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The study of models is ubiquitous in sciences like physics, chemistry, ecology, biology,

or sociology. Models are used to explain experimental facts or to make new predictions.

For any system, one can distinguish several levels of description. In the simplest

mean-field like description the dynamics is described in terms of spatially averaged

quantities while in a microscopic approach local properties are taken into account and

local fluctuations for the relevant variables are present. The properties predicted by

these two different approaches may be drastically different. In a large body of research

literature concerning complex systems this problem is often overlooked and simple

mean-field like approximation are used without asking the question of the robustness

of the corresponding predictions. The goal of this paper is twofold, first to illustrate the

importance of the fluctuations in a self-contained and pedagogical way, by revisiting

two different classes of problems where thorough investigations have been conducted

(equilibrium and non-equilibrium statistical physics). Second, we present our original

research on the dynamics of population of annual plants which are competing among

themselves for just one resource (water) through a stochastic dynamics. Depending on

the observable considered, the mean-field like and microscopic approaches agree or

totally disagree. There is not a general criterion allowing to decide a priori when the two

approaches will agree.

Keywords: modeling, different levels of description, mean-field approximation, individually based model (IBM),

annual plant dynamics, biodiversity

1. INTRODUCTION

One generic type of question a scientist has to face is to understand and explain the behavior of a
given system found in nature. This type of problems occur in different fields of physics, chemistry,
biology, ecology but also in economics, and sociology. Often the problem is of interdisciplinary
nature and has a complex character.

A frequent approach to study such a situation is to introduce a model describing the properties
of a system using a set of variables considered to be relevant. However, it is not always obvious to
decide what are the relevant variables, because there are several levels of description of reality.

As written by Einstein, “Everything should be made as simple as possible, but not simpler” [1].
Thus, one would like to be able to decide which is the simpler, yet acceptable, model before starting
a detailed investigation.

Let us consider, to illustrate this point, the case of a simple fluid. We would like to propose a
model explaining and making some predictions concerning the flow of such a liquid in a particular
situation (boundary conditions, external forces. . . ). How to model such a fluid? At a macroscopic
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level, the relevant observables are the so-called hydrodynamic
variables, namely the local density, the velocity field, and the
pressure [2]. A simple approach is to write hydrodynamic
equations based on the laws of classical mechanics and the
conservation laws in the problem [3]. One ends up with partial
differential equations (continuity and Navier-Stokes equations)
which could be in some simple cases solved analytically or
generally integrated numerically. But at a different level, one
could argue that one knows that a fluid is nothing but a
family of interacting molecules and that one knows how these
molecules interact among each other. This may be a better
description of the reality than the previous one. It is a bottom-
up approach and the problem is then how to extract the
properties of the hydrodynamic variables from this microscopic
modeling. One way is to develop approximative analytical
methods, like the Boltzmann formalism [2], another way is
to integrate numerically the microscopic equations of motion
for the interacting molecules and average out to obtain the
hydrodynamic fields. However, this could be a tremendous task
in view of the complex form of the inter-molecular interactions.
This lead us to ask the following question: how important are the
details of the molecular interactions in the determination of the
generic form of the equations of motion for the hydrodynamic
variables? Or formulated in a different way, is it possible to
define a simpler model in which the molecules are replaced
by fictitious agents interacting in a simple way, but not too
simple, which respect the basic conservations laws of the system?
This is indeed possible and realized by the cellular automata
or lattice gas approaches which is now widely used in fluid
mechanics [4]. The generic form of the equations of motion for
the hydrodynamic variables is not affected by this simplification,
however the values of the transport coefficients, like the viscosity,
depend on the particular approximation used. It turns out that
the three different approaches sketched above lead fortunately to
the same conclusions for the dynamics of our fluid. However,
depending on the particular problem one has to solve, the
macroscopic approach and the lattice-gas one could have a
drastically different cost.

Sometimes however predictions provided by different levels
of description could be totally different. Let us consider two
limiting cases: the so-called mean-field approximation where the
dynamics is described in terms of spatially averaged quantities
and the microscopic approach in which the local properties of
the system are taken into account. These two cases differ by the
absence or presence of local fluctuations of the relevant variables.
The properties predicted by these two different approaches may
be drastically different.

It is true that mean-field like approximations are often
easy to perform while microscopic calculations can be very
complicated due to different reasons, one being the large number
of control parameters entering into the model. Thus, the cost of
a microscopic approach may be tremendously higher than the
cost of a mean-field like approach and it is tempting to restrict
oneself to such a simple approach. However, in some cases the
fluctuations play a crucial role. We realized that a large body
of research papers, mainly in biological or ecological fields, are
based on simple mean-field like approximation and that, when

discussing with the authors, they often do not understand why
fluctuations should enter into their model. Thus, the goal of
this paper is twofold, first to illustrate the importance of the
fluctuations in a self-contained and pedagogical way, by revisiting
two different classes of problems where thorough investigations
have been conducted on the role played by the fluctuations.

