important in social networks, since it allows for the shorter
path lengths observed in social interactions [53]. So the same
reasoning might be applied to brain networks, since the brain is
organized in a dense mesh that show an intricate web of weak
and strong connections, providing a very stable network that is
robust to random errors or attacks. Therefore, weak edges may
support the integrative capabilities of networks, whereas strong
links provide connectivity between neighborhoods [21].

In this work, the small world property of brain networks
was successfully determined, in both binary and weighted
approaches, as seen in Table 3, even at higher graph densities

than estimated for cortical thickness networks [54]. The
binary network small worldness parameter increased with an
increase in threshold, resulting in a decrease in the density
of edges as expected, but small worldness was not observed
in the binary dense network without thresholding, where the
concentration of edges in the network in high (∼50%). With
high graph density, the likelihood that the neighbors of any
node are connected is high, so the high clustering observed
in the non-thresholded binary networks is similar to that
in null hypothesis network so small world organization is
observed. While binary networks only show sw = 1.53 for a
thresholded network of 125, the weighted approach displays
sw values larger than 3.5 for all graph densities. Essentially,
high graph densities do not conceal the topological features
of brain networks in weighted networks. High graph densities
of networks obtained from dMRI tractography are certain to
include a large number of false positives [51], but the weighting
of edges used in this work reduces their relevance in the
topological analysis enabling the observation of the topological
characteristics of small world networks even at high graph
densities.

A limitation of the current tractography approach is that
the small edge weights might be true positives while others
might be false positives [51]. However, the use of weighted edges
reduces the impact of this limitation and allows the generation
of connectomes that yield information more relevant to the real
small world topology of the brain. Therefore, use of weighted
edges loosens the restriction that networks should be sparse, and
the need for thresholds, to determine the topological traits of
brain networks. In this study, the null hypothesis for each brain
network was calculated once per scanning session. This can be a
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limitation to identify differences in larger populations due to the
limitations of sampling in the null hypothesis network. In future
studies a larger number of null hypotheses networks should
be made for each brain network. Weighted networks displayed
small world topology at all thresholds, suggesting that the small
world property is an inherent property of the brain network
(when properly weighted). The weighted framework preserves
properties like small worldness, connection node strength, and
clustering coefficient but additional testing needs to be performed
with other network measures, like community, cliquishness, rich
club, and betweeness centrality, among others. In this study we
focused on the small world property and relevant metrics to this
topological configuration. The weighted framework presented in
this article can be accompanied from additional methods, such
as determining the backbone of the weighted connectome [55].
An interesting feature of the weighted backbone procedure of
Serrano et al. [55] is the weak edges are not disregarded due to
small weights, which is similar to the method used in this study.

The connectome obtained with diffusion MRI and
tractography presents a picture at the macroscale where
individual streamlines correspond to the coherent pathway
generated by the maxima of the probability displacement
function at each voxel. This is not intended to be descriptive of
single axons, but to represent the cumulative arrangement of
axons as white matter, which is quantified as an edge weight.
As stated by Sporns [56], “In the case of the brain, it is not
necessary to demand that the connectome be an exact replica
of the connectional anatomy down to the finest ramifications
of neurites and individual synaptic boutons. Instead, the
connectome should aim at a description of brain architecture
that ranges over multiple levels of organization, reflecting
the multiscale nature of brain connectivity.” Hence at the
macroscale, the efficiency of brain networks should not rely
solely on short path lengths and highest clustering, as implied
with binary networks. Efficient brain networks should also
include a high density of connections with various weights
that enables alternative pathways when disruptions arise in the
network.

Ultimately, a complimentary analysis of weighted and binary
networks is warranted in topological studies of networks. Strong
links provide the backbone of efficient connection in networks
and weak links provide a subnetwork that generate a cohesiveness
not achieved in sparse networks (similar to the network made up
of only strong links) [21]. The results presented here are another
example of how to integrate weak links into a real network
studies [21] and that the small world topology is descriptive
of brain networks regardless of graph density. Methods to
estimate the small world parameter have focused on limiting
graph density to accurately estimate small worldness [23, 34, 57].
However, real world networks might not inherently be sparse
and weak connections will increase the graph density of binary
networks to levels that will limit traditional small worldness
estimators. In this study, quantifying connection strength enables
the estimation of the small world topological property, where the
brain connectome is an example of a dense small world network.

CONCLUSIONS

In previous studies of binary networks in the brain, where
all connections are equivalent, the topological structure of
the brain network has been shown to display a small world
organization [11, 58]. Thresholding is commonly used tomitigate
the effects of artefactual connections resulting from tractography,
but threshold selection is arbitrary. The results of this study
show that thresholding is not necessary for the analysis of
network topological organization in a weighted network with
the edge weight described in Equation (15). Hence, weighted
networks enable the characterization of the brain network
topology without resorting to arbitrary thresholding, preserving
properties like small worldness, connection node strength,
and clustering coefficient. Because of the degree of freedom
provided by weighted edges, the weighted connectivity approach
described in this paper provides a more accurate representation
of connectivity and a more stable framework from which to
study brain networks. Using this approach, brain topology can
be represented using weak and strong connections that are
efficiently arranged to yield a dense and robust small world
network.
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