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Following a controversial suggestion by David Deutsch that decision theory can solve the

problem of probabilities in the Everett many-worlds we suggest that the probabilities are

induced by Shannon’s entropy that measures the uncertainty of events. We argue that a

relational person prefers certainty to uncertainty due to fundamental biological principle

of homeostasis.
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1. INTRODUCTION

The Everett many-worlds theory views reality as a many-branched tree in which every possible
quantum outcome is realized [1–8]. The modern version of the wave-function collapse is based on
decoherence and leads to the multiverse interpretation of quantum mechanics [9]. Every time a
quantum experiment with different possible outcomes is performed, all outcomes are obtained. If a
quantum experiment is preformed with two outcomes with quantummechanical probability 1/100
for outcome A and 99/100 for outcome B, then both the world with outcome A and the world with
outcome B will exist. A person should not expect any difference between the experience in a world
A and B. The open question is the following one: Due to deterministic nature of the branching, why
should a rational person care about the corresponding probabilities? Why not simply assume that
they are equally probable due to deterministic nature of the branching [10]. How can we solve this
problem without introducing additional structure into the many-worlds theory?

David Deutsch suggested that decision theory can solve this problem [11–13]. A person
identifies the consequences of decision theory with things that happen to its individual future copies
on particular branches. A person who does not care in receiving 1 on the first branch A and 99 on
the second branch B labels them with a probability 1/2. A rational person that cares assigns the
probability 1/100 for outcome A and 99/100 for outcome B. It should be noted that David Deutsch
introduced a rational person into the explanation of the corresponding problem. The probability
rule within unitary quantum mechanics is based on the rationality of the person. However since
the branching is deterministic and no uncertainty is present, how can this rational person justify
the application of decision-making?

In this work, we pretend to give an alternative and simpler explanation of Deutch’s decision
theoretic argument motivated by biological mechanisms and also based on Epstein’s ideas that
toward uncertainty, human beings tend to have aversion preferences. They prefer to choose an
action that brings them a certain but lower utility instead of an action that is uncertain but can
yield a higher utility [14]. We precede in two steps.

In the first step we propose to use Shannon’s entropy as the expected utility in Deutsch’s
approach. Probabilities in Shannon’s entropy function can be seen as frequencies; they can be
measured only by performing an experiment many times and indicate us the past experience.
Surprise is inversely related to probability. The larger the probability that we receive a certain
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message, the less surprised we are. For example the message “Dog
bites man” is quite common, has a high probability and usually
we are not surprised. However, the message “Man bites dog” is
unusual and has a low probability. The more we are surprised
about the occurrence of an event themore difficult an explanation
of such an event is. The surprise is defined in relation to previous
events, in our example men and dogs.

In the second step we introduce the experience of identity
derived from homeostasis as a fundamental biological principle.
It is preformed subconsciously by our brain as a coherent
explanation of events in a temporal window [15]. Events with
higher surprise are more difficult to explain and require more
energy. Before an event happens an explanation has to be be
initiated, so after the event happened it can be integrated in the
present explanation in the temporal window. A rational person
may not care about the attached weights during deterministic
branching, but our brain machinery cares. This information is
essential for the ability to give a continuous explanation of our
“self ” identity.

The paper is organized as follows:

• We review Deutsch’s decision-theoretic argument.
• We propose Shannon’s entropy as the expected utility function

and surprisal as the utility function.
• We argue that probabilities that are the basis of surprise are

essential for the ability to give a continuous explanation.

2. REVIEW OF DEUTSCH’S

DECISION-THEORETIC ARGUMENT

Decision theory according to Savage is a theory designed for
the analysis of rational decision-making under conditions of
uncertainty [11]. A rational person faces a choice of acts as a
function from the set of possible states to the set of consequences.
There are some constraints on the acts of the rational person, as
for example the preferences must be transitive. It can be then
shown that there exists a probability measure p on states s and
a utility function U on the set of consequences of an act A so that
the expected utility is defined as

EU(A) :=
∑

s

p(s) · U(A(s)). (1)

It follows that a rational person prefers act A to act B if the
expected utility of A is greater than that of B. The behavior
corresponds to the maximization of the expected utility with
respect to some probability measure [16].

