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Moving Manifolds in Electromagnetic
Fields
David V. Svintradze*

Department of Physics, Tbilisi State University, Tbilisi, Georgia

We propose dynamic non-linear equations for moving surfaces in an electromagnetic
field. The field is induced by a material body with a boundary of the surface.
Correspondingly the potential energy, set by the field at the boundary can be written
as an addition of four-potential times four-current to a contraction of the electromagnetic
tensor. Proper application of the minimal action principle to the system Lagrangian yields
dynamic non-linear equations for moving three dimensional manifolds in electromagnetic
fields. The equations in different conditions simplify to Maxwell equations for massless
three surfaces, to Euler equations for a dynamic fluid, to magneto-hydrodynamic
equations and to the Poisson-Boltzmann equation.

Keywords: moving manifolds, electromagnetic field, hydrophobic and hydrophilic interactions, membrane

dynamics, macromolecular dynamics

1. INTRODUCTION

Fluid dynamics is one of the most well understood subjects in classical physics [1] and yet continues
to be an actively developing field of research even today. Fluid dynamics can be treated as a motion
of an inviscid fluid, as an indivisible medium of particles or as a collective motion of many body
system particles. In the first case, when the fluid is inviscid and indivisible, the two conditions
allow formulation of the Euler equation for dynamic fluid and the equation of continuity, where
the Euler equation is a direct consequence of Newton’s second law [1]. The second case is the most
complicated and is difficult to treat. There are two possibilities for dealing with the second case:
treat each separate particle as an individual one and propose that each particle satisfies Newton’s
laws of motion, or treat each particle as a vertex of a geometric figure and search for equations of
motion for such geometries. If smoothed, the geometries, for a sufficient number of particles, can
be modeled as continuously differentiable two manifolds embedded in Euclidean space (classical
limit), or continuously differentiable three manifolds embedded in Minkowskian space-time
(relativistic limit). Discussion of fluid dynamics in Minkowskian space-time corresponds to the
fully relativistic formulation of the problem, while fluid dynamics in Euclidean space corresponds
to the non-relativistic limit and is a specific case.

An example of fluid dynamics modeling as moving surfaces embedded in Euclidian space is
moving two dimensional surfaces of fluid films such as soap films. Another, biologically relevant
example is dynamic fluid membranes, vesicles, and micelles where a large body of notable
theoretical results has already been produced [2, 3].

Soap films can be formed by dipping a closed contour wire or by dipping two rings into the
soapy solution. Stationary fluid films or films in mechanical equilibrium with the environment

1If one proposes to treat particles as classical objects, then the framework fits in Newtonian mechanics. The application of
Newton laws and it’s stochastic generalizations in simulations is commonly known as molecular dynamics simulations.
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Svintradze Moving Manifolds

form a surface withminimal surface area. Usually surfaces such as
soap films are modeled as two dimensional manifolds. Fluid films
not in mechanical equilibriummay have large displacements and
can undergo big deformations [4–9]. The order of magnitude of
thickness variations may vary from the nanometer to millimeter
scale.

The equations of motion for free liquid films were initially
proposed in Grinfeld [10] based on the least action principle of
the Lagrangian:

L =
1

2

∫

S
ρ(C2 + V2)dS− σ

∫

S
dS (1)

where ρ is the two dimensional mass density of the fluid film, C is
interface velocity, V is tangential velocity, σ is surface tension, S
stands for the surface and free means that interactions with the
ambient environment are ignored. Numerical solutions of the
dynamic nonlinear equations for free thin fluid films display a
number of new features consistent with experiments [8].

As indicated above, fluid dynamics can be described by
motion of fluid surfaces, where the motion can happen in
Euclidean ambient space, corresponding to the non-relativistic
case or in Minkowski ambient space, corresponding to the fully
relativistic case. Minkowskian space-time is more general and
we will carry out derivations in Minkowski space that can be
trivially simplified for non-relativistic cases. Instead of motion
of free fluid films, we discuss motion of charged or partially
chargedmaterial bodies with the boundary of charged or partially
charged surfaces2 in aqueous solution making hydrophobic-
hydrophilic interactions. Hydrophobic-hydrophilic interactions
are represented as electromagnetic interactions for reasons
explained below. Representation of surfaces requires physical
modeling and is illustrated in the physical models subsection
for biomacromolecular surfaces. To be applicable to biological
problems, we take the environment to be aqueous solution,
though the medium does not directly enter into the general
equations for free moving surfaces, so the equations can be
applied to any moving surfaces in an electromagnetic field. We
propose in this paper the modeling of fluid dynamics as moving
surfaces in an electromagnetic field and consequently show that
this concept non-trivially generalizes classical fluid dynamics.
We pursue fully relativistic calculations because for biological
macromolecules, femtosecond observations revealed that surface
deformations, induced by dynamics of hydration at the surface
or by charge transfer for proteins or DNA, usually happens on
the angstrom to nanometer scale and may occur as fast as from
femtosecond to picosecond [11, 12]. This sets upper limit for the
interface velocity as high as C ∼ nm/fs = 106m/s and should be
incorporated in a fully relativistic framework3.