The first one is equilibrium statistical physics (Section 2). To
be explicit we shall discuss the so-called Ising model, describing
the equilibrium phase transition between the paramagnetic and
ferromagnetic phases of a spin system [5]. This model is a
paradigm for equilibrium statistical mechanics and more than 40
thousand research papers have been devoted to this model. This
will illustrate, in a pedagogical way what effects fluctuations can
possibly have and the possibility to establish a criterion to decide
on the relevance of the fluctuations.

The second domain we consider is non-equilibrium statistical
physics (Section 3) and we shall concentrate on a class of
problems having numerous application in physical-chemistry [6],
biology [7], and sociology [8], namely reaction-diffusion systems.
New difficulties related to fluctuations in the initial conditions
will be discussed and new methodological tools introduced
to understand the role played by fluctuations. No criterion
concerning the validity of mean-field like approximation can be
established.

In Section 4, as a new example of the role of approximation
adopted, we present our original research on the dynamics
of population of annual plants which are competing among
themselves for just one resource (water) through a stochastic
dynamics [9]. During each year, they are surviving or dying
according to the availability of the resource and their tolerance
to lack or surplus of water. At the end of the year, the alive plants
produce seeds which are dispersed in their neighborhood and all
plants die. At the beginning of a next year, seeds germinate and
the yearly cycle starts again. At the crudest level, one considers
the average plant density with no spatial dependence, this is the
mean-field level. At the opposite end, the dynamics is described
by an Individually Based Model (IBM) [10, 11], in which the
dynamics of each single plant is followed separately. Which is
the best description? Depending on the observable considered,
sometimes the two different approaches agree, sometimes they
totally disagree. It is difficult in this case to formulate a first
principle criterion telling whether much simpler mean-field
approximation is good enough, or if we have to turn to the IBM.
To the best of our knowledge there is no such a criterion in
biological literature neither a detailed study of the problem.

Finally, some conclusions are drawn in Section 5.

2. EQUILIBRIUM STATISTICAL PHYSICS

Some materials when cooled down exhibit a phase transition
from a paramagnetic phase at high temperature to a
ferromagnetic phase at low temperature. This transition
takes place at a well defined temperature, the critical or
Curie temperature Tc which depends on the material. The
low temperature phase is characterized by the presence of a
spontaneous magnetization per particle m(T) which depends on
the temperature. At zero temperature T = 0, the magnetization
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is maximal and decreases with increasing T. If m(T) → 0
as T → Tc continuously, one speaks of a “continuous phase
transition” while if m(T) → m0 6= 0 as T → T−

c while
m(T) = 0 for T > Tc, one speaks of a “discontinuous
transition.” The continuous phase transition is then associated
with a spontaneous symmetry breaking and the spontaneous
magnetization is called the “order parameter” of the transition.
Beside the magnetization m(T) several other physical quantities,
like for example the magnetic susceptibility or the specific heat
exhibit, near Tc a power law behavior of the type:

X(t) ∼ | t |−x, (1)

where t = (T − Tc)/Tc is the so-called reduced temperature and
x is the critical exponent associated to the observable X.

Let us consider the simplest case in which the magnetization
can be aligned only along a particular direction that we may call
z. Thus, the magnetization is a scalar quantity.

How to model such a system? A simple way is to suppose
that at a mesoscopic level, the atoms constituting the material
are carrying a classical spin variable si = ±1, where i
denotes the position of the spin and corresponds to a site
on a d-dimensional hypercubic lattice for example. The spins
are interacting among themselves and with a heat bath at
temperature T. The equilibrium properties of the system can then
be described in the formalism of equilibrium statistical physics
and particularly by the canonical ensemble. The Hamiltonian,
describing the energy of the spins system is

H = −
∑

i,j

Ji,jsisj − h
∑

i

si, (2)

where the sums run over all the sites 1, . . . ,N of the lattice, and
h is an external magnetic field. This model is called the Ising
model [12]. In the simplest case when only the nearest neighbors
interact, Ji,j = J if i and j are nearest neighbor and zero otherwise.
Moreover, if J > 0 and when h = 0 and T = 0, all the spins
are aligned in the same direction. The ground states are then
ferromagnetic and one speaks of ferromagnetic like interactions.

The physical observables are directly related to the canonical
partition function

Z(T,N) = Tr[exp−(βH)], (3)

where Trmeans the sum over the 2N possible spin configurations
of the system and β = [kBT]

−1, where kB is the Boltzmann
constant. From Z, all thermodynamic quantities can be obtained.
The free energy is

F(T,N) = −kBT logZ(T,N), (4)

the total magnetization

M(T, h) = ∂

∂(βh)
logZ(T,N) (5)

and the magnetization per spin in the thermodynamic limit is
thus

m(T, h) = lim
N→∞

N−1M(T, h). (6)

Finally, the zero field specific heat is

C(T) = −T
∂2f (T)

