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Recent work in cognitive psychology has revealed that quantum probability

theory provides another method of computing probabilities without falling into the

restrictions that classical probability has in regard to modeling cognitive systems and

decision-making. This enables the explanation of paradoxical scenarios that are difficult,

or even impossible, to explain through classical probability theory. In this work, we

perform an overview of the most important quantummodels in the literature that are used

to make predictions under scenarios where the Sure Thing Principle is being violated

(the Quantum-Like Approach, the Quantum Dynamical Model, the Quantum Prospect

Theory and Quantum-Like Bayesian Networks). We evaluated these models in terms of

three metrics: interference effects, parameter tuning and scalability. The first examines if

the analyzed model makes use of any type of quantum interferences to explain human

decision-making. The second is concerned with the assignment of values to a large

number of quantum parameters. The last one consists of analyzing the ability of the

models to be extended and generalized to more complex scenarios. We also studied

the growth of the quantum parameters when the complexity and the levels of uncertainty

of the decision scenario increase. Finally, we compared these quantum models with

traditional classical models from the literature. We conclude with a discussion of the

manner in which the models addressed in this paper can only deal with very small

decision problems and why they do not scale well to larger, more complex decision

scenarios.

Keywords: quantum cognition, quantum-like approach, quantum dynamical model, quantum prospect theory,

quantum-like Bayesian networks

1. INTRODUCTION

The process of decision-making is a research field that has always triggered a vast amount of
interest among several fields of the scientific community. Throughout time, many frameworks
for decision-making have been developed, namely the Expected Utility hypothesis, which is
characterized by a specific set of axioms that enable the computation of the person’s preferences
with regard to choices under uncertainty [1]. Later, Savage [2] proposed an extension to this theory:
the Subjective Expected Utility theory. In this extension, uncertainty is described by subjective
probabilities, since not all uncertainty can be described using an objective probability distribution.
However, human behavior tends to violate the axioms of ExpectedUtility, leading to the well known
Allais paradox [3]. Human behavior also tends to violate the axioms of the Subjective Expected
Utility framework, leading to the Ellsberg paradox [4].
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1.1. Background
In the 70s, the cognitive psychologists Amos Tversky and Daniel
Kahneman decided to put to the test the axioms of the Expected
Utility hypothesis. They performed a set of experiments in
which they demonstrated that people usually violate the Expected
Utility hypothesis and the laws of logic and probability in
decision scenarios under uncertainty [5–9]. This means that,
when people need to make a decision under scenarios with high
levels of uncertainty, ambiguity and risk, they tend to violate the
laws of probability theory, leading to decision paradoxes [3, 4].

One of these paradoxes was demonstrated in the article
of Tversky and Shafir [10] and corresponds to the violation
of Savage’s Sure Thing Principle, also known as disjunction
effects, under the Prisoner’s Dilemma Game. This principle is
fundamental in classical probability theory and states that, if one
prefers action A over B under the state of the world X, and if
one also prefers A over B under the complementary state of the
world X, then one should always prefer action A over B even
when the state of the world is unspecified [2]. Violations of the
Sure Thing Principle imply violations of the classical law of total
probability [11].

Quantum cognition has emerged as a research field that aims
to build cognitive models using the mathematical principles
of quantum mechanics. Given that classical probability theory
is very rigid in the sense that it poses many constraints and
assumptions (single trajectory principle, obeys set theory, etc.),
it becomes too limited (or even impossible) to provide simple
models that can capture human judgments and decisions since
people are constantly violating the laws of logic and probability
theory [12–14].

In this sense, psychological (and cognitive) models benefit
from the usage of quantum probability principles because they
have many advantages over classical counterparts [15]. They
can represent events in vector spaces through a superposition
state, which comprises the occurrence of all events at the same
time. In quantum mechanics, the superposition principle refers
to the property that particles must be in an indefinite state.
That is, a particle can be in different states at the same time.
Under a psychological point of view, a quantum superposition
can be related to the feeling of confusion, uncertainty or
ambiguity [16]. This vector space representation does not obey
the distributive axiom of Boolean logic and to the law of total
probability. This enables the construction ofmore general models
that can mathematically explain cognitive phenomena such as
violations of the Sure Thing Principle [17, 18], which is the
focus of this study. Quantum probability principles have also
been successfully applied in many different fields of the literature,
namely in biology [19, 20], economics [21, 22], perception [23,
24], jury duty [25], etc.

One of the pioneering contributions to the Quantum
Cognition field comes from the works of Aerts and Aerts
[26]. The authors designed a quantum machine, which consists
in a particle that can move across the surface of a sphere.
An elastic, representing some experiment is introduced in
this sphere. The particle then moves orthogonally to the
elastic and the elastic breaks uniformly into two parts. With

this geometric representation, one can easily compute the
probabilities of the particle falling into each side of the elastic.
The model was extended with an ǫ parameter that represents
the evolution from a quantum structure to a classical one.
This parameter varies between [0, 1], where 0 corresponds
to maximum lack of knowledge (quantum structure) and
1 to zero lack of knowledge (classical knowledge). Between
this interval, there is the possibility of exploring other types
of structures that are neither classical nor quantum. The
authors also made several experiments to test the variation
of probabilities when posing yes/no questions. According to
their experiment, most participants formed their answer at the
moment the question was posed. This behavior goes against
classical theories, because in classical probability, it would be
expected that the participants have a predefined answer to the
question and not form it at the moment of the question. A
further discussion about this study can be found in the works
of Aerts [27–29], Gabora and Aerts [30], and Aerts et al.
[31].

In other subsequent works, namely in Aerts [32], the
author uses the formalisms of quantum mechanics in order
to accommodate disjunction effects. The author, represents
concepts as vectors and membership weights as quantum
weights, in a complex Hilbert Space. By using quantum
interference effects and quantum superpositions, the author was
able to model accurately the disjunction of concepts present in
experimental data.

1.2. The Article’s Main Statement
In this article, we provide an overview and discussion of the
most important state-of-the-art quantum cognitive models that
are able to explain the paradoxical findings of experiments
that violate the Sure Thing Principle (ex: the Prisoner’s
Dilemma game [33]). We conduct a deep comparison of
and discussion on several quantum models: the Quantum-
Like Approach [34], the Quantum Dynamical Model [35],
the Quantum Prospect Decision Theory [36] and Quantum
Bayesian Networks [37–40]. We discuss these models in terms
of three metrics: (1) incorporation of quantum interference
effects, (2) how to find values for quantum parameters,
and (3) scalability of the model for more complex decision
problems.

The first metric checks if the model uses quantum interference
effects to predict actions chosen under uncertainty. Following the
work of Yukalov and Sornette [36], toward uncertainty, human
beings tend to have aversion preferences. They prefer to choose
an action that brings them a certain but lower propensity/utility
instead of an action that is uncertain but can yield a higher
propensity/utility [41]. This can be simulated through quantum
interference effects, in which one outcome is enhanced (or
diminished) toward the opposite outcome.

The second metric takes into account the problem of finding
values for quantum parameters. In quantum mechanics, a
quantum state is modeled by probability amplitudes [42]. These
amplitudes are a component of the wave function and this
wave function represents a quantum state. Associated with each
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probability amplitude is a quantum parameter representing the
phase of the wave. The interpretation of this parameter under
the psychology literature is still not clear, although various works
have presented interpretations [17]. Moreover, when applying
quantum principles to cognition (or to any other subject), one
will need to set these quantum parameters in such a manner
that they will lead to accurate predictions. In this metric, we
will check how easy it is for the analyzed models to set these
parameters.

The third and last metric consists of determining if the model
can be extended to more complex scenarios. Although there
are many experiments that report violations of the Sure Thing
Principle [17, 35, 43, 44], these experiments consist of very small
scenarios that are modeled by, at most, two random variables.
Therefore, many of the proposed models in the literature are only
effective under such small scenarios and become intractable (or
even cannot be applied) under more complex situations. These
metrics will be analyzed with more detail in Section 8 of the
present work.

It is important to note that the goal of this work is
the following: we have collected a set of models from
the literature that attempt to tackle violations of the
Sure Thing Principle in a quantum fashion, and then we
compare the collected models. For this comparison, we just
show, through a mathematical description of each model,
their advantages and disadvantages. That is, we compare
these models with the three metrics proposed: number
of parameters involved in the model, the scalability of
the quantum interference effects and their usage. We will
also show that classical models also suffer from the same
parameter growth problem as quantum approaches. However,
because these models must obey set theory and the laws of
classical probability, it is not possible to use them to make
predictions in situations where the Sure Thing Principle is being
violated.

1.3. Outline
We will start this article with a motivational problem, in which
the Sure Thing Principle is found to be violated under the
Prisoner’s Dilemma Game (Section 2). In Section 3, we will show
that a classical approach cannot accommodate violations of the
Sure Thing Principle because these approaches obey set theory
and consequently the laws of probability theory. We will make
a full step-by-step description of the most influential models of
the literature. We will show how one could apply them to predict
the results concerned with violations of the Sure Thing Principle
in the Prisoner’s Dilemma Game. In Section 4, we will cover the
Quantum-Like Approach [34]. In Section 5, we will analyze the
Quantum Dynamical Model [17]. In Section 6, we will describe
the QuantumProspect Decision Theory [36]. In Section 7, we will
provide an overview of Quantum-Like Bayesian Networks [37–
40]. We then engage in a deeper discussion of these approaches
and give thought to the advantages/disadvantages of each
model in Section 8. We finish this article by presenting the
main conclusions of this work by providing some insights
regarding various trends in quantum probabilistic models
(Section 9).