The theoretical concept of hydrophobicity is already
developed [13, 14] and is used to simulate shape dependence on
hydrophobic interactions [15–18]. Although, the basic principles

2e.g., bio-membranes, macromolecular surfaces, lipid bilayers, micelles, etc.
3The formalism should be relativistic not only because relativistic calculations
are more general than classical calculations, or because a proper electrodynamics
description requires a relativistic frame work, but also because molecular surface
dynamics can be very fast [11, 12].

of the hydrophobic effect are qualitatively well understood,
only recently have theoretical developments begun to explain
quantitatively many features of the phenomenon [19].

Hydrophobic and hydrophilic interactions can be described
as dispersive interactions between permanent or induced dipoles
and ionic interactions throughout the molecules [19, 20].
Unification of all these interactions in one is the electromagnetic
interaction’s dependence on the interacting body’s geometries
[21–24]. To lay a foundation for the description of such
geometric dependence, we give exact nonlinear equations
governing geometric motion of the surface in an electromagnetic
field set up by dipole moments of water molecules and partial
charges of various molecules.

In this paper we discuss motion of compact and closed
manifolds induced by electromagnetic field, where the field is
generated by a continuously distributed charge in the material
body. The boundary of the body is a semi-permeable surface
(manifold) with a charge (or partial charge) and the charge
can flow through the surface. Since, the charge in general is
heterogeneously distributed in the body, the charge flow induces
a time variable electromagnetic field on the surface of the
body, forcing the motion of the manifold. Consequently, the
problem is to find an equation of motion of moving manifolds
in the electromagnetic field. The problem may be connected
to many physics sub-fields, such as fluid dynamics, membrane
dynamics or molecular surface dynamics. For instance the
surface of macromolecules in aqueous solutions is permeable to
some ions and water molecules and the charge on the surface
is heterogeneously distributed. Flow of some ions and water
molecules through the surface and the uneven distribution of
charge in the macromolecules induce the surface dynamics. The
same processes occur in biological membranes, vesicles, micelles,
etc. Here we deduce general partial differential equations for
moving manifolds in an electromagnetic field and demonstrate
that the equations, in different conditions, simplify to the Euler
equation for fluid dynamics, the Poisson-Boltzmann equation for
describing the electric potential distribution on surface and the
Maxwell equations for electrodynamics.

The formalism presented in this paper can be easily extended
to hypersurfaces of any dimension. The limitation three
surfaces embedded in four space-time, which is necessary to
describe electromagnetism [25], is a consequence of specificity
of the processes that take place on macromolecular surfaces.
The time frame for dynamics of water molecules on the
surface can be femtosecond range. Therefore, the surface
can be charged with variable mass and charge densities
and is continuously deformable. Mathematically the problem
formulates as: find equations of motion in electromagnetic
field for a closed, continuously differentiated and smooth two
dimensional manifold in Euclidean space (non-relativistic case)
or three manifolds in Minkowski spacetime (relativistic case).
Dynamics of the surfaces under the influence of potential energy
arises from four-potential time four-current and contraction
of the electromagnetic tensor. Kinetic energy of the manifolds
is calculated according to the calculus of moving surfaces
[26]. Potential energy set by the object is modeled by the
electromagnetic tensor the same way as for Maxwells equations.
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Svintradze Moving Manifolds

Definition of the Lagrangian [22] by subtracting potential energy
from the kinetic energy and the minimum action principal yields
nonlinear equations for moving surfaces in electromagnetic field.

2. THEORETICAL PRELIMINARIES

2.1. Embedded Manifolds in Ambient
Minkowski Space
Since Minkowskian space-time does not follow Riemannian
geometry, we need a small adjustment of definitions. For
Minkowski space-time, which fits to pseudo-Riemannian
geometry, we need definitions of arbitrary base pairs of ambient
space, even though the definitions look exactly the same as for
Riemannian geometry embedded in Euclidean ambient space
[26–28]. The summarized relationships about Riemannian
geometry embedded in Euclidean space are given in tensor
calculus text books [26, 27].

Combination of three ordinary dimensions with the single
time dimension forms a four-dimensional manifold and
represents Minkowski space-time. In this framework Minkowski
four-dimensional space-time is the mathematical model of
physical space in which Einsteins general theory is formulated.
Minkowski space is independent of the inertial frame of reference
and is a consequence of the postulates of special relativity
[27, 29].

Euclidean space is the flat analog of Riemannian geometry
while Minkowski space is considered as the flat analog
of curved space-time, which is known in mathematics as
pseudo-Riemannian geometry. Considerations of four-
dimensional space-time make embedded moving manifolds
three dimensional, where parametric time t, describing the
motion of manifolds, may not have anything to do with proper
time τ used in general relativity.