2.1. Decision-Theoretic Argument
In the context of the many-worlds the rational person is able
to describe each of its acts as a function from the set of
possible future branches that will result from a given quantum
measurement to the set of consequences [11]. Consequences
are the things that happen to individual future copies of the
person on particular branch. Act is a function from states to
consequences, the preferences must be transitive. If a rational
person prefers act A to act B, and prefers act B to act C, then the

same person must prefer act A to act C. This can be summarized
by assigning a real number to each possible outcome in such
a way that the preferences are transitive. The corresponding
number is called the utility or value. The deterministic process
of branching is identified as a chance setup for the rational
person by a quantum game with a payoff function P associating
a consequence with each eigenvalue of the observable X̂. When
the measurement is performed the state vector collapses into
one or the other eigenstate of the observable being measured, a
projection into a eigenstate is preformed. For observable X̂ and
the state |y〉 in which the expression for the probability reduces
to |〈x|y〉|2 in which x is an eigenvector of X̂. A quantum game is
specified by the triple

(|y〉, X̂, P).

It is assumed that the utilities of the possible payoffs have
an additivity property [11]. The approach is based on two
non-probabilistic axioms of decision theory. The principle of
substitutability, constrains the values of sub-games. If any of the
sub-games is replaced by a game of equal value then the value
of the composite game is unchanged. The other axiom concerns
two-player zero sum games. If there are two possible acts A and
B with payoff c for A and−c for B then playing A and B results in
zero. The expected utility or value for playing A and B is

EU(A)+ EU(B) = c− c = 0.

For any two acts A, B, the rational person prefers A to B if

EU(A) > EU(B).

The person acts if she regarded her multiple future branches as
multiple possible futures. In classical decision theory two rational
persons may be represented by different probability measures on
the set of states. Not so in David Deutsch suggested approach
that deals with many-worlds theory [10]. Expected value with an
observable X̂ is

EU(|y〉) = 〈y|X̂|y〉 (2)

and since

〈y|X̂|y〉 =
∑

i

〈xi|y〉|2 · xi =
∑

i

pi · xi (3)

representing the weighted mean over the eigenvalues of X̂. In
quantum physics 〈y〉 is called the expected value. A rational
person that makes decision about outcomes of measurement
believes that each possible eigenvalue xi had the probability
〈xi|y〉|2 = pi due to the process of maximizing the probabilistic
expectation value of the payoff [11].

2.1.1. The Derivation of Probabilities for Real

Amplitudes

We sketch the proof by David Elieser Deutsch, see Deutsch [11].
If |y〉 is an eigenstate |x〉 of X̂ it follows that

EU(|y〉) = x
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is equal to the eigenvalue x. By appealing twice to the additivity
of utilities for eigenvectors |xi〉 and adding a constant k we arrive
at

EU

(

∑

i

ωi · |xi + k〉
)

= EU

(

∑

i

ωi · |xi〉
)

+ k. (4)

The rational person is indifferent in receiving the separate payoffs
with utilities x1 and x2 or receiving a single payoff with utility
x1 + x2. The expected utility of |xi + k〉 has by additivity the
same value as the expected utility of |xi〉 followed by k. This is the
central equation on which the proof of David Deutsch is based.
The constant k on the left side corresponds to a combination of
eigenstates. This is because it is required that for each branch the
payoffs are present. The constant k on the right side corresponds
to a combination of the corresponding eigenvalues.

According to additivity the left side of equation has the
same expected utility as the superposition of possible branches
and the payoffs represented by a corresponding combination of
eigenvalues is on the right side. The other equation follows from
the axiom concerns two-player zero- sum games

EU

(

∑

i

ωi · |xi〉
)

+ EU

(

∑

i

ωi · | − xi〉
)

= 0. (5)

If |y〉 is in a superposition

|y〉 = 1√
2
· |x1〉 +

1√
2
· |x2〉. (6)

and with

k = −x1 − x2 (7)

it follows

EU

(

1√
2

(|x1 − x1 − x2〉 + |x2 − x1 − x2〉)
)

= EU

(

1√
2

(|− x2〉 − |x1〉)
)

= −EU

(

1√
2

(|x1〉 + |x2〉)
)

= EU

(

1√
2

(|x1〉 + |x2〉)
)

− x1 − x2 (8)

and by the Equation the value of the expected utility is derived as

1

2
(x1 + x2) = EU

(

1√
2

(|x1〉 + |x2〉)
)

. (9)

For a superposition of n eigenstates

1

n
(x1 + x2 +· · ·+ xn) = EU

(

1√
n

(|x1〉 + |x2〉 +· · ·+ |xn〉)
)