2. VIOLATION OF THE SURE THING
PRINCIPLE: THE PRISONER’S DILEMMA
GAME

The Prisoner’s Dilemma game corresponds to an example of
the violation of the Sure Thing Principle. In this game, there
are two prisoners who are in separate solitary confinements
with no means of speaking to or exchanging messages with
each other. The police offer each prisoner a deal: they can
either betray each other (defect) or remain silent (cooperate).
For understanding purposes, we provide an example of a payoff
matrix for the Prisoner’s Dilemma Game (Figure 1). The payoff
matrix represents the rewards that each player receives for a given
action.

The dilemma of this game is the following. Taking into
account the payoff matrix, the best choice for both players
would be to cooperate. However, the action that yields a bigger
individual reward is to defect. If player A has to make a choice,
he has two options: if B has chosen to cooperate, the best
option for A is to defect because he will be set free; if B has
chosen to defect, then the best action for A is also to choose
to defect because he will spend less time in jail than if he
cooperates.

To test the veracity of the Sure Thing Principle under
the Prisoner’s Dilemma game, several experiments were
performed in the literature in which three conditions were
tested:

• Participants were informed that the other participant chose to
defect.

• Participants were informed that the other participant chose to
cooperate.

• Participants had no information about the other participant’s
decision.

Table 1 summarizes the results of several works in the literature
that have performed this experiment using different payoffs. Note
that all entries of Table 1 show a violation of the Sure Thing
Principle and, consequently, the law of total probability. In a

FIGURE 1 | Example of a payoff matrix for the Prisoner’s Dilemma

Game.
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classical setting, assuming neutral priors, it is expected that:

Pr
(

P2 = Defect | P1 = Defect
)

≥ Pr
(

P2 = Defect
)

≥ Pr
(

P2 = Defect | P1 = Cooperate
)

However, this is not consistent with the experimental results
reported in Table 1. Note that Pr(P2 = Defect | P1 = Defect)
corresponds to the probability of the second player choosing
the Defect action given that he knows that the first player chose
to Defect. In Table 1, this corresponds to the entry Known to
Defect. In the same manner, Pr(P2 = Defect | P1 = Cooperate)
corresponds to the entry Known to Cooperate. The observed
probability during the experiments concerned with player 2
choosing to defect, Pr(P2 = Defect), corresponds to the
unknown entry of Table 1 because there is no evidence regarding
the first player’s actions. Finally, the entry Classical Probability
corresponds to the classical probability Pr(P2 = Defect), which
is computed through the law of total probability assuming neutral
priors (a 50% chance of a player choosing either to cooperate or
to defect):

Pr
(

P2 = Defect
)

= Pr
(

P1 = Defect
)

·Pr
(

P2 = Defect|P1 = Defect
)

+ Pr
(

P1 = Cooperate
)

· Pr
(

P2 = Defect|P1 = Cooperate
)

For simplicity, we will use the following notation. The probability
of Player 2 choosing to defect will be Pr ( P2 = D ). In the same
way, the probability of Player 2 choosing to cooperate will be
Pr (P2 = C).

In the next sections, we will introduce the most representative
models in the quantum cognition literature that are able to solve
problems concerning violations of the Sure Thing Principle and
also show that a classical model cannot accommodate violations
of the Sure Thing Principle. We will also demonstrate how
quantum models work when trying to predict the probabilities
of the average results of the Prisoner’s Dilemma Game, reported
in Table 1.

3. A CLASSICAL MARKOV MODEL OF THE
PRISONER’S DILEMMA GAME

A Markov Model can be generally defined as a stochastic
probabilistic undirected graphicalmodel that satisfies theMarkov

property. This means that the probability distribution of the
next state depends on the current state and not on previous
states. These probabilistic models are very useful for modeling
systems that change states according to a transition matrix that
specifies some probability distribution or some transition rules
that depend solely on the current state.

One can apply a dynamical Markov process to model the
Prisoner’s Dilemma Game in the following manner. Having as
reference the work of Pothos and Busemeyer [17], the Prisoner’s
Dilemma is a 2-person game and can be modeled in a four-
dimensional classical Markov model. Initially, the states can be
represented by all possible actions of the players: Cooperate (C)
and Defect (D). These are represented in a state vector in which
all possible actions are equally likely to be chosen:

PI =









D D
D C
C D
C C









=









1
1
1
1









·
1

4

The probability of the second player choosing to Defect given
that the action of the other player is unknown is given by
Equation (1) and consists of the multiplication of this initial
probability state PI by a transition function T(t):

PF = T(t) · PI (1)

The transition function T(t) is represented by a matrix
containing positive real numbers and with the constraint that
each row must sum to one (normalization axiom). In other
words, this matrix represents the new probability distribution
across the player’s possible actions over some time period t [17].

d

dt
T(t) = K · T(t) ⇒ T(t) = eK.t (2)

In Equation (2), the matrix K corresponds to an intensity matrix.
It is a matrix representation of all payoffs of the players. A
solution to the above equation is given by T(t) = eK.t , which
allows one to construct a transition matrix for any time point
from the fixed intensity matrix. These intensities can be defined
in terms of the evidence and payoffs for actions in the task.
In other words, the intensity matrix performs a transformation

TABLE 1 | Works of the literature reporting the probability of a player choosing to defect under several conditions.

Literature Known to defect Known to cooperate Unknown Classical probability

Shafir and Tversky [33] 0.9700 0.8400 0.6300 0.9050

Crosson [45]a 0.6700 0.3200 0.3000 0.4950

Li and Taplin [46]b 0.8200 0.7700 0.7200 0.7950

Busemeyer et al. [47] 0.9100 0.8400 0.6600 0.8750

Hristova and Grinberg [48] 0.9700 0.9300 0.8800 0.9500

Average 0.8700 0.7400 0.6400 0.8050

a corresponds to the average of the results reported in the first two payoff matrices of the work of Crosson [45].
b corresponds to the average of all seven experiments reported in the work of Li and Taplin [46].
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on the probabilities of the current state to favor defection or
cooperation, which are represented by the parameters µd and µc,
respectively [17].

KAd =
[

1 0
0 0

]

⊗
[

µd 1
1 −µd

]

KAc =
[

0 0
0 1

]

⊗
[

µc 1
1 −µc

]

(3)

KA = KAd + KAc =









−1 µD 0 0
1 −µD 0 0
0 0 −1 µC

0 0 1 −µC









(4)

In the work of Pothos and Busemeyer [17], the authors proposed
the incorporation of dissonance effects to simulate the change
of mind to dissolve contradictory beliefs that a player can
experience. This is given by the parameter γ and corresponds to
the payoffs of the players (Equation 5).

KB =









−1 0 γ 0
0 −γ 0 1
1 0 −γ 0
0 γ 0 −1









(5)

Thus, the final intensity matrix K is given by:

K = KA+ KB =









−2 µD γ 0
1 −γ − µD 0 1
1 0 −1− γ µC

0 γ 1 −µC − 1









(6)

To compute the final probability of a player defecting, we
need to sum the components of the column vector PF that
correspond to the second player choosing the actionDefect. Note
that the four components of the column vector PF correspond
to [ DD DC CD CC ], where C corresponds to Cooperate and D
to Defect. The first letter represents the action chosen by the
first player, and the second letter corresponds to the action of
the second player. Thus, the probability of player 2 choosing the
action Defect corresponds to the summation of the first and the
third components of the column vector PF :

Pr( P2 = Defect ) = PF[1st_dim] + PF[3rd_dim] (7)

In Equation (7), we do not need to perform any normalization in
the end because the operation in Equation (1) together with the
intensity matrix K ensures that the values computed are already
probability values. Moreover, there is no possible combination
of parameters resulting from Equation (7) that will satisfy the
results observed in Table 1. This occurs because, although we
have parameterized the Markov Model, the model will always
satisfy the laws of classical probability theory. Thus, there is no
possible optimization that can predict the violation of the Sure
Thing Principle in such situations. This was already noticed in
the previous works of Pothos and Busemeyer [17] and Busemeyer
et al. [35].

In the next sections, we explain several quantum approaches
proposed in the literature that can accommodate violations ofthe
Sure Thing Principle.

4. THE QUANTUM-LIKE APPROACH

The Quantum-Like Approach has its roots in contextual
probabilities. This model was proposed by A. Khrennikov and
corresponds to a general contextual probability space from which
the classical and quantum probability models can be derived [34,
49].

4.1. Contextual Probabilities: The Växjö
Model
In the Växjö Model, the context relates to the circumstances that
form the setting for an event in terms of which it can be fully
understood, clarifying the meaning of the event. For instance, in
domains outside of physics, such as cognitive science, one can
have mental contexts. In social sciences, we can have a social
context. The same idea is applied to many other domains, such
as economics, politics, game theory, and biology.

