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Indirect dark matter (DM) searches rely on detection of stable by-products of DM

interactions to search for a signal of this elusive component of the Universe. Among

these final products, gamma rays have recently played a major role in understanding

the nature of the DM particle. We review the current status of indirect DM searches with

gamma-ray observations and prospects with future instruments.
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1. INTRODUCTION

High-energy phenomena in the cosmos, and in particular processes leading to the emission of
gamma- rays in the energy range 300 KeV–100 TeV, play a very special role in the understanding of
our Universe. This energy range is indeed associated with non-thermal phenomena and challenging
particle acceleration processes. The Universe can be thought as a context where fundamental
physics, relativistic processes, strong gravity regimes, and plasma instabilities can be explored
in a way that is not possible to reproduce in our laboratories. High-energy astrophysics and
atmospheric plasma physics are indeed not esoteric subjects, but are strongly linked with our
daily life. Understanding cosmic high-energy processes has a large impact on our theories and
laboratories applications. The technology involved in detecting gamma-rays is challenging and
drives our ability to develop improved instruments for a large variety of applications.

The energy range between 300 Kev and 100 MeV is an experimentally very difficult range and
remained uncovered since the time of COMPTEL. In this range a new instrument can address all
astrophysics issues left open by the current generation of instruments. In particular better angular
resolution in the energy range 10 MeV–1 GeV is crucial to resolve patchy and complex features
of diffuse sources in the Galaxy and in the Galactic Centre as well as increasing the point source
sensitivity. This instrument can address scientific topics of great interest to the community, with
particular emphasis on multifrequency correlation studies involving radio, optical, IR, X-ray, soft
gamma-ray and TeV emission.

Above 100 MeV, thanks to the launch of the Fermi-LAT satellite and to the advent of a new
generation of imaging air Cherenkov telescopes (H.E.S.S., MAGIC, VERITAS), several thousand
gamma-ray sources are known today revealing an unexpected ubiquity of particle acceleration
processes in the Universe.

Major scientific challenges are still ahead, such as the identification of the nature of dark matter,
the discovery and understanding of the sources of cosmic rays, or the comprehension of the particle
acceleration processes that are at work in the various objects.

The identification of the nature of dark matter can be done with the detection of gamma rays
and cosmic rays from the annihilation or decay of darkmatter particles. This is a promisingmethod
for identifying dark matter, understanding its intrinsic properties, and mapping its distribution in
the universe.
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1.1. Search for Dark Matter in the Galactic
Center and in the Dwarf Spheroidal Galaxy
Satellites
Astrophysical searches for dark matter are a fundamental part of
the experimental efforts to explore the dark sector. The strategy
is to search for DM annihilation products in preferred regions of
the sky, i.e., those with the highest expected DM concentrations
and still close enough to yield high DM-induced fluxes at the
Earth. For that reason, the Galactic Center (GC), nearby dwarf
spheroidal galaxy (dSphs) satellites of the Milky Way, as well as
local galaxy clusters are thought to be among the most promising
objects for DM searches. In particular, dSphs represent very
attractive targets because they are highly DM-dominated systems
and are expected to be free from any other astrophysical gamma-
ray emitters that might contaminate any potential DM signal.
Although the expected signal cannot be as large as that from
the GC, dSphs may produce a larger signal-to-noise (S/N) ratio.
This fact allows us to place very competitive upper limits on
the gamma-ray signal from DM annihilation [1–3], using data
collected by the Large Area Telescope (LAT) onboard the Fermi
gamma-ray observatory [4]. These are often referred to as the
most stringent limits on DM annihilation cross-section obtained
so far.

Despite these interesting limits derived from dSphs, the GC
is still expected to be the brightest source of DM annihilations
in the gamma-ray sky by several orders of magnitude. Although
several astrophysical processes at work in the crowded GC region
make it extremely difficult to disentangle the DM signal from
conventional emissions, the DM-induced gamma-ray emission is
expected to be so large there that the search is still worthwhile.
Furthermore, the DM density in the GC may be larger than
what is typically obtained in N-body cosmological simulations.
Ordinary matter (baryons) dominates the central region of
our Galaxy [5]. Thus, baryons may significantly affect the DM
distribution. As baryons collapse and move to the center they
increase the gravitational potential, which in turn forces the

FIGURE 1 | Comparison of constraints on the DM annihilation cross section for the bb (Left) and ττ (Right) channels [25] with previously published

constraints from LAT analysis of the Milky Way halo (3σ limit) [26], 112 h of observations of the Galactic Center with H.E.S.S. [27], and 157.9 h of observations of

Segue 1 with MAGIC [28]. These limits have been found to be fairly insensitive to the assumed DM density profile [25]. Closed contours and the marker with error bars

show the best-fit cross section and mass from several interpretations of the Galactic center excess [12].