∂T2
. (7)

where f (T) is the free energy per spin. The difficulty is to
obtain an analytic solution of the partition function in the
thermodynamic limit N → ∞. For a one dimensional system,
the transfer matrix method allows one to solve this problem
easily. As shown by Ising in 1925, in this case the critical
temperature is zero, i.e., there is no phase transition [12]. For
dimensions larger than 1, the computation of Z is a formidable
task [13]. In d = 2, h = 0, and nearest neighbors interactions,
Onsager in a seminal paper [14] showed that there is a transition
for Tc given by sinh(2J/(kBTc)) = 1. Moreover, this transition is
continuous and the spontaneous magnetization behaves, near the
critical point, as

m(T) =
{

[1− (2 sinh 2ν)−4]1/8 ∼ t1/8 if t < 0,

0 if t > 0,
(8)

where ν = J/(kBT). The specific heat C(T) has a symmetrical
logarithmic divergence at the critical point νc, i.e.,

C(T) ∼ log(|ν − νc|). (9)

The behavior of the physical quantities in the vicinity of the
critical point has the form of power laws and it is usual to write

m(T) ∼
{

|t|β if t < 0,

0 if t > 0,
(10)

and

C(T) ∼ |t|−α (11)

for t → 0. The exponents β and α are called the critical
exponents (Note that the symbol β has two different meanings,
the inverse temperature as in Equation(3) and the critical
exponent of the magnetization as in Equation (10). This is the
standard notation for both quantities and there should be no
ambiguities when reading the text). For d = 2, the exponents
have the values α = 0 and β = 1/8 which are in agreement with
experimental data. Moreover, the spatial decay of the two-spins
correlation function is exponential with a characteristic length
ξ (t) which diverges as a power law of the reduced temperature
as T → Tc.

There are still no analytical solutions for d > 2. However,
different numerical approaches, like the Monte-Carlo method
[15] show that there is a continuous transition for all dimensions
d ≥ 2 in zero external field.

The main reason for which it is so difficult to compute
the canonical partition function Z(T,N) is the presence of the
quadratic terms sisj. A simpler way to model the ferromagnetic
interactions among the spins consists in assuming that the spin si
feels the influence of the neighbor spins through an effective or
average field. This is the basic idea in the so called mean-field or
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Curie Weiss theory [16]. Technically it can be realized as follows.
Let us write each spin variable si as an ensemble average part 〈si〉
plus a fluctuating part δsi. Then the quadratic term can be written
as

sisj = 〈si〉〈sj〉 + 〈si〉δsj + 〈sj〉δsi + δsiδsj (12)

The mean-field approximation consist in neglecting the last term
quadratic in the fluctuations. Moreover, 〈si〉 = m by translational
invariance. Thus, the initial Ising Hamiltonian becomes very
simple, H → Hmf and

Hmf = 12NzJm2 − hmf

N
∑

i= 1

si, (13)

where z is the coordination number of the lattice (z = 2d for a
d-dimensional hypercubic lattice) and

hmf = Jzm+ h. (14)

One is left with a very simple problem as the mean-field
Hamiltonian is the sum of one spin Hamiltonians. The
magnetization per spin obeys the following relation

m(T) = tanh[(kBT)
−1(Jzm(T)+ h)]. (15)

In zero external field, the spontaneous magnetization is zero

above the critical temperature T
mf
c = Jz/kB and

m(T) ∼
{

|t|β if t < 0,

0 if t > 0,
(16)

where now t = (T − T
mf
c )/(T

mf
c ) and β = 1/2. The specific heat

(in zero external field) exhibits a discontinuity at T
mf
c

C(T) ∼
{

3/2kB if T = limǫ→0T
mf
c − ǫ,

0 if T > T
mf
c .

(17)

One notes that the predictions of the mean-field approach are
quite different from the ones obtained when the trace over all
fluctuations has been accounted for. For example, the mean-
field approach predicts a phase transition with a finite critical
temperature in all dimensions, while we know that in one
dimension Tc = 0. In two dimensions, the behavior of the
spontaneous magnetizations is quite different (different critical
exponents) and the specific heat has a logarithmic divergence at
Tc in one case and a discontinuity in the other case. Thus clearly,
the mean-field model which does not take the fluctuations into
account is too simple a model to describe correctly the reality.
However, in view of its great simplicity it would be useful to know
if its prediction are still valid under some conditions. We shall
address this problem later.

Before going to this point, we would like to review a different
approach which allows us to obtain themean-field results starting
from a microscopic model without neglecting the fluctuations in
a brute force manner. This is the Ising model with long range

interactions [17]. This approach is not well known outside the
community of statistical physicists and, as we shall see later, turns
out to be quite useful when applied to ecological or biological
problems for which the dynamics involve pair of sites separated
by arbitrarily large distances.