Associated with a context, there is a set of observables. In
quantum mechanics, an observable corresponds to a self-adjoint
operator on a complex Hilbert Space. Under the Växjö Model,
these observables correspond to the set of possible events with
their respective values.

Prcontext = (C,O, π) (8)

For instance, for a context C ∈ C and for an observable a ∈ O

having values α, the probability of the value of one observable
is expressed in terms of the conditional (contextual) probability
involving the values of an observable. That is, the probability
distribution π is given by:

π(O, C) = Pr( a = α | C ) (9)

If we move into the quantum mechanics realm, Equation (9) can
be interpreted as the selection with respect to the result a = α of
a measurement performed in a.

For the contextual probability model, the Växjö framework
corresponds to a model M described by M = (C, O, π(O, C)).
Again, C is a set of contexts, O is the set of observables,
and π(O, C) corresponds to a probability distribution of some
observables belonging to a specific context.

In addition, assume for a context C ∈ C that there are two
dichotomous observables a, b ∈ O and that each of these
observables can take some values α ∈ a and β ∈ b, respectively.

The Växjö Model can be built from the general structure
of the quantum law of total probability. That is, the formula
is a combination of the classical probability theory with a
supplementary term called the interference term (Equation 10).
This term does not exist in classical probability and enables the
representation of interferences between quantum states.

Pr(b = β) = Classical_Probability(b = β)+ Interference_Term
(10)

Under this representation, we can replace Classical_Probability
by the classical total probability and also replace the quantum
Interference_Term by a supplementary measure, represented by
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δ(β | a, C). Under the Växjö Model, the term δ(β | a, C)
corresponds to:

δ(β|a,C) = Pr(b = β)−
∑

α∈a
Pr(a = α|C)Pr(b = β|a = α,C)

(11)
Equation (11) can be written in a similar way to the classical
probability in the following manner:

Pr(b = β|C) =
∑

α∈a
Pr(a = α|C)Pr(b = β|a = α,C)+ δ(β|a,C)

(12)
If we perform the normalization of the probability measure of
supplementary δ(β | a, C) by the square root of the product of all
probabilities, we obtain:

λθ =
δ(β|a,C)

2
√

∏

α∈a Pr(a = α|C)Pr(b = β|a = α,C)
(13)

From Equation (13), the general probability formula of the Växjö
Model can be derived. For two variables, it is given by:

Pr(b = β|C) =
∑

α∈a
Pr(a = α|C)Pr(b = β|a = α,C)

+2λθ

√

∏

α∈a
Pr(a = α|C)Pr(b = β|a = α,C)

(14)

If we look closely at Equation (14), we can see that the first
summation of the formula corresponds to the classical law of
total probability. The second term of the formula (the one that
contains the λθ parameter) does not exist in the classical model
and is called the interference term.

4.2. The Hyperbolic Interference
Although the Quantum-Like Approach provides great
possibilities compared with the classical one, it appears that
it cannot completely cover data from psychology and that a
quantum formalism was not enough to explain some paradoxical
findings (see [50]), so hyperbolic spaces were proposed [51–53].

From Equation (14), if Pr(b = β)−
∑

α∈a Pr(a = α|C)Pr(b =
β|a = α,C) is different from zero, then various interference
effects occur. To determine which type of interference occurred,
one tests the Växjö Model for quantum probabilities. This can
be determined by normalizing the supplementary measure in a
quantum fashion, just as presented in Equation (13).

If we are under a quantum context, then the quantum
interference term will be:

δ(β|a,C) = 2

√

∏

α∈a
Pr(a = α|C)Pr(b = β|a = α,C) cos(θ)

(15)
In a quantum context because the supplementary term δ(β | a,C)
is being normalized in a quantum fashion, then we automatically
know that the indicator term λθ will always have to be smaller
than 1 to obtain quantum probabilities, λθ ≤ 1. Thus,
under trigonometric contexts, the Växjö Model for quantum
probabilities becomes:

λθ = cos(θ) → Pr(β|C) =
∑

α∈a
Pr(α|C)Pr(β|α,C)

+2

√

∏

α∈a
Pr(α|C)Pr(β|α,C) cos(θ) (16)

If, however, the probability Pr(b = β) was not computed
in a trigonometric space (that is, it is not quantum), then,
it is straightforward that the quantum normalization applied
in Equation (13) will yield a value larger than 1. Because we
are not in the context of quantum probabilities, the quantum
normalization factor will fail to normalize the interference
term and will produce a number larger than the normalization
factor. Under these circumstances, the Växjö Model incorporates
the generalization of hyperbolic probabilities, arguing that
the context in which these probabilities were computed was
Hyperbolic [49, 53, 54].

Under Hyperbolic contexts, the Växjö Model contextual
probability formula becomes:

λθ = cosh(θ) → Pr(β|C) =
∑

α∈a
Pr(α|C)Pr(β|α,C)

± 2

√

∏

α∈a
Pr(α|C)Pr(β|α,C) cosh(θ) (17)

In summary, according to the values computed by the indicator
function λθ , the Växjö Model enables the computation of
probabilities in the following contexts:

• If | λθ | = 0, then there is no interference, and the Växjö
Model collapses to classical probability theory.

• If | λθ | ≤ 1, then we fall into the realm of quantum
mechanics, and the context becomes a Hilbert space. The
indicator function is then replaced by the trigonometric
function cos( θ ).

• If | λθ | > 1, then we fall into the realm of hyperbolic
numbers, and the context becomes a hyperbolic space. The
indicator function is then replaced by the hyperbolic function
cosh(θ).

4.3. Quantum-Like Probabilities as an
Extension of the Växjö Model
The probabilities that emerge from the Växjö model for
trigonometric spaces (i.e., quantum probabilities), do not provide
a complete description of a quantum system because it can violate
the positivity axiom of probability theory [49].
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In this sense, an algorithm was proposed in the literature
that extends the Växjö model and is able to accommodate the
positivity axiom. The algorithm proposed is the Quantum-Like
Representation Algorithm (QLRA), and it was proposed by
Khrennikov [55–59].

As already mentioned, quantum complex amplitudes can be
obtained from classical probability by using Born’s rule [60,
61]. In the QLRA, for any trigonometric context C, one
can simplify Born’s rule for two dichotomous variables using
(Equation 19) [49].

Pr(β|C) = Pr(α1|C)Pr(β|α1,C)+ Pr(α2|C)Pr(β|α2,C)+
+2

√

Pr(α1|C)Pr(β|α1,C)
√

Pr(α2|C)Pr(β|α2,C) cos θ (18)

Equation (18) can be simplified in the following manner:

Pr(β|C) =
∣

∣

∣

√

Pr(α1|C)Pr(β|α1,C)

+ eiθβ|α,C
√

Pr(α2|C)Pr(β|α2,C)
∣

∣

∣

2
(19)

Equation (19) corresponds to the representation of the quantum
law of total probability through the Växjömodel. In this equation,
the angle θβ|α,C corresponds to the phase of a random variable
and incorporates the phase of both A = α1 and A = α2 in the
following manner: θβ|α, C = θβ|α1 − θβ|α2 .

One should note that the Quantum-Like Approach can be
extended to more complex decision scenarios, that is, with
more than two random variables. However, this will lead to
the very difficult task of tuning an exponential number of
quantum θ parameters. Peter Nyman noticed this problem when
he generalized the Quantum-Like Approach for 3 dichotomous
variables [52, 62–64].

4.4. Modeling the Prisoner’s Dilemma using
the Quantum-Like Approach
If we want to compute the average probabilities reported in
Table 1 for the Prisoner’s Dilemma game, then we would need
to make the following substitutions to Equation (18):

Pr (α1|C) · Pr (β|α1,C) = Pr
(

P1 = Defect|C
)

· Pr
(

P2 = Defect|P1 = Defect
)

= 0.5× 0.87 = 0.435

Pr (α2|C) · Pr (β|α2,C) = Pr
(

P1 = Cooperate|C
)

· Pr
(

P2 = Defect|P1 = Cooperate
)

= 0.5× 0.74 = 0.37

The main problem of the Växjö model and the Quantum-Like
Approach is that it can only address very small decision scenarios
and the fitting of the θ parameter has to be done fitted to
data. To compute the probability of a player choosing to defect,
Pr

(

P2 = Defect
)

, one would proceed as follows:

Pr(P2 = Defect) = 0.435+ 0.37+ 2 ·
√
0.435 ·

√
0.37 · cos(θ)

To achieve the observed result, θ must be equal to 1.7779 to
achieve the final probability Pr(P2 = Defect) = 0.64. However,

this method does not provide any other means to find this θ
parameter except by extrapolating the observed data.

5. THE QUANTUM DYNAMICAL MODEL

In the works of Busemeyer et al. [11], Pothos and Busemeyer [17],
and Busemeyer et al. [35], the authors present a model to perform
quantum time evolution. This model requires the creation of a
doubly stochastic matrix, which represents the rotation of the
participants’ beliefs. The double stochasticity is a requirement to
preserve unit length operations and to obtain a probability value
that does not require normalization. The participants’ actions are
represented by a superposition vector with all possible actions:

[ψDD ψDC ψCD ψCC], where C corresponds to Cooperate and D
to Defect.