DM to contract and increase its density. This is a known
and qualitatively well understood physical process [6] . It is
also observed in many cosmological simulations that include
hydrodynamics and star formation [7] . If this is the only effect of
baryons, then the expected annihilation signal will substantially
increase [5, 8] but another possible effect of baryonic matter
is that of blastwave supernova feedback, that has the opposite
impact on the DM density profile [9].

A preliminary analysis of Fermi LAT observations of the GC
region was presented in Vitale [10] Morselli et al. [11]. with an
observation of an excess of gamma rays in the 3–5 GeV energy
range from the GC region. These results produced a lot of activity
outside the Fermi collaboration with claims of evidence for dark
matter in the Galactic Center (i.e., [12], [13] and references
therein).

This possibility was already considered in the analysis of the
EGRET galactic center excess [14] but there are other possible
explanations, e.g., a population of millisecond pulsars around the
Galactic Center below the Fermi threshold [15, 16].

A third possibility is related to past activity of the Galactic
Center [17, 18]. In this case the excess can be connected to the
Fermi bubble and it will be very important to see how this bubble
is structured in the GC region.

Another possibility is related to extra injections of cosmic rays
(steady-state, not related to the past activity of the GC), which
produce radiation. See for example [19–21].

The analysis of the Fermi Collaboration [22] using 5 years of

data and the Pass 7 event selections [23] and the on-going analysis

with 6.5 year of data and the Pass 8 event selections [24] confirm

the excess but confirm also that when all the uncertainties on the

excess morphology and spectrum related to the modeling of the

various components of gamma-ray emission in that region, in
particular in the distribution of interstellar gas along the line of
sight, in the low latitude emission from the Fermi bubbles, and in
the abundance of cosmic ray sources in the innermost Galaxy are
considered the spectrum varies significantly and it is not possible
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FIGURE 2 | Comparison of Fermi-LAT constraints on the DM annihilation cross section for the ττ channel [25] with Antares [29], IceCube-DeepCore

[30] and MAGIC [28].

FIGURE 3 | Representative event topologies for Compton events without (Left) and with electron tracking (Center) and for a pair event (Right) inside the

e-ASTROGAM detector.

to discriminate between the different hypotesis. The new analysis
of the dSphs with the use of Pass 8 begin to constrain some of the
preferred parameter space for a DM interpretation of a gamma-
ray excess in the Galactic center region. As shown in Figure 1,

for interpretations assuming a bb final state, the best-fit models
lie in a region of parameter space slightly above the 95%CL upper
limit from this analysis, with an annihilation cross section in the
range of (1–3) ×10−26 cm3 s−1 and mDM between 25 and 50
GeV. However, uncertainties in the structure of the Galactic DM
distribution can significantly enlarge the best-fit regions of 〈σv〉
channel, andmDM .

Figure 2 shows a comparison of constraints on the DM
annihilation cross section for the ττ channel [25] with Antares
[29], IceCube-DeepCore [30] and MAGIC [28]. One can see that
the Fermi limits are the best limits below 2 TeV.

At lower energies a new instrument like Gamma-Light [31] ,
or ASTROGAM can really improve these results both in the
Galactic center and in the dSphs limits.

The project for an improved version of ASTROGAM, e-
ASTROGAM, is being prepared in reply of the fifth ESA call for
medium mission ( M5 ) that will be released in the fall of 2016.
[32, 33].
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Interactions of photons with matter in the e-ASTROGAM
energy range is dominated by Compton scattering from 0.1
MeV up to about 15 MeV in silicon, and by electron-positron
pair production in the field of a target nucleus at higher
energies. e-ASTROGAM maximizes its efficiency for imaging
and spectroscopy of energetic gamma rays by using both
processes. The e-ASTROGAM instrument is based on double-
sided Silicon detectors coupled to front-end-electronics capable
of acquiring analog information on energy deposition in the
range 20–1000 keV with high efficiency and high signal-
to-noise. Both Compton events induced by photons in the
range 0.3–30 MeV and pair production events in the 30MeV–
30GeV range can be detected by the e-ASTROGAM Tracker
equipped with a Calorimeter and an Anticoincidence system.

FIGURE 4 | Point Spread Function (PSF, 68% containment radius) of

the e-ASTROGAM gamma-ray detector. For comparison, we show the

Fermi-LAT Pass7 PSF and the COMPTEL instrument. In the Compton domain,

the performance of e-ASTROGAM and COMPTEL is the FWHM of the angular

resolution measure (ARM) .

Figure 3 shows representative topologies for Compton and
pair events.