Let us return to the Ising Hamiltonian (see Equation 2) but
now, we suppose that Ji,j couple all the pairs of spins. The
interactions have to be properly normalized to guarantee that the
thermodynamic limit exists. Thus, the Hamiltonian reads:

H = − J0

2N

∑

1≤ i<j≤N

sisj − h
∑

1≤i≤N

si (18)

as si = ±1, the canonical partition function can be written as

Z(T,N) = exp(−ν/2)Tr exp
[ ν

2N

(

∑

1≤i<j≤N

si
)2 + b

∑

1≤i≤N

si

]

,

(19)
where ν = βJ0 and b = βh. This form still causes problems
because all the spins remain coupled by the term quadratic in
si. However, the spins can be decoupled by using the Hubbard-
Stratonovitch [18] transformation:

exp
(a

2

)

= (2π)−1/2

∫ ∞

∞
exp(−x2/2+√

ax)dx (20)

with

a1/2 = (ν/N)1/2
∑

1≤i≤N

si. (21)

Thus, the trace on the 2N spin configurations decouples and one
ends up with the partition function expressed in terms of a very
complicated integral, namely

Z(T,N) = (2π)−1/2 exp(−ν/2)

∫ ∞

−∞
dx exp(−x2/2)

[

2 cosh
(

x(ν/N)1/2 + b
)

]N
. (22)

The computation of this last integral seems to be hopeless.
However, in the thermodynamic limit N → ∞, this integral can
be computed using the saddle point method. From the value of
Z, the free energy density follows and thus the magnetization per
spin which obeys the relation

m(t, h) = tanh(νm+ b). (23)

The critical temperature in this case is given by νc = 1, thus
kBTc = J0. We thus recover the results of the mean-field or
Curie Weiss theory [16]. By forcing all the spins to interact,
one introduces some rigidity among them and it is not really
surprising that the fluctuations are suppressed.

We can now return to the generic question of when neglecting
the fluctuations is a reasonable approximation. This criterion is
known as the Ginzburg-Landau criterion [19]. The idea leading
to this criterion is quite simple. Let us consider a physical
quantity as for example the specific heat C(T). As we have seen
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Droz and Pȩkalski On the Role of Fluctuations in the Modeling of Complex Systems

above for the 2-d Ising model, near the critical temperature, the
mean-field approximation gives for the specific heat C(T) =
C1(T), while the exact theory leads to a logarithmic singularity.
Thus C(T) is composed of two parts C(T) = C1(T) + C2(T)
where C2(T) is the contribution coming from the fluctuations.
Let us call

RGL = C2(T)

C1(T)
(24)

the Ginzburg-Landau parameter. If RGL ≪ 1, the fluctuations
are negligible and the mean-field approximation is acceptable.
If RGL ≫ 1, the fluctuations play a very important role. How
to compute RGL? As we have seen above, in the vicinity of the
critical point of a continuous phase transition, the correlation
length diverges and cooperative phenomena are very strong.
This indicates that the properties of the system are insensitive
to the microscopic details. Moreover, the transition is associated
with a continuous symmetry breaking characterized by an order
parameter. These facts lead Ginzburg and Landau to formulate
a phenomenological model [19] capable of describing a wide
class of phase transitions. We shall not describe the Ginzburg-
Landau theory in great detail, but only recall the main ideas.
The key quantity is the order parameter. For simplicity, we
restrict ourselves to a scalar order parameter m(Er) which may
vary continuously in a d-dimensional space (note however
that the order parameter could be a vector or a tensor). The
Ginzburg-Landau Hamiltonian HGL is then the spatial integral
of a polynomial expression of m(Er) containing powers and
gradients. The polynomial should reflects the symmetries of
the problem. The Ginzburg-Landau partition function is given
by a functional integral over the possible realizations m(Er) of
the Boltzmann factor exp(−βHGL). The computation of this
functional integral is not possible without some approximations.
The crudest approximation consists in retaining m(Er) which
minimizes HGL. This is simply the solution obtained above in
the mean-field approximation, mmf . The next approximation
consists in keeping the fluctuations δm(Er) = m(Er) − mmf to the
lowest order. This defines the Gaussian model from which the
contribution to the specific heat related to the fluctuations C2(T)
can be computed. Thus, RGL can be written as

RGL ∼ |ζTt|(d − 4)/2, (25)

where ζT is the so-called Ginzburg parameter which value
depends on the system studied. First one notes that the dimension
d = dc = 4, called the upper critical dimension, plays a particular
role. For a system in dimension d > 4 the mean-field theory is
essentially correct. However, when d < 4 and t small enough, the
fluctuations play a very important role. This defines the critical
region of width given by |ζTt| = 1. Inside the critical region the
fluctuations are important, outside of it they can be neglected. As
t increases when d < 4 the role of the fluctuation decreases and a
mean-field approximation is again reasonable.

In summary, the fluctuations play a crucial role in many
respects. They are responsible for the fact that below d =
dl = 2 there is no ordered phase (dl is called the lower critical
dimension). For d > du = 4 the mean-field approximation is

essentially correct. For 4 > d > 2 a simple mean-field approach
is correct outside the critical region, but incorrect near the critical
temperature.

3. NON-EQUILIBRIUM STATISTICAL
PHYSICS

Reaction-diffusion problems are simple examples of non-
equilibrium systems. The understanding of the kinetics of
reaction-diffusion problems is an important issue because
potential applications of these ideas in different fields, as physics,
chemistry, biology or sociology are numerous. For the sake of
simplicity, we shall restrict ourselves in this discussion to some
simple cases. However, a large literature is devoted to more
complicated situations [20, 21].