The doubly stochastic matrix that the model requires can only
be computed by the use of an auxiliary Hamiltonian matrix,
which needs to be self-adjoint. For instance, to explain the
average results of the Prisoner’s Dilemma game, the Hamiltonian
matrix is given by Equation (20), where µD and µC correspond
to parameters representing the payoffs of the defect and cooperate
actions, respectively.

HAd =
[

1 0
0 0

]

⊗
[

µD 1
1 −µD

]

1
√

1+ µ2
D

HAc =
[

0 0
0 1

]

⊗
[

µC 1
1 −µC

]

1
√

1+ µ2
C

HA = HAd +HAc =















µD√
1+µ2

D

1√
1+µ2

D

0 0

1√
1+µ2

D

− µD√
1+µ2

D

0 0

0 0 µC√
1+µ2

C

1√
1+µ2

C

0 0 1√
1+µ2

C

− µC√
1+µ2

C















(20)

The dynamical model also takes dissonance effects into account.
That is, the participants might have been confronted by some
information that conflicted with his/her existing beliefs to
simulate the dissonance effect when the participants had to
decide on an action. Thus, theQuantumDynamicalModelmakes
use of a second Hamiltonian matrix, HB.

HBd =









+1 0 +1 0
0 0 0 0
+1 0 −1 0
0 0 0 0









·
−γ
√
2

HBc =









0 0 0 0
0 −1 0 +1
0 0 0 0
0 +1 0 +1









·
−γ
√
2

HB = HBd +HBc =













−γ√
2

0 −γ√
2

0

0 γ√
2

0 −γ√
2

−γ√
2

0 γ√
2

0

0 −γ√
2

0 −γ√
2













(21)

The general Hamiltonian matrix combines the matrices from
Equations (20) and (21). In the end, the final matrix needs to be
self-adjoint and, consequently, symmetric. To explain the average
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results of the Prisoner’s Dilemma game, the final Hamiltonian
matrix is given by:

H = HA+HB =
















−γ√
2
+ µD√

1+µ2
D

1√
1+µ2

D

−γ√
2

0

1√
1+µ2

D

γ√
2
− µD√

1+µ2
D

0 −γ√
2

−γ√
2

0 γ√
2
+ µC√

1+µ2
C

1√
1+µ2

C

0 −γ√
2

1√
1+µ2

C

−γ√
2
− µC√

1+µ2
C

















(22)

Next, we need to create a unitary matrix. In quantum mechanics,
a unitary matrix restricts the allowed evolution of quantum
systems, ensuring that the sum of probabilities of all possible
outcomes of any event is always 1. This means that the matrix
must be doubly stochastic (all rows and columns sum to 1).
In the Quantum Dynamical Model, this matrix encodes all
state transitions that a person can experience while choosing a
decision. A unitary matrix is computed by a differential equation
called Schrödinger’s equation:

δ

δt
U(t) = −i ·H · U(t) ⇒ U(t) = e−i·H·t (23)

The parameter t corresponds to the time evolution. Under the
Dynamical Quantum Model, this parameter was set to π/2,
corresponding to the average time that a participant takes to
make a decision (approximately 2 seconds) [17, 35]. Also, in the
book of Busemeyer and Bruza [16], the authors state that the time
parameter was set to π/2, because it produces a probability that
reaches its maximum.

The initial belief state corresponds to a quantum state
representing a superposition of the participant’s beliefs.

Qi =
1

2









1
1
1
1









(24)

By multiplying the unitary matrix with the initial superposition
belief state, one can compute the transition of the participants’
beliefs at each time. The final vector Qf represents the amplitude
distribution across states after deliberation.

QF = U · Qi = U ·









1
1
1
1









·
1

2
(25)

Having the final state QF , one can compute probabilistic
inferences by computing the sum squared magnitude of the
rows of interest in the final belief state. Note that the four
components of the column vector QF respectively correspond
to [ DD DC CD CC ], where C corresponds to Cooperate and D
to Defect. The first letter represents the action chosen by the
first player, and the second letter corresponds to the action of
the second player. Thus, the probability of player 2 choosing

FIGURE 2 | Illustration all possible probabilities, Pr(P2 = Defect), that

can be obtained by varying the parameters γ and µC.

the action Defect corresponds to the summation of the squared
magnitude of the first and the third components of the column
vector QF :

Pr(P2 = Defect) =
∣

∣

∣
QF[1st_dim]

∣

∣

∣

2
+

∣

∣

∣
QF[3rd_dim]

∣

∣

∣

2

Pr(P2 = Cooperate) =
∣

∣

∣
QF[2nd_dim]

∣

∣

∣

2
+

∣

∣

∣
QF[4th_dim]

∣

∣

∣

2
(26)

To explain the average results observed in the Prisoner’s Dilemma
Game, in the work of Pothos and Busemeyer [17], the authors
chose the following parameters:

• µD = 0.51. This parameter corresponds to a participant
choosing the defect action.

• µC = 0.51. This parameter corresponds to a participant
choosing the cooperate action.

• γ = 0.6865. This parameter corresponds to the simulation of
the dissonance effect.

Using the above parameters, one can estimate the average results
of Table 1 to be Pr(P2 = Defect) = 0.64. The Quantum
Dynamical model shows that quantum probability is a very
general framework and can lead to many different probabilities.
These probabilities just depend on the way one chooses to fit
these free parameters. This has also been shown in the previous
study of Moreira and Wichert [65]. To illustrate this concept, we
decided to fix one of the parameters µD, µC or γ and vary the
others between the interval [−1, 1]. Figures 2–4 show all possible
probabilities that can be obtained with the presented Dynamical
Quantum Model for the Prisoner’s Dilemma game1 The value of
these figures is to show how sensitive quantum parameters are
and how challenging it is to find values for these parameters.

In the Quantum Dynamical Model, the parameters used
are based on a psychological setting. The incorporation of
parameters to model dissonance effects and the payoffs of
the players provide an approximation for the psychology of
the problem that is not observed in other quantum cognitive

1These graphs were plotted using theWolfram Mathematica 10.4.1 software.
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FIGURE 3 | Illustration of all possible probabilities, Pr(P2 = Defect), that

can be obtained by varying the parameters γ and µD.

models of the literature. However, one great disadvantage of the
Quantum Dynamical Model is related to Hamiltonian matrices.
Creating a manual Hamiltonian is a very hard problem because it
is required that all possible interactions of the decision problem
are known, and this specification must be made in such a way
that the matrix is doubly stochastic. A recent work from Yearsley
and Busemeyer [66] describes how to construct Hamiltonians for
quantum models of cognition. The Hamiltonian matrix grows
exponentially with the complexity of the decision problem, and
the computation of a unitary operator from such matrices is a
very complex process. Most of the time, approximations are used
because of the complexity of the calculations involved in the
matrix exponentiation operation.

6. THE QUANTUM PROSPECT DECISION
THEORY

The Quantum Prospect Decision Theory was developed
by Yukalov and Sornette [36, 67] and developed throughout
many other works [68–71]. The foundations of this theory
are very similar to the previously presented Quantum-Like
Approach.

In the Quantum-Like Approach, we start with two
dichotomous observables. In the Quantum Prospect Decision
Theory, these observables are referred to as intensions. An
intension can be defined by an intended action, and a set of
intended actions is defined as a prospect.

Each prospect can contain a set of action modes, which are
concrete representations of an intension. Making a comparison
with the Quantum-Like Approach, a prospect can be seen as a
random variable, and the set of action modes are the assignments
that each random variable can have. For instance, the intension to
play can have two representations: play action A or play action B.

Following the work of Yukalov and Sornette [36], two
intensions A and B have the respective representations: A = x
where x ∈ a1, a2 and B = y, where y ∈ b1, b2. The corresponding

FIGURE 4 | Illustration of all possible probabilities, Pr(P2 = Defect), that

can be obtained by varying the parameters µD and µC.

state of mind is given by:

| ψs (t)〉 =
∑

i,j

ci,j (t) | Ai Bj〉 (27)

Equation (27) represents a linear combination of the prospect
basis states. From a psychological perspective, the state of mind
is a fixed vector characterizing a particular decision-maker with
his/her beliefs, habits, principles, etc. That is, it describes each
decision-maker as a unique subject.

The prospect states corresponding to the intensions A and B
are given by Equation (28). The ψ symbol corresponds to
quantum amplitudes associated with the prospect state. Under
the Quantum Prospect Decision Theory, these amplitudes
represent the weights of the intended actions while a person is
still deliberating about them.

|πA=a1〉 = c11|A = a1B = b1〉 + c12|A = a1B = b2〉
|πA=a2〉 = c21|A = a2B = b1〉 + c22|A = a2B = b2〉 (28)

The probabilities of the prospects can be obtained by computing
the squared magnitude of the prospect states (just as in the
Quantum-Like Approach and the Quantum Dynamical Model).
Consequently, the final probabilities are given by:

Pr(πA=a1 ) = Pr(A = a1,B = b1)+ Pr(A = a1,B = b2)

+ q(πA=a1 ) = |ψ11|2 + |ψ12|2 + q(πA=a1 )

Pr(πA=a2 ) = Pr(A = a2,B = b1)+ Pr(A = a2,B = b2) (29)

+ q(πA=a2 ) = |ψ21|2 + |ψ22|2 + q(πA=a2 )

where the interference term q is defined by:

q(πA=a1 ) = 2 · ϕ(πA=a1 )
√

Pr(A = a1,B = b1)

·
√

Pr(A = a1,B = b2)

q(πA=a2 ) = 2 · ϕ(πA=a2 )
√

Pr(A = a2,B = b1)

·
√

Pr(A = a2,B = b2) (30)
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In Equation (30), the symbol ϕ corresponds to the uncertainty
factor and is given by Equation (31).