For Compton events, point interactions of the gamma
ray in tracker and calorimeter produce spatially resolved
energy deposits, which have to be reconstructed in sequence
using the redundant kinematic information from multiple
interactions. Once the sequence is established, two sets of
information are used for imaging: the total energy and
the energy deposit in the first interaction measure the first
Compton scatter angle. The combination with the direction
of the scattered photon from the vertices of the first and
second interactions generates a ring on the sky containing
the source direction. Multiple photons from the same source
enable a full deconvolution of the image, using probabilistic
techniques. For energetic Compton scatters (above 1 MeV),
measurement of the track of the scattered electron becomes
possible, resulting in a reduction of the event ring to an
arc, hence further improving event reconstruction. Compton
scattering depends on polarization of the incoming photon,
hence careful statistical analysis of the photons for a strong
(e.g., transient) source yields a measurement of the degree of
polarization of its high-energy emission. Pair events produce
two main tracks from the electron and positron at small
opening angle. Tracking of the initial opening angle and
the plane spanned by electron and positron enables direct
back-projection of the source. Multiple scattering in the
tracker material (or any intervening passive materials) leads to
broadening of the tracks and limits the angular resolution at low
energies.

The nuclear recoil taking up an unmeasured momentum
results in a small uncertainty, usually negligible compared
to instrumental effects. The energy of the gamma ray is
measured using the calorimeter. Polarization information in
the pair domain is given by the azimuthal orientation of
the electron-positron plane. The Point Spread Function of

FIGURE 5 | Point source continuum sensitivity of different X and γ-ray instruments compared with e-ASTROGAM.
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FIGURE 6 | (Left) Differential energy spectra per annihilation for a few sample annihilation channels and a fixed WIMP mass (200 GeV) and differential γ -ray energy

spectra per annihilation for a fixed annihilation channel (bb) and for different values of WIMP masses [14]. For comparison we also show the emissivity, with an

arbitrarily rescaled normalization, from the interaction of primaries with the interstellar medium. (Right) The solid lines are the total yields for different annihilation

channels, while the dashed lines are components not due to π
0 decays.

FIGURE 7 | e-ASTROGAM simulated view of the Galactic Center Region in the 100–500 MeV energy region (Left) compared with the Fermi view (Right).

e-ASTROGAM is shown in Figure 4 , and the sensitivity
is shown in Figure 5 for an effective exposure of 1 year
of a high Galactic latitude source. Sensitivities above 30
MeV are given at the 5-sigma confidence level, whereas
those below 10 MeV (30 MeV for COMPTEL) are at 3-
sigma.

2. DARK MATTER STUDIES IN THE
MEV–GEV DOMAIN

One of the major scientific objectives of e-ASTROGAM is the
search for dark matter by means of the production of secondary
gamma-rays after the annihilation or decay of the DM particle
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candidates. The importance of e-ASTROGAM for DM searches
can be seen in Figure 6where the differential γ-ray energy spectra
per annihilation of WIMP are plotted [14]. As one can see the
bulk of the emission even for high WIMP masses is in the
energy range 5–100 MeV. Decaying DM can also produce a
detectable line in the e-ASTROGAM energy range that might be
detectable out of the continuum. Together with Fermi and CTA,
e-ASTROGAM will probe most of the space of WIMP models
with thermal relic annihilation cross section.

Resolving the inner region of our Galaxy at high-energies
remains one of the outstanding problems of modern
astrophysics. Despite several attempts, the origin of positrons
currently annihilating at the rate of 2 ·1043 s−1 from the
inner Galaxy is not accounted for by current models of star
formation and compact object activities in the region. Recent
data show that in addition to the central bulge also the inner
disk is producing 511 keV emission. Candidate positron sources
include: the central black hole activity, massive stars, Supernovae,
compact binaries, pulsars, and possibly DM annihilation/de-
excitation. The much improved e-ASTROGAM sensitivity at
the electron-positron annihilation energy will be used for a
high-resolution mapping of the mysterious 511 KeV radiation.
In the Fermi-LAT analysis of the Galactic Center the diffuse

gamma-ray backgrounds and discrete sources, as we model

them today, can account for the large majority of the detected
gamma-ray emission from the Galactic Center.

Nevertheless, a residual emission is left, not accounted for
by the above models of standard astrophysical phenomena. In
the crowded Galactic Center region the analysis to disentangle
a possible DM signal from conventional emissions has still large
uncertainties due to the extremely difficult subtraction of the
Galactic diffuse emission and the contribution of unresolved
sources. The very good angular resolution of e-ASTROGAM at
low energies will help to resolve sources in the galactic center
region and to disentangle the possible DM contribution, see
Figure 7.

e-ASTROGAM will also perform indirect DM detection
searches in dwarf spheroidal galaxies and put constraints on
DM contribution to the largely unknown diffuse extragalactic
gamma-ray background in the spectral range 0.3–100 MeV.
Models will be tested in a spectral range not yet currently studied.
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