3.1. Reaction among Two Species with
Homogeneous Initial Conditions
Let us consider a simple model in which two species A and B
are homogeneously distributed in a d-dimensional box. The two
species diffuse independently and react when they meet to form
an inert species: A + B → inert. Given some initial uniform
densities ρA(0) and ρB(0) such that ρA(0) = ρB(0), what are the
long term behaviors ρA(t) = ρB(t) = ρ(t)? This situation could
for example model the recombination of electrons and holes or
the annihilation of topological defects in solid-state physics. In
the simplest approximation, one could assume that the agents
are stirred rapidly and then the law of mass action [22] can be
applied. Thus

dρA(t)

dt
= dρB(t)

dt
= −kρA(t)ρB(t), (26)

where k is the reaction rate. In the long time limit, the solution is

ρ(t) ∼ 1

kt
. (27)

Thus, ρ(t) decreases with time as a power law and the dimension
does not enter explicitly in this equation. This derivation
corresponds to themean-field approximation and should be valid
only when the species are well stirred. If there is no stirring
the species have to find each other by diffusion and thus one
expects that the dynamics will be slower and depend on the
dimensionality d of the system. Indeed, taking the diffusion into
account, the dynamics for the local concentrations is given by the
equations

dρA(Er, t)
dt

= DA∇2ρA(Er, t)− kρA(Er, t)ρB(Er, t), (28)

and

dρB(Er, t)
dt

= DB∇2ρB(Er, t)− kρA(Er, t)ρB(Er, t), (29)

where DA and DB are respectively the diffusion coefficients of the
A and B agents. Then, if DA = DB = D, as noticed by Toussaint
and Wilczek [23] the local density differences ρA(Er, t)− ρB(Er, t)
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obeys a diffusion equation. As a consequence, central limit
arguments led Toussaint and Wilczek to conclude that number
of agents decays as ρA, ρB ∼ (Dt)−d/4.

This behavior can be explained by a simple and elegant
heuristic argument [24]. Let us consider a box of volume V = ℓd

inside the system. At time t = 0 the quantity of species A in this

volume fluctuates and isNA = ρA(0)ℓ
d±

√

ρA(0)ℓd. After a time
ℓ2/D, where D is the diffusion constant (we suppose that DA =
DB = D), the agents in V will have time to be mixed completely
and react, leaving only the residual fluctuations. Residual A in

this domain is
√

ρA(0)ℓd with density
√

ρA(0)ℓ−d. The system
is then formed by a collection of alternating A rich and B rich
domains of typical size ℓ ∼ (Dt)1/2 and the global density is
then ρ(t) ∼

√

ρ(0)(Dt)−d/4. This decay with the exponent d/4
(for d ≤ 4) is in agreement with the experimental data and
the predictions of theoretical models taking the fluctuations into
account.When d > 4 the slowest decay is given by themean-field
solution. Thus, in general ρ(t) ∼ t−z with z = min(d/4, 1). Here
again, an upper critical dimension du = 4 enters into the kinetics
of the problem. Neglecting the fluctuations when d < 4 leads to
completely wrong conclusions.

Thus, models which are able to describe the properties
correctly should take the fluctuations into account and it is not a
easy task to solve such a model. Two approaches, one numerical
and one analytic are possible. In the first the agents are put on a
regular lattice, and very effective algorithms have been developed
to describe the diffusion and the reactions of the agents [25].
In the second, we are interested in the universal properties as
the long-term behavior of reaction-diffusion models. A natural
starting point is to describe the stochastic dynamics of the
agents by a master equation governing the time evolution of the
probability P({n}, t) that the system is in a given microstate {n} at
time t [26]. Reaction-diffusion systems are characterized by the
fact that the quantity of the chemical species is not conserved
by the dynamics. The corresponding models can then be written
in terms of the ladder operators, as shown by Doi [27]. This
representation is familiar in quantummechanics under the name
of second quantization. A model allowing more than one agent
per site will be described by bosonic creation and annihilation
operators. As a result, the first-order temporal evolution of the
master equation can be cast into an imaginary-time Schrödinger
equation in which the non-hermitianHamiltonian is expressed in
terms of the creation and annihilation operators [28]. The main
reason to introduce this second quantized representation is to be
able to map the problem to a field theory [29]. Indeed, several
powerful tools have developed to extract universal properties of
a field theory, like the renormalization group method. Several
reviews [29–31] are devoted to these topics and we shall not
go into more details here. In summary, fluctuations play a very
important role in the dynamics of such homogeneous reaction-
diffusion systems.

3.2. Reaction among Two Species with
Inhomogeneous Initial Conditions
Another important class of problems in which two species A and
B diffuse and react is the case when initially, the two species

are separated in space. Let us suppose moreover that when the
two species meet, they produce a new species according to the
reaction A+ B → C. The species C agents is forming a reaction-
diffusion front. The understanding of the properties of this front
is important to explain the pattern formation which could occur
in the wake of this moving front [32]. It is for example part of
the mechanism involved in the formation of Liesegang patterns
and significant body of research has been recently devoted to this
question [6].