To briefly describe Minkowskian space-time, let us refer to
arbitrary coordinatesXα , α = 0, ..., 3, where the position vector R
is expressed in coordinates asR = R(Xα). Bold letters throughout
the manuscript designate vectors. Latin letters in indexes indicate
surface related tensors. Greek letters in indexes show tensors
related to the ambient space. All equations are fully tensorial and
follow the Einstein summation convention.

Suppose that Si (i = 0, 1, 2) are the surface coordinates
of the moving manifold S (Figure 1). Coordinates Si, Xα are
arbitrarily chosen so that sufficient differentiation is achieved in
both space and parametric time. The surface equation in ambient
coordinates can be written as Xα = Xα(t, Si) and the position
vector can be expressed as

R = R(Xα) = R(t, Si) (2)

Covariant bases for the ambient space are introduced as
Xα = ∂αR, where ∂α = ∂/∂Xα . The covariant metric tensor is
the dot product of covariant bases

ηαβ = Xα · Xβ (3)

The contravariant metric tensor is defined as the matrix inverse
of the covariant metric tensor, so that ηανηνβ = δα

β , where δα
β is

FIGURE 1 | Two dimensional illustration of a curved three dimensional surface
embedded in Minkowski space-time. Xα represents the analog of Cartesian
coordinates of Minkowski space-time. Si are base vectors defined in tangent
space and Xα = Xα (t,Si ) is the general equation of the surface.

the Kronecker delta. From definition (3) it follows that η00 =
X0 · X0 and consequently if for Minkowskian space-time, the
space like signature is set (−1,+1,+1,+1), thenX0 = (i, 0, 0, 0)4.
Therefore, vector components are complex numbers in general.
As far as the ambient space is set to be Minkowskian, the
covariant bases are linearly independent, so that the square root
of the negative metric tensor determinant is unit

√
−|η..| = 1.

Furthermore, the Christoffel symbols given by

Ŵα
βγ = Xα · ∂βXγ

vanish and the equality between partial and curvilinear
derivatives follows ∂α = ∇α . In Minkowski space-time (later
space) the ∂α partial derivative and ∇α curvilinear derivative
are the same. Everywhere in calculations we use ∂ letter for the
ambient space derivative and keep in mind that when referring
to Minkowski space the derivative has index in Greek letters and,
in that case, it is the same as partial derivative. When indexes
are mixed Greek and Latin letters the last statement, as is shown
below, does not hold in general.

Now let’s discuss tensors on the embedded surface with
arbitrary coordinates Si, where i = 0, 1, 2. Latin indexes
throughout the text are used exclusively for curved surfaces and
curvilinear derivative ∇i is no longer the same as the partial
derivative ∂i = ∂/∂Si. Similar to the bases of ambient space,
covariant bases of an embedded manifold are defined as Si = ∂iR

4Here the speed of light is set to be unit c = 1 and i stands for imaginary number.
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and the covariant surface metric tensor is the dot product of the
covariant surface bases:

gij = Si · Sj (4)

The definition (4) dictates that the surface is three dimensional
pseudo Riemannian manifold, because ambient space is four
dimensionalMinkowskian space and the surface in fourmanifold
is three manifold.

Analogically to space metric tensor gij the contravariant
surface metric tensor is the matrix inverse of the covariant one
gij. The matrix inverse nature of covariant-contravariant metrics
gives possibility to raise and lower indexes of tensors defined on
the manifold. The surface Christoffel symbols are given by

Ŵi
jk = Si · ∂jSk

and along with Christoffel symbols of the ambient space provide
all the necessary tools for covariant derivatives to be defined as
tensors with mixed space/surface indexes:

∇iT
αj

βk
= ∂iT

αj

βk
+ η

γ
i Ŵα

γ νT
νj

βk
− η

γ
i Ŵ

µ
γβT

αj

µk

+ Ŵ
j
imT

αm
βk − Ŵm

ikT
αj
βm (5)

where η
γ
i is the shift tensor which reciprocally shifts space bases

to surface bases, as well as space metric to surface metric. For
instance, Si = ηα

i Xα and

gij = Si · Sj = ηα
i Xαη

β
j Xβ = ηα

i η
β
j ηαβ

The metrilinic property ∇igmn = 0 of the surface metric
tensor is a direct consequence of (4, 5) definitions, therefore
Sm · ∇iSn = 0. The Sm and ∇iSn vectors are orthogonal, so that
∇iSn must be parallel to the N surface normal

∇iSj = NBij (6)

where Bij is the tensorial coefficient of the (6) relationship and
is generally referred to as the symmetric curvature tensor. The
trace of the curvature tensor with upper and lower indexes is the
mean curvature and its determinant is the Gaussian curvature. It
is well-known that a surface with constant Gaussian curvature is
a sphere, consequently a sphere can be expressed as:

Bii = const (7)

When the constant becomes null the surface becomes either a
plane or a cylinder. Equation (7) is the expression of constant
mean curvature (CMC) surfaces in general. Finding the curvature
tensor defines the way of finding covariant derivatives of surface
base vectors and so (6, 7) provide the way of finding surface base
vectors which indirectly leads to the identification of the surface.