ϕ(πA=a1) = cos
(

arg (ψ11 · ψ12)
)

ϕ(πA=a2) = cos
(

arg (ψ21 · ψ22)
)

(31)

The interference term corresponds to the effects that emerge
during the process of deliberation, that is, while a person
is making a decision. These interference effects result from
conflicting interests, ambiguity, emotions, etc. [36].

One can notice that the Quantum Prospect Decision Theory
is very similar to the Quantum-Like Approach proposed
by Khrennikov [72]. Both theories end up with the same
quantum probability formula. However, the Quantum Prospect
Decision Theory provides some heuristics for how to choose the
uncertainty factors. This information will be addressed in the
next section.

6.1. Choosing the Uncertainty Factor
To accommodate the violations of the Sure Thing Principle,
the uncertainty factor must be set in such a way that it
will enable accurate predictions. Two methods were proposed
by Yukalov and Sornette [36] to estimate the uncertainty
factor: the Interference Alternation method and the Interference
Quarter Law.

• Interference Alternation - Under normalized conditions, the
probabilities of the prospects p

(

πj
)

must sum to 1. This
normalization only occurs if one characterizes the interference
term as an alternation such that the interference effects
disappear while summing the probability of the prospects.
This results in the property of the interference alternation,
given by:

∑

j

q
(

πj
)

= 0 (32)

The interference alternation property is in accordance with
the findings of Epstein [41]: the destructive interference effects
can be associated with uncertainty aversion. This leads to a
less probable action under uncertainty conditions. In contrast,
the probabilities of other actions that contain less uncertainty
are enhanced through constructive quantum interference
effects. This uncertainty aversion happens quite frequently in
situations where the Sure Thing Principle is violated. This
implies that one of the probabilities of the prospects must be
enhanced, whereas the other must be decreased.

sign
[

ϕ(πA=a1)
]

= −sign
[

ϕ(πA=a2 )
]

where
∣

∣ϕ(πA=ai )
∣

∣ ∈ [0, 1] (33)

• Interference Quarter Law - The interference terms generated
by quantum probabilistic inferences have a free quantum
parameter, which is the uncertainty factor (Equation 31).
The Interference Quarter Law corresponds to a quantitative
estimation of this parameter. The modulus of the interference
term q can be quantitatively estimated by computing the

expectation value of the probability distribution of a random
variable ξ in the interval [0, 1]:

q ≡
∫ 1

0
ξ · pr (ξ) dξ =

1

4
(34)

The probability distribution p (ξ) is given by Equation (35)
and can be computed by taking the average of two probability
distributions.

pr (ξ) =
1

2

[

pr1 (ξ)+ pr2 (ξ)
]

= δ (ξ)+
1

2
2(1− ξ) (35)

One of the probability distributions, (p1 (ξ)), is concentrated
in the center and is described by a Dirac function δ (ξ).

pr1 (ξ) = 2 · δ (ξ) (36)

The other probability distribution,(p2 (ξ)), is a uniform
distribution in the interval [0, 1].

pr2 (ξ) = 2(1− ξ) where2(ξ) =
{

0, if ξ < 0
1, if ξ ≥ 0

(37)

For a more detailed proof of the Interference Quarter Law, the
reader should refer to Yukalov and Sornette [36].

6.2. The Quantum Prospect Decision
Theory Applied to the Prisoner’s Dilemma
Game
In this section, we apply the Quantum Prospect Decision Theory
to try to predict the average results for the Prisoner’s Dilemma
Game reported in Table 1.

The probability of a player defecting (and cooperating), given
that one does not know what the action of the other player was,
is given by Equation (38). For simplicity, we will assume the
following notation: Defect (D) and Cooperate (C).

Pr(P2 = D) = Pr(P1 = D, P2 = D)

+ Pr(P1 = C, P2 = D)+ Interferenced

Pr(P2 = C) = Pr(P1 = D, P2 = C)

+ Pr(P1 = C, P2 = C)+ Interferencec (38)

The interference terms are given by:

Interferenced = 2 · ϕ (P2 = D)

·
√

Pr(P1 = D, P2 = D) · Pr(P1 = C, P2 = D)

Interferencec = 2 · ϕ (P2 = C)

·
√

Pr(P1 = D, P2 = C) · Pr(P1 = C, P2 = C)

(39)

The uncertainty factors are given by:

ϕ (P2 = D) =
interferenced

2 ·
√

pr(P1 = D, P2 = D) · Pr(P1 = C, P2 = D)

ϕ (P2 = D) =
interferencec

2 ·
√

pr(P1 = D, P2 = C) · Pr(P1 = C, P2 = C)

(40)
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According to the Interference Quarter Law and to the Alternation
Law, the probabilities for acting under uncertainty are given by:

Pr(P2 = D) = Pr(P1 = D, P2 = D)

+ Pr(P1 = C, P2 = D)− 0.25

Pr(P2 = C) = Pr(P1 = D, P2 = C)

+ Pr(P1 = C, P2 = C)+ 0.25 (41)

For the Prisoner’s Dilemma Game,

Pr(P1 = D, P2 = D) = Pr(P1 = D) · Pr(P2 = D|P1 = D)

= 0.5× 0.87 = 0.435

Pr(P1 = C, P2 = D) = Pr(P1 = C) · Pr(P2 = D|P1 = C)

= 0.5× 0.74 = 0.37

Then, the final predicted probabilities are given by:

Pr(P2 = D) = 0.435+ 0.37− 0.25 = 0.555

Pr(P2 = C) = 0.065+ 0.13+ 0.25 = 0.445
(42)

The average probability to defect for the Prisoner’s Dilemma
Game in Table 1when the first player’s action is unknown is 0.64.
Thatmeans that, with the Quarter Interference Law together with
the Interference Alternation property, the Prospect Quantum
Decision Theory obtained an error of 13%.

7. PROBABILISTIC GRAPHICAL MODELS

In this section, we introduce the concepts of classical and
Quantum-Like Bayesian Networks, as well as some approaches in
the literature that formalized traditional Bayesian Networks into
a Quantum-Like Approach.

7.1. Classical Bayesian Networks
A classical Bayesian Network can be defined by a directed acyclic
graph structure in which each node represents a different random
variable from a specific domain and each edge represents a
direct influence from the source node to the target node. The
graph represents independence relationships between variables,
and each node is associated with a conditional probability table
that specifies a distribution over the values of a node given each
possible joint assignment of values of its parents [73].

The full joint distribution [74] of a BayesianNetwork, whereX
is the list of variables, is given by:

Pr(X1, . . . ,Xn) =
n

∏

i=1

Pr(Xi|Parents(Xi)) (43)

The formula for computing classical exact inferences on Bayesian
Networks is based on the full joint distribution (Equation 43).
Let e be the list of observed variables and let Y be the remaining
unobserved variables in the network. For some query X, the
inference is given by:

Pr(X|e) = αPr(X, e) = α





∑

y∈Y
Pr(X, e, y)



 (44)

Where α =
1

∑

x∈X Pr(X = x, e)

The summation is over all possible y, i.e., all possible
combinations of values of the unobserved variables y. The α
parameter corresponds to the normalization factor for the
distribution Pr(X|e) [74]. This normalization factor comes from
some assumptions that are made in Bayes rule.

7.2. Classical Bayesian Networks for the
Prisoner’s Dilemma Game
We represent the Prisoner’s Dilemma Game under a Bayesian
Network structure in which we assume neutral priors: there
is a 50% of a player choosing the actions Defect or Cooperate
(Figure 5). The decision of the first participant is then followed
by the decision of the second participant. The probability
distribution of the second player is obtained (or learned) from
the experimental data for the averaged results in Table 1 when
the actions of the first player are observed. Using this data, the
goal is to try to determine the probability of the second player
choosing to defect given that it is not known what action the first
player chose.

To compute the probability Pr(P2 = Defect), two operations
are required: the computation of the full joint probability
distribution (Equation 43) and the computation of the marginal
probability.

The full joint probability distribution can be easily computed
by multiplying all possible assignments of the network

FIGURE 5 | Bayesian Network representation of the Average of the results reported in the literature (last row of Table 1). The random variables that were

considered are P1 and P2, corresponding to the actions chosen by the first participant and second participant, respectively.

Frontiers in Physics | www.frontiersin.org 11 June 2016 | Volume 4 | Article 26

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Moreira and Wichert Quantum Probabilistic Models Revisited

TABLE 2 | Classical full joint probability distribution representation of the

Bayesian Network in Figure 5.