In the mean-field spirit, the equations of motion for the
local concentrations of the reactant are the ones introduced
above (Equations 28 and 29), the novelty being the boundary
conditions. Let us assume for simplicity that the different
concentrations are then only a function of x. Thus one has ρA =
a0, ρB = 0, for x < 0 and ρA = 0, ρB = b0, for x > 0. The
production rate of C is simply

R(x, t) = kρA(x, t)ρB(x, t), (30)

where k is the reaction rate. Assuming that DA = DB = D, the
density differences

u(x, t) = ρA(x, t)− ρB(x, t) (31)

obeys a diffusion equation the solution of which reads

u(x, t) = 1− q

2
− 1+ q

2
erf

[

x

2
√
t

]

, (32)

where erf (z) is the error function and q = b0/a0, with the
corresponding boundary conditions. One then notices that the
width of the depletion zone Wd defined as the region where ρA
and ρB are significantly smaller than their initial values scales
with time as

√
t. Moreover, the center of the reaction zone xf is

given by the condition ρA(xf , t) = ρB(xf , t), giving u(xf , t) = 0.

Thus, it follows that xf =
√

(2Df t) where the diffusion constant

of the front is determined from erf [
√

(Df /2)] = (1− q)/(1+ q).

By substitution, this leads to a non-linear partial differential
equation of the form

∂

∂t
ρA(x, t) =

∂2

∂x2
ρA(x, t)+ u(x, t)ρA(x, t). (33)

One cannot solve this equation in the general case. However,
making the assumption (which can be verified a posteriori) that,
in the long time limit, the width of the front w, defined as
the second moment of R(x, t) is negligible as compared to the
depletion zoneWd, one finds [33] that

w ∼ tα, with α = 1/6. (34)

Returning to Equation (33) one finds that ρA(x, t) can be written
as a scaling form

ρA(x, t) = tβ/2G
[x− xf

tα

]

, (35)
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Droz and Pȩkalski On the Role of Fluctuations in the Modeling of Complex Systems

where G is a scaling function fulfilling the appropriate boundary
conditions. Thus, the production rate can be written as

R(x, t) = tβF
[x− xf

tα

]

(36)

with the exponents satisfy the scaling relation

α + β

2
= 1/2. (37)

It should be stressed that the indices α and β appearing in
this paragraph have nothing to do with the critical exponents
introduced in the problem of phase transitions discussed above.
A natural question arises: how are these results affected by the
fluctuations of the two species? The first approach is numerical.
Extensive numerical simulations have been done using cellular
automata algorithms [25, 34]. The conclusions are that for
dimensions d ≥ 2 the scaling relations are verified and the
values of the exponents are the ones given by the mean-field
approximation. For d = 1, the situation is less clear and the width
exponent α turns out to be approximatively α(d = 1) ≈ 0.30 ±
0.01 [35] instead of the mean-field value αmf = 1/6. Clearly,
an analytical approach is desirable to answer the above question.
This was possible [36, 37] by realizing that the original time-
dependent problem can be replaced by studying the reaction
front formed quasi-statically by anti-parallel currents of A and
B agents. It turns out [37] that dimensional analysis coupled with
consistency arguments are enough to show that d = du = 2 is
the upper critical dimension at and above which the fluctuations
can be neglected. This fact is very important for the modeling of
the pattern formed in the wake in the front [32]. Moreover, for
d = 1 the width exponent is found to be α(d = 1) = 1/4.

In conclusion, we have seen that for this relatively simple
model of non-equilibrium statistical physics, the fluctuations can
play a drastic role depending on the initial condition. It is not
clear a priori, for a more complicated reaction-diffusion problem,
what the best way to model the system is, weather or not to take
the fluctuations into account.

4. PLANTS DYNAMICS AND BIODIVERSITY

We now turn to from reaction-diffusion system to consider a
biological model that describes the population of a system of
annual plants. We are considering a system of annual plants
characterized by their tolerance to a surplus of water, which is
the only resource for the plants. It is common in studies of plant
physiology to refer to the plants’ tolerance to a shortage or surplus
of water [38] rather than to their demand for it. The habitat on
which the plants live is a square lattice of dimensions L × L with
L = 200. Each cell could be either empty or contain one plant.
In the simplest version of the model each cell receives the same
amount of water (rainfall) γ , which is normalized by the plants
demand for it, hence γ is a dimensionless quantity. We assume
that there is an optimal amount of water for plants (relative to
their demand for it) and a shortage or surplus of water has a
negative effect on the plants’ survival. In order to avoid having

a system of clones, we allow for small fluctuations among the
plants’ tolerances. Therefore, the tolerance of a plant i is

tli = tl(1± 0.1 · ri), (38)

where ri ∈ (0, 1) is a random number taken from a uniform
distribution and tl is the average tolerance of the plants.

The algorithm defining the dynamics of plants’ evolution is
based on our previous work [39, 40] and it goes as follows.
Initially a certain number of plants (2000) is put in random
positions on the lattice. In a given year, which is our time unit, all
plants are randomly selected one by one. Fitness fi of the chosen
plant i at the time t is calculated from the formula

fi(t) =
γ

tli
(1− 0.1 · nni(t)), (39)

where nni is the number of plants in the nearest (von Neumann)
neighborhood of the plant i. The factor in the parentheses
describes interactions among plants. Namely, a part of the
resource nominally available to the plant i is blocked by the
roots of neighboring plants [41]. The factor 0.1 ensures that
the blockage is only a small part of that water. The form of
the survival probability is not known in biology, hence we
took the simplest one, responding to general, common sense,
requirements, like vanishing when there is no water or peaking
at the value corresponding to the plants’ demand for it.

pi(t) =
{

fi(t) if fi(t) ≤ 1,

(fi(t))
−2 if fi(t) > 1.