FIGURE 2 | 2D Graphical illustration of the arbitrary chosen three manifold
and it’s local tangent space. S0, S1, S2, and N are local tangent space base
vectors and the normal, respectively. V is arbitrary chosen surface velocity and
C, Vi , i = (0, 1, 2) display the projection of the velocity to the N, Si directions.

2.2. Differential Geometry for Embedded
Moving Manifolds
After defining the metric tensor for ambient space ηµν (3) and
the metric tensor for a moving surface gij (4), we now proceed
with a brief review of surface velocity, t explicit (parametric) time
derivative of surface tensors and time differentiation theorems
for the surface/space integrals. The original definitions of time
derivatives for moving surfaces were given in Hadamard [30] and
recently extended in Grinfeld [26].

For the definition of surface velocity we need to define
ambient coordinate velocity Vα first and to show that the
coordinate velocity is the α component of the surface velocity.
Indeed, by the velocity definition

Vα =
∂Xα

∂t
(8)

taking into account (2), R the position vector is tracking the
material point coordinate Si. Therefore, by the partial time
differentiation of (2) and definition of ambient base vectors, we
find that V the surface velocity is

V =
∂R(t, Si)

∂t
=

∂R

∂Xα

∂Xα(t, Si)

∂t
= VαXα (9)

Consequently Vα is the ambient component of the surface
velocity. According to (9), the normal component of the surface
velocity is the dot product with the surface normal

C = V · N = VαX
αNβXβ = VαN

βηα
β = VαN

α (10)

The normal component C of the surface velocity is generally
referred to as an interface velocity and is invariant in contrast
with the coordinate velocity Vα . Its sign depends on a choice of
the normal. The projection of the surface velocity on the tangent
space (Figure 2) [28] is tangential velocity and can be expressed
as

V i = Vαηiα (11)
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FIGURE 3 | Geometric interpretation of the invariant time derivative ∇̇ applied
to invariant tensor field T. A is an arbitrarily chosen point on the St surface so
that it lies on the T (St ) curve. B is the corresponding point on the St+1t

surface. P is the point where the St surface normal, applied on the point A,
intersects the surface St+1t. For infinitely small 1t AB ≈ V1t and
AP ≈ V · N1t. According to the geometric construction the tensor field T at
the point B can be estimated as T (B) ≈ T (A)+ 1t∂T/∂t, while T (B) can be
estimated by the covariant surface derivative T (B) ≈ T (P)+ 1tV i∇iT, where
∇iT shows rate of change in T along the directed distance BP ≈ 1tV i on the
surface St+1t.

Graphical illustrations of coordinate velocity Vα , interface
velocity C and tangential velocity V i are given in Figure 2. The
surface velocity V can be expressed as

V = CN + V iSi (12)

There is a clear geometric interpretation of the interface velocity
[26, 28]. Let the surface at two nearby moments of time t and
t + 1t be St , St+1t . Suppose that A is a point on the St surface
and the corresponding point B, belonging to St+1t , has the same
surface coordinate as A (Figure 3), then AB ≈ V1t. Let P be
the point where the unit normal N ∈ St intersects the surface
St+1t . Then for small enough 1t, the angle 6 APB ≈ π/2 and
AP ≈ V · N1t. Therefore, C can be defined as

C = lim
1t→0

AP

1t

and can be interpreted as the instantaneous velocity of the surface
in the normal direction. It is worth mentioning that the sign
of the interface velocity depends on the choice of the normal.
Although, C is a scalar, it is called interface velocity because the
normal direction is implied.

2.3. Time Derivative
In this section we briefly explain the concept behind the invariant
time derivative for scalar and tensor fields defined on moving
manifolds, even though these concepts are already given [26].
Suppose that invariant tensor field T is defined on themanifold at
all time. To define the time invariant derivative of the tensor field
it is necessary to capture the rate of change of T in the normal
direction. The physical explanation of why the deformations

along the normal direction are so important is given below when
discussing integrals. This is similar to how Cmeasures the rate of
deformation in the normal direction. For a given point A ∈ St ,
find the point B ∈ St+1t and P the intersection of St+1t and the
straight line orthogonal to St (Figure 3). Then the geometrically
intuitive definition dictates that

∇̇T = lim
1t→0

T(P)− T(A)

1t
(13)

Because (13) is entirely geometric, it must be free from choice of
a reference frame. Therefore, it is invariant. On the other hand,
from the geometric construction it follows that

T(B) ≈ T(A)+ 1t
∂T

∂t
(14)