(10)

the proof is based on induction from the principle of
substitutability and additivity. For n = 2m the proof follows

from substitutability by inserting a two equal amplitude game
into remaining 2m−1 equal-amplitude outcomes. Otherwise the
proof follows inductive hypothesis and additivity by replacing
n− 1 by n, for details see Deutsch [11]. For unequal amplitudes

m

n
·x1+

n−m

n
·x2 = EU

(

√

m

n
· |x1〉 +

√

n−m

n
· |x2〉

)

. (11)

we introduce auxiliary system that can be in two states different
states, either

√

1

n
·

m
∑

a= 1

|za〉 (12)

or
√

1

n−m
·

n
∑

a=m+ 1

|za〉 (13)

with eigenstates |za〉 and eigenvalues za of the observable Ẑ that
are all distinct. Then the joint state is given by

√

1

n
·
(

m
∑

a= 1

|x1〉|za〉 +
n
∑

a=m+ 1

|x2〉|za〉
)

. (14)

When we measure the observable Ẑ depending on the index a
of the eigenvalues za we know that X̂ is x1 if a < m + 1 or x2
otherwise. With additional properties of the eigenvalues

m
∑

a= 1

za =
n
∑

a=m+ 1

za = 0 (15)

and all n values

x1 + za, 1 ≤ a ≤ m (16)

and

x2 + za, m+ 1 ≤ a ≤ n (17)

are all distinct, the composite measurement with observable X̂
and Ẑ has the same value as the one with observable X̂ alone.
Because of the additivity the state is equivalent to the amplitude
superposition

√

1

n
·
(

m
∑

a= 1

|x1〉|za〉 +
n
∑

a=m+ 1

|x2〉|za〉
)

(18)

and it follows

1

n
·
(

m
∑

a= 1

|x1〉|za〉 +
n
∑

a=m+ 1

|x2〉|za〉
)

= m

n
· x1 +

n−m

n
· x2.

(19)
A rational person would choose the expected value of |y〉 with an
observable X̂

EU(|y〉) = 〈y|X̂|y〉 (20)
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and since

〈y|X̂|y〉 =
∑

i

〈xi|y〉|2 · xi =
∑

i

pi · xi (21)

represents the weighted mean over the eigenvalues of X̂, the
rational person interprets pi as probabilities. For complex
amplitudes it is assumed that the unitary transformation

|xa〉 → ei·θa |xa〉 (22)

with a corresponding phase θa does not alter the payoff, the
player is indifferent as to whether it occurs or not. The proof
can be extended to irrational numbers, it is based on the idea
that the state undergoes some unitary evolution before the
measurement [11]. The unitary evolution leads to real amplitudes
with eigenvalues that exceeds the original state. Each game played
after the unitary transformation is as valuable as the original
game, and the values of such games have a lower bound of the
original game.

3. EXPECTED UTILITY AND ENTROPY

A fundamental property of rational persons is that they prefer
certainty to uncertainty. Humans prefer to choose an action that
brings them a certain, but lower utility instead of an action that is
uncertain, but can bring a higher utility [14].

Wemeasure the uncertainty by the entropy of the experiment.
The experiment starts at t0 and ends at t1. At t0, we have no
information about the results of the experiment, and at t1, we
have all of the information, so that the entropy of the experiment
is 0. We can describe an experiment by probabilities. For the
outcome of the flip of a fair coin, the probability for a head or
tail is 0.5, p = (0.5, 0.5). A person A knows the outcome, but
person B does not. Person B could ask A about the outcome of
the experiment. If the question is of the most basic nature, then
we could measure the minimal number of optimally required
questions B must pose to know the result of the experiment. A
most basic question corresponds to the smallest information unit
that could correspond to a yes or no answer. For a fair coin, we
pose just one question, for example, is it a tail? For a card game,
to determine if a card is either red, clubs or spades, we have a
different number of possible questions. If the card is red, then
we need only one question. However, in the case in which the
card is not red, we need another question to determine whether
it is a spade or a club. The probability of being red is 0.5, of
clubs 0.25 and spades 0.25, p = (0.5, 0.25, 0.25). For clubs and
spades, we need two questions. In the meantime, we must ask
1 · 0.5 + 2 · 0.25 + 2 · 0.25 questions, which would result in 1.5
questions. The entropy is represented by Shannon’s entropyH for
an experiment A

H(A) = −
∑

i

pi log2 pi. (23)

It indicates the minimal number of optimal binary yes/no
questions that a rational person must pose to know the result

of an experiment [17, 18] . We can describe the process of
measuring a state by an observable as measuring the entropy
of the experiment. Before the measurement of a state |x〉 by an
observable we are uncertain about the outcome. We measure
the uncertainty by Shannon’s entropy. After the measurement
the state is in eigenstate, the entropy is zero, Shannon’s entropy
is defined for any observable and any probability distribution,
according to Ballentin [19, p. 617] “It measures the maximum
amount of information that may be gained by measuring that
observable.”