(40)

Such a form puts similar restrictions on lack and surplus of water.
A new random number ri ∈ (0, 1) is generated and if ri > pi the
plant is eliminated. Otherwise it could produce seeds, in number
given by

nsi(t) = 6 · fi(t), (41)

where 6 is the maximum number of seeds a plant could produce
when its needs are completely fulfilled i.e., its demand is equal to
the supply of water. A larger maximum number of seeds has no
effect on the results since from a cell only one seed is chosen for
germination. Taking the maximum number of seeds equal 3 or
less, leads to stochastic extinctions. The seeds are dispersed over
12 nearest cells and the cell on which the plant grows. Reducing
this area to, say, von Neumann neighborhood does not cause any
major changes. Increase to the whole lattice is discussed below.
Then the plant dies and is removed from the system.

Next comes the germination phase. All cells containing at
least one seed are visited in a random order. A seed is chosen
and put to the germination test, which has the form analogous
to Equation (40), except that there is no blockage of water by
neighboring seedlings, which have too short roots for that. Hence
the seedlings do not interact among themselves. When all cells
containing seeds have been checked, the seedlings become adult
plants, the remaining seeds are removed (no seed bank) and a
new year starts.
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The presented above description corresponds to the
Individual Based Model (IBM), where plants differ in their
tolerances, their survival depends on local conditions, and
the seeds are spread over a restricted area. In a much simpler
Individual Mean Field (IMF), we still deal with individual plants,
but all of them have the same tolerance, and instead of Equation
(39) we have

f IMF(t) = γ

tl
(1− 0.1 · 4 · ̺(t)), (42)

where 4 is the number of nearest neighbors on the square lattice
and ̺(t) is the actual density of plants. The next simplification
brought by IMF is spreading the seeds over the whole lattice.
Since all plants now have the same tolerance and the fitness in
Equation (42) does not depend on the local environment, all
plants have the same fitness f and the index i is omitted. Next we
pick each plant andwe determine, as before, its survival chance by
comparing its survival probability p from an analog of Equation
(41) with a randomnumber ri. Here comes the difference with the
true MFA (see below), since despite the fact that all plants have
the same value of p, for each of them a different random number
is chosen. Hence, with the same probability, some plants survive,
some not. The choice of the form of the survival probability used
in Equation (40) is not crucial, it is probably the simplest. As
we have shown in Droz and Pȩkalski [42], quite similar results
are obtained when the survival probability has the form of a
Gaussian.

We may also consider a true Mean Field Approach (MFA),
where we operate on the total number of plants and all their
individual character is completely lost. The fitness of all plants
is the same and equal to that in Equation (42). The following
steps in the algorithm are however different. The number of seeds
produced by all plants, ns, is equal

ns(t) = |n(t) · f · 6| (43)

where |x| means the integer part of x, n(t) is the number of
plants at time t and 6 is the maximum number of seeds. The
seeds are dispersed over the whole lattice and the number of cells
containing at least one seed is equal to

ce(t) = min(K, ns(t)), (44)

where K is the carrying capacity (number of cells) of the habitat.
As in the IBM, seedlings do not compete, hence the number of
seedlings which could germinate from ce(t) cells is

n(t + 1) = |ce(t) · γ /tl|. (45)

We may regard this situation with all local conditions neglected,
as an analog of the Ising model with long range interactions
described in the Equilibrium Physics paragraph.

In Figure 1 we present the number of plants which survived
till the end of simulations, as a function of the rainfall γ . We
limited simulations to 150 years when the plant abundance
reached a stationary state,. Shown are the results of three
approaches—IBM, IMF, and MFA. We took the tolerance of the
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FIGURE 1 | Number of plants as a function of water supply γ . One

species. Homogeneous habitat. IBM, IMF, and MFA cases.

plants equal to 0.8, although for other values the results are
quite similar. Apart from some small range of γ , the results
from the IBM and IMF methods are quite similar, and it would
be impractical to use more complex IBM approach. The moral
of this part of our research is that the dynamics of one type
of plants in a homogeneous habitat could be roughly described
by a MFA method. If more accurate results are needed, taking
into account individual plants, IMF or IBM approaches are
needed.

ClearlyMFA givesmuch different results. It is possible, but at a
quite large cost, to construct the MFA algorithm also for systems
of many plants. Therefore, in the following we shall restrict the
investigations to the IBM and IMF cases.