T(B) is related to T(P) because B,P are nearby points and are
situated on the St+1t surface B, P ∈ St+1 t . Then

T(B) ≈ T(P)+ 1tV i∇iT (15)

since ∇iT shows rate of change in the tensor field along the
surface and 1tV i indicates the directed distance BP. After a few
lines of algebra, taking into account Equations (14, 15) in (13), we
find

∇̇T =
∂T

∂t
− V i∇iT (16)

Generalization of (16) to any arbitrary tensors with mixed space
and surface indexes is given by the formula

∇̇Tαi
βj =

∂Tαi
βj

∂t
− Vk∇kT

αi
βj + Vγ Ŵα

γµT
µi
βj − Vγ Ŵ

µ
γβT

αi
µj

+ Ŵ̇i
kT

αk
βj − Ŵ̇k

j T
αi
βk (17)

where Christoffel symbol Ŵ̇n
m for moving surfaces is

Ŵ̇n
m = ∇mV

n − CBnm. The derivative commutes with contraction,
satisfies sum, product and chain rules, is metrinilic with respect
to the ambient metrics and does not commute with the surface
derivative [26]. Also from (13) it is clear that the invariant time
derivative applied to the time independent scalar vanishes.

2.4. Time Derivatives of Space/Surface
Integrals
Time differentiation of surface and space integrals have a central
role in evaluation of the principle of least action. Dependence of
time variation of the potential energy on the geometry becomes
rigorously clarified from these theorems. For any scalar field
T = T(t, Si) defined on aMinkwoskian domain�with boundary
S manifold evolving with the interface velocity C, the evolution
of the space integral and surface integral for closed compact
manifolds are given by the formulas

d

dt

∫

�

Td� =
∫

�

∂T

∂t
d� +

∫

S
CTdS (18)

d

dt

∫

S
TdS =

∫

S
∇̇TdS−

∫

S
CTBiidS (19)
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The first term in the integral represents the rate of change of
the tensor field, while the second term shows changes in the
geometry. It therefore properly takes into account the convective
and advective terms due to volume motion. We are not going
to reproduce proof of these theorems here5, but instead we give
intuitive explanation of why only interface velocity has a role
and tangential velocities do not appear in the integration. If the
surface velocity has no interface velocity and has only tangential
components, then the tangent velocity translates each point to it’s
neighboring ones and does not add new area and volume to the
surface and space. Therefore, it provokes rotational movement of
thematerial object and can be excluded from the integration. This
statement becomes obvious for one dimensional motion. If the
material point is moving along some trajectory, then the velocity
is tangential to the curve. However, motion of the material point
along the curve can be understood as the motion of the curve
embedded in the plane. If the curve has no interface velocity,
then it only slides in the ambient plane without changing the local
length6.

2.5. Several Useful Theorems
In this section we provide several theorems, that will be directly
used to deduce equations of motions. The first such theorem is
the general Gauss theorem about integration, which gives the rule
for the reciprocal transfer of space integral to surface integral.
For a domain � in Minkowski space with the boundary S, for
any sufficiently smooth tensor field Tα , the generalized Gauss
theorem reads

∫

�

∇αT
αd� =

∫

S
NαT

αdS (20)

The proof is simple if one uses the Voss-Weyl formula to
deduce the theorem. For any sufficiently smooth tensor field in
Minkowski space, the Voss-Weyl formula [26] reads

∇µT
µ =

1
√
−|η..|

∂µ(
√

−|η..|Tµ) (21)

Using (21) in the right part of (20) and the designation η = −|η..|,
we have

∫

�

∇αT
αd� =

∫

�

1
√

η
∂µ(

√
ηTµ)d�

=
∫∫∫∫

1
√

η
∂µ(

√
ηTµ)

√
ηdXα

=
∫∫∫∫

∂µ(
√

ηTµ)dXα

where dXα = dX0dX1dX2dX3. This term is subject to the Gausss
theorem in the arithmetic space. Since arithmetic space and
Minkowski space, which is pseudo-Euclidean, can be related to
Cartesian coordinates, Minkowski space can be identified as an
arithmetic one and the Gauss theorem for the arithmetic space

5Proofs for the time derivative of integrals can be found in tensor calculus text
books. See for instance [26] and references therein.
6same explanation, with more details, is given in Svintradze [28].

can be used. Thus, using unity of the Minkowski space metric
tensor determinant one may prove that7

∫∫∫∫

∂µ(
√

ηTµ)dXα =
∫∫∫

NαT
α√η

√
gdSi

=
∫

S
NαT

αdS

where g = |g..|. This proves that the generalized Gauss’s
theorem holds for pseudo-Riemannian manifolds embedded in
Minkowski space.

The next step is to provide short proofs for Weingarten’s
and Thomas’ formulas by using the relation between the surface
derivative and the interface velocity.