Assuming that a Hilbert space Hn can be represented as a
collection of orthogonal subspaces

Hn = E1 ⊕ E2 ⊕ . . . ⊕ Ef (24)

with f ≤ n. A state |y〉 can be represented with |xi〉 ∈ Ei as

|y〉 = ω1 · |x1〉 + ω2 · |x2〉 + · · · + ωf · |xf 〉.

For one dimensional subspaces f = n and the value |xk〉 is
observed with a probability ‖ωk · |xk〉‖2 = |ωk|2. Shannon’s
entropy is defined as

E(|y〉) = −
n
∑

i= 1

(|ωi|2 · log2 |ωi|2) = −
∑

i

pi log2 pi. (25)

3.1. Weighted Sum of Surprisals
We say that events that seldom happen, for example, the letter
x in a message, have a higher surprise. Some letters are more
frequent than others; an e is more frequent than an x. The larger
the probability that we receive a character, the less surprised we
are. Surprise is inversely related to probability.

si =
1

pi

The logarithm of surprise

Ii = − log2
1

|ωi|2
= 2 · log2 |ωi| = − log√2 |ωi| = log2 si (26)

is the self-information or surprisal Ii. The Shannon’s entropy H
represents the weighted sum of surprisals.

H(A) =
∑

i

pi · log2 si =
n
∑

i

pi · Ii. (27)

It can be interpreted as an expected utility

EU(A) :=
∑

i

pi · U(A(i)) =
n
∑

i

pi · Ii. (28)

with the utility function U(A(i))

U(A(i)) = Ii. (29)

Frontiers in Physics | www.frontiersin.org 4 December 2016 | Volume 4 | Article 47

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Wichert and Moreira Probabilities and Many-Worlds Theory

For acts the expected utility is identified with the representation
of the entropy of an action, represented by H

H(A) := EU(A).

That the rewards are determined by the negative information
content is already known and is used for the utility representation
problems in economics [20–22]. If there are two possible acts A
and B with payoff c for A and −c for B then playing A and B
results in zero. The expected utility or value for playing A and B is

H(A)+H(B) = c− c = 0,

but for any two acts A, B, the rational person prefers A to B if

H(A) < H(B)

because the uncertainty is lower. The theoretic proof David
Deutsch can be applied, for example

|y〉 = 1√
2
· |x1〉 +

1√
2
· |x2〉. (30)

and with

k = −x1 − x2 (31)

the right side of the equation with eigenvalues x1 = 1 and x2 = 1

k = −x1 − x2 = −2 (32)

or U(A(i)) = Ii = log2 2 = 1. Therefore

1

2
(1+ 1) = 1

2
(x1 + x2) = EU

(

1√
2

(|x1〉 + |x2〉)
)

(33)

and

1 = 0.5 · 1+ 0.5 · 1. (34)

However we can as well recover the probabilities from the
definition of Shannon’s entropy. This strengthens idea evenmore.

3.2. Recovering Probabilities from Entropy
The entropy or the uncertainty is maximal in the case in which all
probabilities are equal, which means that p = (1/n, 1/n..., 1/n).
In this case

H(F) = −
∑

i

pi log2 pi = − log2 1/n = log2 n. (35)

the surprisal Ii is equal to the entropy

H(F) = log2 n = Ii. (36)

If |y〉 is in a superposition of n eigenstates

|y〉 = 1√
n

(|x1〉 + |x2〉 + · · · + |xn〉) (37)

it follows that a surprisal I∗i of each state represented by
amplitude ωi = 1√

n
is

I∗i = log2
√
n = 1

2
· log2 n. (38)

We know that in the case of equal amplitudes log n yes/no
questions have to be asked withH(F) = Ii so the function f (I∗) is
equal to multiply by two

H(|y〉) = Ii = f (I∗i ) = 2 · log2
√
n = log2 n = − log2

(

1√
n

)2

(39)
that is equivalent to

pi = 2Ii =
(

1√
n

)2

. (40)

In the case of complex amplitudes with phase θa

ωi = ei·θa
1√
n

(41)