P1 P2 Pr( P1, P2 )

Defect Defect 0.5× 0.87 = 0.4350

Defect Cooperate 0.5× 0.13 = 0.0650

Cooperate Defect 0.5× 0.74 = 0.3700

Cooperate Cooperate 0.5× 0.26 = 0.1300

with each other. Table 2 shows the computation of these
probabilities.

Themarginalization formula is used when we want to perform
queries to the network. For instance, in the Prisoner’s Dilemma
Game, we want to know what the probability is of the second
player choosing to defect given that we do not know what the
other player has chosen, Pr(P2 = Defect). This is obtained by
summing the entries of the full joint probability (Table 2) that
have P2 = Defect. That is, we sum up the first and third rows of
this table. Equation (45) shows this operation. For simplicity, we
have used the following notation:D = Defect andC = Cooperate.

Pr(P2 = D) = Pr(P1 = D) · Pr(P2 = D|P1 = D)+ Pr(P1 = C)

·Pr(P2 = D|P1 = C) = 0.8050 (45)

In Equation (45), one can see that the classical Bayesian Network
was not able to predict the observed results in Table 1 using
classical inference. One might think that, if we parameterize the
Bayesian Network to take into account the player’s actions and
dissonance effects, there could be a possibility of obtaining the
required results. This line of thought is legitimate, but one must
take into account that, in the end, the probabilistic inferences
computed through the Bayesian Network must obey set theory
and the law of total probability. This means that, even if we
parameterize the network, we cannot find any closed form
optimization that could lead to the desired results. This happened
with the previous example of the Markov Model in Section 3.
Although we parameterized the player’s actions and dissonance
effects, we could not arrive at the desired results because they go
against the laws of probability theory, and Markov Models (as
well as Bayesian Networks) must obey these laws.

7.3. Quantum-Like Bayesian Networks in
the Literature
There are two main works in the literature that have contributed
to the development and understanding of Quantum Bayesian
Networks. One belongs to Tucci [37] and the other to Leifer and
Poulin [38].

In the work of Tucci [37], it is argued that any classical
BayesianNetwork can be extended to a quantum one by replacing
real probabilities with quantum complex amplitudes. This means
that the factorization should be performed in the same manner
as in a classical Bayesian Network. Thus, the Bayesian Network
of Figure 5 could be represented by a Quantum Bayesian
Network with the following matrices tables (the ordering of the

probability amplitudes in the matrices are the same as the ones in
Figure 5):

P1 =
[

a · eiθ1
√

1−
∣

∣a · eiθ1
∣

∣

2 · eiθ2
]

P2 =





b · eiθ3
√

1−
∣

∣b · eiθ3
∣

∣

2 · eiθ4

c · eiθ5
√

1−
∣

∣c · eiθ5
∣

∣

2 · eiθ6





One significant problem with Tucci’s work is related to the non-
existence of any methods to set the phase parameters eiθ . The
author states that one could have infinite Quantum Bayesian
Networks representing the same classical Bayesian Network
depending on the values that one chooses to set the parameter.
This requires that one knows a priori which parameters would
lead to the desired solution for each node queried in the network
(which we never know). Thus, for these experiments, Tucci’s
model cannot predict the results observed because one does not
have any information about the quantum parameters.

In the work of Leifer and Poulin [38], the authors argue that,
to develop a Quantum Bayesian Network, quantum versions
of probability distributions, quantum marginal probabilities
and quantum conditional probabilities are required (Table 3).
The authors performed a preliminary study of these concepts.
Generally speaking, a quantum probability distribution
corresponds to a density matrix contained in a Hilbert space,
with the constraint that the trace of this matrix must sum to 1.
In quantum probability theory, a full joint distribution is given
by a density matrix, ρ. This matrix provides the probability
distribution of all states that a Bayesian Network can have. The
marginalization operation corresponds to a quantum partial
trace [75, 76].

In the end, the models of Tucci [37] and Leifer and Poulin
[38] fail to provide any advantage relative to the classical
models because they cannot take into account interference effects
between random variables. Thus, they provide no advantages in
modeling decision-making problems that try to predict decisions
that violate the laws of total probability.

Amore recent work fromMoreira andWichert [65] suggested
defining the Quantum-Like Bayesian Network in the same
manner as in the work of Tucci [37], replacing real probability
numbers by quantum probability amplitudes.

In this sense, the quantum counterpart of the full joint
probability distribution corresponds to the application of Born’s
rule to Equation (43):

Pr(X1, . . . ,Xn) =

∣

∣

∣

∣

∣

N
∏

i=1

ψ(Xi|Parents(Xi))

∣

∣

∣

∣

∣

2

(46)

The general idea of a Quantum-Like Bayesian network is
that, when performing probabilistic inference, the probability
amplitude of each assignment of the network is propagated
and influences the probabilities of the remaining nodes. In
other words, every assignment of every node of the network
is propagated until the node representing the query variable is
reached. Note that, by taking multiple assignments and paths
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TABLE 3 | Relation between classical and quantum probabilities used in

the work of Leifer and Poulin [38].

Classical probability Quantum probability

State Pr(A)
∣

∣

∣
eiθψA

∣

∣

∣

2

Joint probability distribution Pr(A,B) ρAB

Marginal probability distribution Pr(B) =
∑

A Pr(A,B) ρB = TrA (ρAB )

Conditional state Pr (B|A) ρB|A
∑

b∈B Pr(b|A) = 1 Tr(ρB|A ) = IA

at the same time, these trails influence each other in producing
interference effects.

The quantum counterpart of the Bayesian exact inference
formula corresponds to the application of Born’s rule to
Equation (44), leading to:

Pr(X|e) = α

∣

∣

∣

∣

∣

∣

∑

y

N
∏

x=1

ψ(Xx|Parents(Xx),e,y)

∣

∣

∣

∣

∣

∣

2

(47)

Expanding Equation (47), it will lead to the quantum interference
formula:

Pr(X|e) = α





|Y|
∑

i=1

∣

∣

∣

∣

∣

N
∏

x

ψ(Xx|Parents(Xx),e,y=i)

∣

∣

∣

∣

∣

2

+ 2 · Interference





Interference =
|Y|−1
∑

i= 1

|Y|
∑

j=i+ 1

∣

∣

∣

∣

∣

N
∏

x

ψ(Xx|Parents(Xx),e,y= i)

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

N
∏

x

ψ(Xx|Parents(Xx),e,y= j)

∣

∣

∣

∣

∣

· cos(θi − θj)(48)

In the Quantum Dynamical Model, because it uses unitary
operators, the double symmetric property of these operators does
not require the normalization of the computed values. However,
in this approach, because we do not have the constraints of
double stochasticity operators, we need to normalize the final
scores that are computed to achieve a probability value. In
classical Bayesian inference, normalization of the inference scores
is also necessary due to assumptions made in Bayes rule. The
normalization factor corresponds to α in Equation (48).

Note that, in Equation (48), if one sets (θi − θj) to π/2,
then cos(θi − θj) = 0, which means that the quantum Bayesian
Network collapses to its classical counterpart. That is, they can
behave in a classical way if one sets the interference term to
zero. Moreover, in Equation (48), if the Bayesian Network has N
binary random variables, we will end up with 2N free quantum θ

parameters. We represent each set of quantum parameters as a
single parameter of the full joint probability distribution just like
it is presented in Table 4. Approaches to tune those parameters
under a Quantum-Like Bayesian Network approach are still an
open research question.

In the model of Moreira and Wichert [65], if there are
many unobserved nodes in the network, then the levels of
uncertainty are very high and the interference effects produce
changes in the final likelihoods of the outcomes. However, in
the opposite scenario, when there are very few unobserved
nodes, then the proposed quantum model tends to collapse into
its classical counterpart because the uncertainty levels are very
low. This work only provides a study on the impact of the
quantum parameters in complex decision scenarios. On later
works, the same authors have proposed the usage of heuristics
to automatically assign values to quantum parameters [39, 77].

7.4. Application of the Quantum-Like
Formalism to the Prisoner’s Dilemma
Game
In this section, we will demonstrate how the proposed Bayesian
Network can be applied to the average results presented in
Table 1 for the Prisoner’s Dilemma game, just as was proposed
in the work of Moreira and Wichert [65].

We begin applying the Quantum-Like formalism by creating
a Bayesian Network out of the decision problem, in which
real classical probabilities are replaced by quantum amplitudes
(Figure 6). In the Prisoner’s Dilemma Game, if nothing is told
to the participants, then there is a 50% chance of the first
participant choosing to defect or cooperate. The decision of the
first participant is then followed by the decision of the second
participant.

To compute the probability Pr(P2 = Defect), two operations
are required: the computation of the quantum version of
the full joint probability distribution (Equation 46) and the
computation of the quantum version of the marginal probability
(Equation 48).

The full joint probability distribution can be easily computed
by multiplying all possible assignments of the network with
each other. For instance, the quantum full joint probability
amplitude ψ(P1=Defect,P2=Defect) is given by multiplying the
prior probability amplitude ψ(P1=Defect) with the conditional
probability amplitude ψ(P2=Defect|P1=Defect). Table 4 shows the
computation of these quantum probability amplitudes.