Weingarten’s formula expresses the surface covariant
derivative of the surface normal in the product of the shift
and mixed curvature tensors. Proof follows from the definition
NαN

α = 1, from which we find Nα∇iN
α = 0. On the other hand

0 = N · Si = NαXα · ηβ
i Xβ = Nαη

β
i ηαβ

= Nαηαi (22)

If we apply the covariant derivative to (22) and take into account
that from (6) Bji = Nα∇jηiα then by the product rule we find

0 = ∇jN
αηαi + Nα∇jηαi = ∇jN

αηαi + Bji

∇jN
αηαi = −Bji (23)

Let’s contract both sides of (23) with ηiβ and take into
account the commonly used relationship in tensor calculus
NαNβ + ηα

i ηiβ = δα
β , then we find

−η
β

k
Bkj = −ηiβBkj gki = −ηiβBji = ∇jN

αηαiη
iβ

= ∇jN
αηkαgikη

β
mg

mi = ∇jN
αηkαηβ

mδmk

= ∇jN
αηkαη

β

k
= ∇jN

α(δβ
α − NβNα)

= ∇jN
β − NβNα∇jN

α

∇jN
β = −η

β

k
Bkj (24)

Since the second term of the last equality vanishes, we get (24),
also known as Weingarten’s formula.

Now we turn to the Thomas formula which allows calculation
of the invariant time derivative of the surface normal. Indeed,
using the invariant time derivative formula for the surface base
vector [26]

∇̇Si = N∇iC (25)

and dotting both sides of (25) with N , N · ∇̇Si = N · N∇iC and
using the product rule, taking into account that N · Si = 0, we
find ∇iC = −∇̇NSi, therefore

∇̇N = −Si∇iC (26)

Equation (26) is generally referred to as the Thomas formula.

7Details about the proof for Euclidean space can be found in tensor calculus text
book [26] and proof for Minkowski space is identical to Euclidean one.
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3. EQUATIONS OF MOTION AND
PHYSICAL MODELS

3.1. Equations of Motion
Since we have all mathematical preliminaries in hand we can
proceed with derivation of master equations of motion. To derive
the equations we apply the calculus of moving surfaces to the
motion of compact and closed manifolds in an electromagnetic
field. In this step we only discuss free motion of the single
closed surface, where “single” surface means boundary of the
single material body and “free” means contact with environment
is ignored8. The interaction with the environment can be
incorporated into the equations later on9. The surface is treated
as a continuum medium of material particles (points), where
charge and mass distribution is heterogeneous. The boundary
of the body is the surface with a surface mass density ρ and a
surface charge density q. The surface can be semipermeable at
some material points, meaning the charge can flow through the
surface. Interaction between the material points is exclusively
electromagnetic, as the mass of each material particle is set
to be infinitely small compared to unit charges. The ambient
space is set to be Minkowskian, the body is four dimensional
and has the surface boundary of three dimensional manifold.
Electromagnetic interaction between the material particles and
the heterogeneous distribution of charges throughout the object
induces motion of the surface and the potential energy of the
interaction can be modeled as

U =
∫

�

(
1

4µ0
FαβF

αβ + AαJ
α)d� (27)

where the electromagnetic tensor Fαβ is the combination of
the electric and magnetic fields in a covariant antisymmetric
tensor [25, 29]. The electromagnetic covariant four-potential is
a covariant four vector A· = (−ϕ/c, a) composed of the ϕ

electric potential and the a magnetic potential. Contravariant
four current J· = (cQ, j) is the contravariant four vector
combining j electric current density and Q the charge density,
c is the speed of light and µ0 is the magnetic permeability of the
vacuum. The Minkowski space metric tensor signature is set to
be space-like (− + ++) throughout the paper. This formulation
is fully relativistic though it can be easily simplified for non-
relativistic cases. Raising and lowering the indexes is performed
by the Minkowski metric ηαβ . The relation between the four
potentials and the electromagnetic tensor is given by

Fαβ = ∂αAβ − ∂βAα (28)

As far as the boundary of the material body is a
moving three manifold, the surface kinetic energy with

8The environment is set to be vacuum.
9In the case of taking into account interaction with the environment we no longer
have single surface. Instead there are double surfaces where one is the boundary
of the material body and another one is the surface of the environment at the
boundary/environment interface. Having two surfaces raises the terms related to
surface-surface interactions and may enter into final equations as a viscoelastic
effect incorporated in coefficient of viscosity.

variable surface mass density ρ and surface velocity
V is

T =
∫

S

ρV2

2
dS (29)

Subtraction of the potential energy (27) from the kinetic energy
(29) leads to the system Lagrangian

L =
∫

S

ρV2

2
dS−

∫

�

(
1

4µ0
FαβF

αβ + AαJ
α)d� (30)

where S is the boundary of �. Hamilton’s least action principle
[31] for the given Lagrangian (30) reads

δL

δt
=

δT

δt
−

δU

δt
= 0 (31)

For proper evaluation of the (31) Lagrangian we start from the
simplest term first, the potential energy. Since (27) is the space
integral by theorem (18) we have