Let us now complicate the situation by considering a system
of several, say 20, species, which differ only by their tolerances.
We assume that the tolerances increase by 0.1 from the lowest
value tl(1) equal 0.4. Introducing different types of plants means
that there are cells containing seeds of different plants and we
have to define the way one seed is chosen for germination.
We follow here the lottery model of Chesson and Warner [43].
The probability of choosing a seed of a given species is equal
to the fraction of such seeds in the cell. All other features of
the model remain the same also for a system of many types
of plants. We introduce at the beginning 500 plants of each
species, located at random positions. In the neighborhood we do
not distinguish types of plants, hence the factor nni means the
number of nearest neighbors, irrespective of their type. Similarly
in the IMF the density ̺ means the total density of all types of
plants. Now the central question is not howmany plants survived,
but how many species are alive at the end of simulations when
the rainfall γ is changing. The results are shown in Figure 2,
for the two approaches—IBM and IMF. Averaging is over 500
independent runs, meaning that we start the simulations with the
same number of plants, but placed in different positions, As we
see, now the difference between the two approaches is quite large
and simplifying the algorithm leads to reduction of the number of
species alive. There is practically no difference between averaging
over 100 and 500 runs.
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Let us add another feature—the habitat will now be
heterogeneous. We assume that the rainfall decreases in a given
direction, say, along the X-axis, forming a gradient of steepness
g. Such a situation is quite often encountered in nature where
the plants are living on the slopes of a hill [44]. Heterogeneous
environment is often regarded as one of the possible sources of
maintaining biodiversity [45, 46]. When g = 0 we come back to
the homogeneous habitat considered previously. Otherwise the
amount of water for all cells having the coordinate x is equal

γ (x) = γ
(

1− g
x

L

)

, (46)

hence the rainfall decreases with x from its maximum value
at x = 1 to its lowest at x = L. How the type of approach
used influences the average number of species alive at the end
of simulations, is shown in Figure 3 for the case of 20 species
and medium value of the gradient (g = 0.5). The difference
between the IBM and IMF methods is quite large and certainly
now choosing IMF as a tool for studying systems of several plants,
cannot be recommended. It should be also noted that while
introduction of heterogeneous habitat leads to a large increase of
the number of surviving species when the IBMmethod is used, it
has rather weak effect for the IFM data.

The differences are better seen in a more detailed study of a
system of just five species with tolerances 0.6, 0.8, 1.0, 1.2, and
1.4. In Figure 4 we show the time dependence of the abundances
of the five types of plants obtained from the IBM method and
in the Figure 5 shown are the results from the IMF method.
Habitat is heterogeneous with g = 0.5 and the rainfall is equal γ
= 1.0 and 1.5. While coexistence of species is possible, also for
extended time, within the IBM approach, simple IMF predicts
that one species will soon dominate and eliminate all other,
hence coexistence is impossible. How comes that in a more
sophisticated method plants with different tolerances can exist in
a heterogeneous habitat, is shown in Figures 6, 7. We see that
different types of plants are able to colonize regions where the
living conditions match their tolerance best. In these regions they
can eliminate seeds of other types of plants, since they have the
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largest chance to germinate, then grow up and produce seeds,
which, in the case of IBM, will be dispersed in the neighborhood.
This means that in a given cell there will be more seeds of plants
better fit to local conditions and therefore such seeds will be
privileged by the lottery mechanism, forming a positive feedback.
When the seeds are dispersed over the whole lattice some of them
fall into rather hostile environment and even if one of them is
chosen for germination it may not succeed in it. As the results
many seeds are lost and eventually seeds from plants which have
tolerances close to, but a bit lower than the actual value of the
rainfall γ will be best off, as seen in Figure 7, since in many parts
of the system they could find, if not ideal, at least satisfactory
conditions for germination. Due to dispersal of seeds over the
whole lattice, formation of local clusters of plants of the same type
is impossible.

We have shown that in a very simple case of just one plant
living in a homogeneous habitat using IMF or IBM does nor
really matter. However, in more complex situations, like many
species and/or heterogeneous environment, results coming from
those two approaches could be vastly different. In particular,
observed in nature long term coexistence of species cannot
be obtained from the more simple IMF approach. The very
crude MFA method always gives results differing from both IMF
and IBM and therefore is not recommended in more detailed
studies.

5. CONCLUSIONS

The problem of modeling complex systems is a difficult one
and different levels of modeling are proposed in the literature.
The simplest one uses mean-field like approximation while more
sophisticated one are spatially extended models which are taking
into account the local fluctuations of the relevant variables.
The resolution of these more sophisticated models can be very
complicated for several reasons among which the proliferation
of the number of control parameters is an non-trivial one. An
important point is that the predictions of the mean-field models
may strongly differ from the ones given by more microscopic
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models. It would be important to have a criterion allowing us to
decide if a simple mean-field like model is enough to describe the
properties of a given system or not. As we have shown, except
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in some particular situations, there no such general criterion. In
a large body of research papers this issue is simply ignored and
conclusions are based on simple mean-field like models. This is
why in this paper we wanted first to illustrate the importance

Frontiers in Physics | www.frontiersin.org 10 September 2016 | Volume 4 | Article 38

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive
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of the fluctuations in a self-contained and pedagogical way, by
revisiting two different classes of problems (equilibrium and non-
equilibrium statistical mechanics) for which thorough studies on
the role played by the fluctuations have been achieved. Second
to apply these ideas to the study on an important question of
biodiversity in which mean-field and more microscopic models
lead to different predictions.
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