From the quantum version of the full joint probability
distribution, one can compute the quantum version of the
marginal probability distribution by summing all the entries of
Table 4 that contain the assignment P2 = Defect (Equation 49).
For simplification purposes, we will consider the following
abbreviations: Defect = D and Cooperate = C.

Pr (P2 = D) = α[
∣

∣ψ(P1=D,P2=D)

∣

∣

2 +
∣

∣ψ(P1=C,P2=D)

∣

∣

2

+ 2 · ψ(P1=D,P2=D) · ψ(P1=C,P2=D) cos (θA − θB)]
(49)

Pr (P2 = D) = α[
∣

∣ψ(P1=D) · ψ(P2=D|P1=D)

∣

∣

2 +
∣

∣ψ(P1=C) · ψ(P2=D|P1=C)

∣

∣

2 + 2 · ψ(P1=D)

·ψ(P2=D|P1=D) · ψ(P1=C) · ψ(P2=D|P1=C)

· cos (θA − θB)] (50)
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TABLE 4 | Quantum full joint probability amplitude distribution representation of the Bayesian Network in Figure 5.

P1 P2 ψ(P1,P2)

Defect Defect
√
0.5 · ei·θ1 ×

√
0.87 · ei·θ3 = 0.6595 · ei·

(

θ1+θ3
)

= 0.6595 · ei·θA

Defect Cooperate
√
0.5 · ei·θ1 ×

√
0.13 · ei·θ4 = 0.2550 · ei·

(

θ1+θ4
)

= 0.2550 · ei·θB

Cooperate Defect
√
0.5 · ei·θ2 ×

√
0.74 · ei·θ5 = 0.6083 · ei·

(

θ2+θ5
)

= 0.6083 · ei·θC

Cooperate Cooperate
√
0.5 · ei·θ2 ×

√
0.26 · ei·θ6 = 0.3606 · ei·

(

θ2+θ6
)

= 0.3606 · ei·θD

FIGURE 6 | Bayesian Network representation of the Average of the results reported in the literature (last row of Table 1). The random variables that were

considered are P1 and P2, corresponding to the actions chosen by the first participant and second participant, respectively.

Pr (P2 = D) = α
[

|0.6595|2 + |0.6083|2 + 2× 0.6595

×0.6083 · cos (θA − θB) ]
= α [0.8050+ 0.8023 · cos (θA − θB)] (51)

To compute the normalization factor α, we also need to compute
Pr(P2 = C):

Pr (P2 = C) = α[
∣

∣ψ(P1=D) · ψ(P2=C|P1=D)

∣

∣

2 +
∣

∣ψ(P1=C)

·ψ(P2=C|P1=C)

∣

∣

2 + 2 · ψ(P1=D) · ψ(P2=C|P1=D)

·ψ(P1=C) · ψ(P2=C|P1=C) · cos (θA − θB)] (52)

Pr (P2 = C) = α
[

|0.255|2 + |0.3606|2 + 2× 0.255× 0.3606

· cos (θA − θB)] = α [0.195+ 0.1839

· cos (θA − θB)] (53)

The normalization factor α is given by Equation (54).

α =
1

Pr (P2 = D)+ Pr (P2 = C)
=

1

1+ 0.9862 · cos (θA − θB)
(54)

Equation (54) contains two quantum parameters θ . Setting these
parameters is still an open research question in the literature,
although in some works, various heuristics have been proposed
to address this problem [39, 40, 77].

8. DISCUSSION OF THE PRESENTED
MODELS

The purpose of this section is to present discussion of and a
comparison between the existing quantum models in terms of
the proposed evaluationmetrics: terms of interference, parameter
tuning and scalability. The discussion will be mainly focused on
the set of parameters that the current quantum cognitive models

have that need to be fitted to match the desired predictions.
For instance, the Quantum Dynamical Model requires three
parameters for such small decision scenarios, whereas the
Quantum-Like Approach only needs one, and the Quantum
Prospect Decision Theory does not need any parameters because
it has a static heuristic to replace the interference term. Note
that the Quantum Dynamical Model uses three parameters µc,
µd, γ to predict three probabilities to defect when { known to
defect, known to cooperate, unknown }. While the Quantum-Like
Approach uses one chosen parameter and two probabilities to
defect { known to defect, known to cooperate } to predict one
probability to defect when { unknown }. In the end, we will
see that the problems that we note for the quantum models are
similar to many other classical cognitive models.

8.1. Discussion in Terms of Interference,
Parameter Tuning and Scalability
In this section, we analyze the presented works in the literature
regarding three different metrics: interference effects, parameter
tuning, and scalability.

• Interference Effects. Many works from the literature state
that, through quantum interference effects, one could simulate
the paradoxical decisions found across many experiments
in the literature. Without interference effects, quantum
probability converges to its classical counterpart. This metric
examines if the analyzed model makes use of any type of
quantum interference to explain human decision-making.

• Parameter Tuning. The problem of applying quantum
formalisms to cognition is concerned with the number of
quantum parameters that one needs to find. These parameters
grow exponentially with the complexity of the decision
problem, and thus far, very few works in the literature have
suggested ways to automatically find these parameters to make
accurate predictions.
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• Scalability. Most problems of the current models of the
literature are concerned with their inability to scale to more
complex decision scenarios. Most of these models are built
to explain very small paradoxical findings (for example,
the Prisoner’s Dilemma Game and the Two-Stage Gambling
Game). Therefore, this metric consists of analyzing the
presented models with respect to their ability to extend and
generalize to more complex scenarios.

Table 5 presents a summary of the evaluation of the models
presented in this work with respect to the three metrics described
above. The parameter growth column is based on the number
of parameters that each model generates when we increase the
number of unknown random variables in the decision model

Starting the discussion with the classical models presented in
Sections 3 and 7.1, the probabilistic inferences computed through
Bayesian/Markov Networks must obey set theory and the law
of total probability. This means that, even if we parameterize
the networks, we cannot find any closed form optimization
that could lead to the desired results. These networks can be
modeled with no parameters (just as was presented in Sections 3
and 7.1), or they can be parameterized. This parameterization
can end up with the same size as the full joint probability
distribution of the networks. Although these models do not
make use of any quantum interference effects and consequently
cannot accommodate violations of the Sure Thing Principle, it
is worth noting that one can always classically explain behavioral
results through appropriate conditionalizations and extensions of
classical probabilistic models [16].

The Quantum-Like Approach [72] is based on the direct
mapping of classical probabilities to quantum probability
amplitudes through Born’s rule. This means that one can perform
inferences for more complex decision-making scenarios by using
the quantum counterpart of the classical marginal probability
formula. Thus, the model generates quantum interference effects.
The main problem of the Quantum-Like approach concerns the
quantum parameters. The current works of the literature do not
provide any means to assign values to these quantum parameters.
They have to be fitted to explain the observed outcome. Thus,
the Quantum-Like approach, although it can be (mathematically)
extended to more complex decision scenarios, does not provide
any means to assign quantum parameters. Note that, in the
Quantum-Like approach, just like in many other models, it is
required a mathematical fitting of a set of parameters to make
an optimal prediction of the probabilities. So, the Quantum-Like
Approach is considered to be a predictive model.

The Quantum Dynamical Model proposed by Pothos and
Busemeyer [17] and Busemeyer et al. [35] incorporates quantum
interference effects not from the quantum law of probability
but by the usage of unitary operators and Hamiltonians. One
of the main disadvantages of this model concerns the definition
of the Hamiltonian matrices. Creating a Hamiltonian is a very
hard problem. It is required that all possible interactions of
the decision problem are known, and this specification must be
made in such a way that the matrix is doubly stochastic. The
unitary matrix also grows exponentially with the complexity of
the decision problem, and the computation of a unitary operator

from such matrices is a very complex process. Most of the
time, approximations are used because of the complexity of the
calculations involved in the matrix exponentiation operation.
Just as in the Quantum-Like Approach, one needs to fit the
quantum parameters so that the final model can give the observed
outcome. It is important to note that, in the QuantumDynamical
Model, the parameters used are based on a psychological setting.
The incorporation of parameters to model dissonance effects
and the payoffs of the players provide an approximation to the
psychology of the problem that is not observed in other quantum
cognitive models in the literature.

Finally, the Quantum Prospect Theory proposed by Yukalov
and Sornette [36] also incorporates quantum interference effects
from the quantum law of total probability. This model is very
similar, from a mathematical point of view, to the Quantum-
Like Approach, with the difference that it proposes laws to
compute the quantum interference parameters: the alternation
and the quantum quarter laws. Although the model is very
precise for very small decision problems (such as the Prisoner’s
Dilemma), it is not clear how the quantum quarter law and the
alternation law would work for more complex problems. For this
reason, the Quantum Prospect Theory is a model that enables the
usage of quantum interference terms to make predictions under
paradoxical scenarios and also provides an automatic mechanism
to set the quantum parameters under very small scenarios with a
static interference term (q = ±0.25). That is, the interference
term is always the same, even for different contextual problems.
For this reason, the model is not able to generalize well for more
complex decision scenarios.