δU

δt
=

∫

�

∂

∂t
(

1

4µ0
FαβF

αβ + AαJ
α)d�

+
∫

S
C(

1

4µ0
FαβF

αβ + AαJ
α)dS (32)

According to (32) determination of variation of potential
energy is calculated from the time differential of the space
integrand. Following standard algebraic manipulations for
classical electrodynamics, we find

∫

�

∂u

∂t
d� =

∫

�

(
∂u

∂Aα

∂Aα

∂t
+

∂u

∂(∂βAα)

∂(∂βAα)

∂t
)d�

=
∫

�

(
∂u

∂Aα

∂Aα

∂t
+ ∂β (

∂u

∂(∂βAα)

∂Aα

∂t
)

− ∂β

∂u

∂(∂βAα)

∂Aα

∂t
)d�

=
∫

�

(
∂u

∂Aα

∂Aα

∂t
− ∂β

∂u

∂(∂βAα)

∂Aα

∂t
)d�

+
∂u

∂(∂βAα)

∂Aα

∂t
| ∂Aα

∂t = 0

=
∫

�

(
∂u

∂Aα

− ∂β

∂u

∂(∂βAα)
)
∂Aα

∂t
d� (33)

where u = (1/4µ0)FµνF
µν + AµJ

µ and the fact that u is
a function of Aα and ∂βAα and at the boundary condition
∂Aα/∂t = 0 the last term vanishes. It is easy to show that,

∂u/∂Aα = Jα (34)

To calculate the last integrand (33), we take into account the
definition (28) and note that the covariant electromagnetic tensor
can be obtained by lowering indexes in contravariant tensor
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Fαβ = ηγαηκβFγ κ . The electromagnetic tensor is antisymmetric
Fαβ = −Fβα , so that

∂u

∂(∂βAα)
=

1

4µ0

∂

∂(∂βAα)
(Fµνη

γµηλνFγ λ)

=
1

4µ0
ηγµηλν ∂(FµνFγ λ)

∂(∂βAα)

=
1

4µ0
ηγµηλν(Fµν(δ

β
γ δα

λ − δ
β

λ δα
γ )

+ Fγ λ(δ
β
µδα

ν − δβ
ν δα

µ))

=
1

4µ0
(Fβα − Fαβ + Fβα − Fαβ ) =

Fβα

µ0
(35)

Taking into account (33–35) in (32) we find the variation of the
potential energy

δU

δt
=

∫

�

(Jα −
1

µ0
∂βF

βα)
∂Aα

∂t
d�

+
∫

S
C(

1

4µ0
FαβF

αβ + AαJ
α)dS (36)

Now we turn to the calculation of the kinetic energy variation.
To deduce the variation for the kinetic energy let’s define the
generalization of conservation of mass law first. The variation of
the surface mass density must be so that dm/dt = 0, where

m =
∫

S
ρdS (37)

is the surface mass with ρ surface mass density. Since we discuss
compact closedmanifolds the boundary conditions v = niV

i = 0
dictate that a pass integral along any curve across the surfacemust
vanish. This statement formally taking into consideration (37),
can be rewritten as

0 =
∫

γ

vρdγ =
∫

γ

niV
iρdγ =

∫

S
∇i(ρV

i)dS

=
∫

S
(∇i(ρV

i)− ρCBii + ρCBii)dS

=
∫

S
(∇i(ρV

i)− ρCBii)dS+
∫

S
∇̇ρdS−

d

dt

∫

S
ρdS

=
∫

S
(∇i(ρV

i)− ρCBii + ∇̇ρ)dS (38)

where n is a normal of the curve that lies in the tangent space, v is
the velocity of the γ curve. Since the last integral from (38) mast
be identical to zero for any integrand, one immediately finds the
generalization of conservation of mass law

∇̇ρ + ∇i(ρV
i) = ρCBii (39)

Incidentally, an equation for the surface charge conservation can
analogously be deduced and it has exactly the same form. The
equation (39) was also reported in Grinfeld [10]. To calculate the

variation of the kinetic energy we use (19, 29, 39) and after a few
lines of algebra, we find

δT

δt
=

∫

S
(∇̇

ρV2

2
− CBii

ρV2

2
)dS

=
∫

S
(∇̇ρ

V2

2
+ ρ∇̇

V2

2
− CBii

ρV2

2
)dS

=
∫

S
((ρCBii − ∇i(ρV

i))
V2

2
+ ρ∇̇

V2

2
− CBii

ρV2

2
)dS

=
∫

S
(−∇i(ρV

iV
2

2
)+ ρV i∇i

V2

2
+ ρ∇̇

V2

2
)dS

=
∫

S
ρV(V i∇iV + ∇̇V)dS (40)