I∗i = log2 e
i·θa√n = i · θa

log 2
+ 1

2
· log2 n, (42)

the operations described by f (I∗) would be, first get rid of the
complex number i ·θa/ log 2 by subtracting−i ·θa/ log 2 and then
multiply by 2. Or

pi = 2Ii =
(

1

e−i·θaei·θa · √n

)2

=
(

1√
n

)2

. (43)

For unequal amplitudes for each surprisal I∗i of each state we
multiply it by two and recover from Ii the value pi = 2Ii . This
operation leads to the minimal number of optimal binary yes/no
questions. For example for

|y〉 =
√

m

n
· |x1〉 +

√

n−m

n
· |x2〉 (44)

we get by operations described by f (I∗)

H(|y〉) = −m

n
· log2

m

m
−
(

n−m

n

)

· log2
(

n−m

n

)

, (45)

the correct value of Shannon’s entropy. We assume

pi =
(

1

|ωi|

)2

. (46)

3.3. Biological Principle of Energy

Minimization
Identity is a concept that defines the properties of a rational
person over time [23]. It is a unifying concept based on the
biological principles of homeostasis [24, 25]. Organisms have
to be kept stable to guarantee the maintenance of life, like for
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example the regulation of body temperature. This principle was
extended by Allostasis [26] for regulation of bodily functions
over time. To preform this task efficient mechanisms for the
prediction of future states are needed to anticipate future
environmental constellations [27, 28]. This is done, because the
homeostatic state may be violated by unexpected changes in the
future. It means as well that every organism implies a kind of self
identity over time [29]. This identity requires a time interval of
finite duration within which sensory information is integrated.
Different sensor information arrives at different time stamps.
The fusion process has to be done over some time window.
Similar problems are present during a sensor fusion task in a
mobile robot. For example in visual and auditory perception in
humans the transduction of the acoustic information is much
shorter then the visual [30]. In it is suggested that in humans a
temporal window with the duration of 3 s is created [15]. This
window represents the psychological concept of “now” [29]. The
consciousness concept of “now” represented by the temporal
window is shifted backward in time of the consciousness itself,
since a subconsciousness mechanism is required to preform the
integration task.

3.3.1. Prediction of Events

One of the brain functions is to provide a casual consistent
explanation of events to maintain self identity over time leading
to the psychological concept of “now.” Split brain research and
stimulation or brain regions during awake operation suggest
that the brain generates an explanation of effects that were not
initiated by consciousness [31, 32]. Before an event happens an
explanation has to be incited by the subconsciousness parts of the
brain so that it is possible to integrate it into the temporal window
of the self when the event happens. As well other organism
functions need be put in alert due to some predicted possible
events.

Events with higher surprise are more difficult to explain
than events with low surprise values. An explanation has to be
possible. When the surprise is too high, an explanation may be
impossible and the identity of self could break. The idea is related
to the general constructor theory of David Elieser Deutsch,
see Deutsch [33]. The metabolic cost of neural information
processing of explaining higher surprise events require higher
energy levels then lower surprise events. Fechner’s law states
that there is a logarithmic relation between the stimulus and
its intensity [34]. We assume as well that there is a logarithmic
relation between the cost of initiation an explanation of an event
and its surprise value si, that is log si. Neuronal computation is
energetically expensive [35]. Consequently, the brain’s limited
energy supply imposes constraints on its information processing
capability. The costs should be fair divided into the explanation

of all predicted possible branches since the organism will be
deterministic present in all of them. A possible solution is given
by the Shannon’s entropy. The corresponding value Ii is weighted
in relation

pi = 2Ii (47)

and the resulting costs are pi · Ii. The resulting costs of initiating
n explanations for action A of n predicted branches before a split
are

H(A) =
n
∑

i

pi · log2 si =
n
∑

i

pi · Ii (48)

For the human (subconsciousness) brain it makes sense to choose
A to B if

H(A) < H(B).

since it requires less energy.

4. CONCLUSION

Since the branching is deterministic and no uncertainty is
present, how can a rational person justify the application of
decision-making? Why not simply assume that they are equally
probable due to deterministic nature of the branching. David’s
Deutsch probability rule within unitary quantum mechanics is
based on rationality. Instead of rationality we introduced the
biological principle of homeostasis. Before an event happens
an explanation has to be be prepared. The costs of the
explanation should be fair divided into the explanation of
all predicted possible branches since the organism will be
deterministic present in all of them. The costs are described by
the negative expected utility represented by Shannon’s entropy.
The probabilities can be recovered from the Shannon’s entropy.
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