Regarding Bayesian Networks, it is hard to apply the model
proposed in the work of Tucci [37] in paradoxical findings
that violate the Sure Thing Principle because the author makes
no mention of how to set these parameters. He even argues
that a classical Bayesian Network can be represented by an
infinite number of quantum Bayesian Networks depending on
how one tunes the quantum parameters. Because the model
is a Bayesian Network, one is able to perform inferences for
any scenario by using the quantum counterpart of the classical
marginal probability formula. Thus, in the end, the quantum
Bayesian Network proposed by Tucci [37] is scalable and takes
into account quantum interference effects; however, it does not
give any insights into how to set the quantum parameters that
result from the interference.

In the work of Leifer and Poulin [38], the authors create a
direct mapping from classical probability to quantum theory.
Because they made a quantum Bayesian Network, this model
enabled probabilistic inference, and consequently, it can be
generalized for any number of random variables through the
use of the quantum part of the marginal probability formula.
By making the direct mapping from classical to quantum
probabilities, the full joint probability distribution is mapped
into a density matrix. This means that the interference terms are
canceled. The authors also take into account the order in which
the operations are performed. Because, the commutativity axiom
is not valid in quantum mechanics, we obtain different outcomes
if the calculations are performed in a different order. Thus, the
quantum Bayesian Network proposed by Leifer and Poulin [38]
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TABLE 5 | Comparison of the different models proposed in the literature.

Approach Interference effects Parameter tuning Parameter growth Comments

Bayesian/classical theory Bayesian/Markov networks No Manual N
Nperson
actions

Number of parameters varies

for different models

Khrennikov [72] Quantum-like approach Yes Manual N
Nperson
actions

Grows exponentially large

Pothos and Busemeyer [17] Quantum dynamical model Yes Manual Nactions Hamiltonian Size exponential:

Busemeyer et al. [35] N
Nperson
actions

Yukalov and Sornette [36] Quantum prospect decision theory Yes Automatic N
Nperson
actions

Static heuristic

Quarter Law of Interference

Moreira and Wichert [65] Quantum-like Bayesian networks Yes Automatic N
Nperson
actions

Dynamic heuristic

Moreira and Wichert [39, 40, 77]

is scalable and takes into account quantum interference effects;
however, by making a direct mapping from classical to quantum,
these interference effects will cancel because the network will
collapse into its classical counterpart. Thus, in the end, this model
does not take advantage of quantum interferences to explain
paradoxical decision scenarios.

In the work of Moreira and Wichert [65], the authors
also make a direct mapping from classical theory to quantum
probability by replacing classical real probability values by
complex quantum probability amplitudes using Born’s rule. They
also applied the same mechanism to derive a quantum-like
full joint probability distribution formula and a quantum-like
marginal probability distribution for exact inference. In the end,
the model is very similar to the Quantum-Like Approach, and
it can be modeled for more complex decision-making scenarios
very easily due to its graphical structure. Because this model uses
quantum probability amplitudes, quantum interference effects
arise from the quantum-like exact inference formula. However,
the number of parameters grows exponentially large when the
levels of uncertainty are high, that is, when there are many
unobserved nodes in the network. Although the authors have
proposed some dynamic heuristics to address this problem in
recent works [39, 40, 77], one needs to take into account that
they are heuristics, which means that it can lead to the expected
outcome, but it can also lead to completely inaccurate results.

Note that we are aware that the problems that we note
in this discussion section about the quantum models are the
same in many cognitive science models. However, we are not
claiming that it is difficult to find the parameters for a game
such as the Prisoner’s Dilemma. What we are claiming is that the
several models analyzed in this work (Quantum-Like Approach,
QuantumDynamical Model, Quantum-Like Bayesian Networks)
contain a set of parameters that need to be fitted to match the
desired predictions.

For instance, the Quantum Dynamical Model requires three
parameters for such a small decision scenario, whereas the
Quantum-Like Approach only needs one, and the Quantum
Prospect Decision Theory does not need any parameters, because
it has a static heuristic to replace the interference term. The

purpose of this discussion section is simply to compare the
existing quantum models in terms of the evaluation metrics
specified in Table 5.

8.2. Discussion in Terms of Parameter
Growth
All models analyzed in this work present different growth rates
in what concerns parameters. For instance, the Dynamical Model
parameterizes the player’s actions plus an additional parameter
to model cognitive dissonance effects. Thus, the number of
parameters would be static if we consider the N-Person Prisoner’s
Dilemma Game. That is, instead of having only 2 players, it
is extended to N players. In the case of the Quantum-Like
Approach, we would have 2N parameters for the N-Person
Prisoner’s Dilemma Game. The number 2 comes from the fact
that each player has two actions (either defect or cooperate).
The same applies to the Classical Networks, the Quantum-Like
Bayesian Networks and the Quantum Prospect Theory Model.
However, because the authors of this last model presented the
Quantum Quarter Law of Interference as a static heuristic, this
model does not require any parameters.

At this point, the reader might be thinking that the Quantum
Dynamical Model provides great advantages vs. the existing
models because the number of parameters required corresponds
to the player’s actions with an additional cognitive dissonance
parameter. Although this line of thought is correct, one should
also take into account how the model unfolds. Although the
numbers of parameters do not grow exponentially large as
in the Quantum-Like Approach, the size of the Hamiltonian
does. In fact, it grows exponentially large with the following

size: N
Nplayers

actions × N
Nplayers

actions , where Nactions represents the number of
actions of the players and Nplayers corresponds to the number of
players.

We conclude this section by clarifying that most of the
quantum cognitive models proposed in the literature have
been directed toward small decision scenarios because of the
scarcity of datasets representing complex decision scenarios
and violations of the Sure Thing Principle. Consequently,
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the models proposed are simply overfitting simple decision
scenarios. Moreover, we believe that the violations of the Sure
Thing Principle tend to diminish with the complexity of the
decision scenario. Imagine, for instance, a Three-Stage Gambling
game. It will be very hard to find significant data that shows
a player wishing to play the last gamble given that he has lost
the two previous gambles. More experimental data and more
studies are needed for more complex decision scenarios to test
the viability of quantum models vs. their classical counterparts.

9. CONCLUSION

Recent work in cognitive psychology has revealed that quantum
probability theory provides another method of computing
probabilities without falling into the restrictions that classical
probability has in modeling cognitive systems of decision-
making. Quantum probability theory can also be seen as a
generalization of classical probability theory, because it also
includes the classical probabilities as a special case (when the
interference term is zero).

Quantum probability has the particularity of enabling the
representation of events in a geometric structure. The main
advantage of this geometrical representation is the ability to
rotate from one basis to another to contextualize and interpret
events. This ability does not exist in the classical probability
theory and provides great flexibility for decision-making systems.
Consequently, quantum probability can be more expressive than
its traditional classical counterpart. Under quantum theory, these
paradoxical findings can simply be seen as consequences of the
geometric flexibility that quantum probability theory offers.

We have collected a set of models from the literature that
attempt to tackle violations of the Sure Thing Principle in a
Quantum fashion, and then we compared the collected models.
To illustrate this comparison, we provided a mathematical
description of each model and how they could be applied in a
decision scenario. We compared the models in terms of three
proposed metrics: the number of parameters involved in the
model, the scalability and the usage of the quantum interference
effects.We have also performed amore detailed study concerning
the growth of the number of quantum parameters when the
complexity and the levels of uncertainty of the decision scenario
increase. We have also performed this comparison with classical
models, namely a Markov Model and a Bayesian Network. The
main statement of this work is not to express that quantum
models are preferred with respect to the classical models. With
this work, we have concluded that purely classical models suffer
from the same exponential parameterization growth as quantum
models, with the added difficulty that they are not capable of
simulating results that violate the Sure Thing Principle. It is worth

noting that one can always classically explain behavioral results
through appropriate conditionalizations of the classical law of
total probability. In the end, classical models are constrained
to obey set theory and the laws of probability theory, so
there is no closed optimization form that could lead to the
paradoxical results found in the experiments violating the Sure
thing Principle.

The proposedmodels of the literature only work for very small
decision problems. Most of them do not provide any means to fit
the quantum parameters that are required in their models. These
models are useful to accommodate the paradoxical violations
reported in the literature, but are not able to predict the decisions
of the players without a manual fit of the parameters. One should
also note that it is very difficult to validate these types of models,
especially when the complexity of the decision problem increases.
Thus far, in the literature, there are almost no demonstrations of
violations of the Sure Thing Principle for more complex decision
scenarios. More studies are needed in this direction to validate
the viability of quantum models.

This work provides a technical overview of the proposed
quantum models of the literature and a discussion of many key
aspects of the original studies. With the proposed evaluation
metrics, we were able to discuss many key aspects that have been
ignored in the literature, namely how the quantum interference
terms affect the complexity of the decision problems. Most
of the quantum cognitive models proposed in the literature
cannot predict the results observed in several experiments of the
literature without first knowing the outcome of the experiment.
Having this information, they can then fit their models to the
desired outcome. Thus, the primary goal of these models is
to accommodate the violations of the Sure Thing Principle.
The usage of parameters, in some models, with a more clear
psychological interpretation are also considered to be explicative.
The discussions addressed turn this work into a complement to
the study of the original works.
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