Here we used the fact that at the end of variations the surface
reaches the stationary point and therefore, by the Gauss theorem
integral for ∇i(ρV iV2/2) converted to line integral, vanishes [as
we used it already in (38)]. To deduce the final form of equations
of motion we decompose the dot product in the integral (40) into
normal and tangential components. After a few lines of algebraic
manipulations, we find

∇̇V + V i∇iV = ∇̇V + V i∇iV + CV iB
j
iSj − CV iB

j
iSj

= ∇̇V + V i∇iV + CV iB
j
iη

α
j Xα − CV iB

j
iSj (41)

Using Weingartens formula (24), the metrilinic property of the
Minkowski space base vectors ∇iXα = 0 and the definition
of the surface normal N = NαXα , the last equation of (41)
transforms

∇̇V + V i∇iV − CV iXα∇iN
α − CV iB

j
iSj

= ∇̇V + V i∇iV − CV i∇iN − CV iB
j
iSj (42)

Taking into account (12) and its covariant and invariant time
derivatives in (42), we find

∇̇V + V i∇i(CN)+ V i∇i(V
jSj)

− CV i∇iN − CV iB
j
iSj

= ∇̇V + V iN∇iC + V i∇i(V
jSj)− CV iB

j
iSj

= ∇̇(CN)+ ∇̇(V jSj)+ V iN∇iC

+ V i∇i(V
jSj)− CV iB

j
iSj (43)

Continuing algebraic manipulations using the formula for
the surface derivative of the interface velocity (25), Thomas
formula (26), and the definition of the curvature tensor (6) in
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(43), yield

∇̇(CN)+ C∇ jCSj + 2V iN∇iC + V iV jBijN

+ ∇̇(V jSj)− V iN∇iC + V i∇i(V
jSj)− V iV jBijN

− C∇ jCSj − CV iB
j
iSj

= ∇̇(CN)− C∇̇N + 2V iN∇iC + V iV jBijN

+ ∇̇(V jSj)− V j∇̇Sj + V i∇i(V
jSj)− V iV j∇iSj

− C∇ jCSj − CV iB
j
iSj

= (∇̇C + 2V i∇iC + V iV jBij)N

+ (∇̇V j + V i∇iV
j − C∇ jC − CV iB

j
i)Sj (44)

Dotting (44) on V and combining it with (40) the last derivation
reveals the variation of the kinetic energy

δT

δt
=

∫

S
ρC(∇̇C + 2V i∇iC + V iV jBij)dS

+
∫

S
ρVi(∇̇V i + V j∇jV

i − C∇ iC − CV jBij)dS (45)

where the first part is the normal component and the second part
is the tangent component of the dot product. Combination of (36,
45) with (31) reveals

∫

S
ρC(∇̇C + 2V i∇iC + V iV jBij)dS

+
∫

S
ρVi(∇̇V i + V j∇jV

i − C∇ iC − CV jBij)dS

=
∫

�

(Jα −
1

µ0
∂βF

βα)
∂Aα

∂t
d�

+
∫

S
C(

1

4µ0
FαβF

αβ + AαJ
α)dS (46)

To find the final form of the equations of motion we separate the
dot product of the space integrand from (46) into normal and
tangential components. Let the vector FFF with contravariant α

component be

FFF = (Fα) = (Jα −
1

µ0
∂βF

βα) = FN + F
iSi (47)

where F and F i are normal and tangential components ofFFF, by
analogy we have for ∂A/∂t four vector partial time derivative

∂A

∂t
= AN +A

iSi (48)

where A,Ai are the normal and tangential components of the
partial time derivative of the four vector potential. Using the
definitions (47, 48) the dot product of the two vectors is

FFF ·
∂A

∂t
= FA+ F

i
Ai (49)

Since equation (46) must hold for every V ,FFF, ∂A/∂t vector, the
normal and tangential components of the dot product must be
equal so that taking into account (47–49) in (46), we find

∫

S
ρC(∇̇C + 2V i∇iC + V iV jBij)dS

=
∫

�

FAd� +
∫

S
C(

1

4µ0
FαβF

αβ + AαJ
α)dS (50)

∫

S
ρVi(∇̇V i + V j∇jV

i − C∇ iC − CV jBij)dS

=
∫

�

F
i
Aid� (51)

After applying the Gauss theorem to the surface integrals in (50),
the surface integrals are converted to a space integral so that one
gets

∫

�

∂µ(ρV
µ(∇̇C + 2V i∇iC + V iV jBij))d�

−
∫

�

∂µ(V
µ(

1

4µ0
FαβF

αβ + AαJ
α))d� =

∫

�

FAd� (52)

To summarize (39, 50–52), equations of moving manifolds in an
electromagnetic field read

∇̇ρ + ∇i(ρV
i) = ρCBii

∂µ(V
µ(ρ(∇̇C + 2V i∇iC + V iV jBij)−

1

4µ0
FαβF

αβ − AαJ
α))

= FA
∫

S
ρVi(∇̇V i + V j∇jV

i − C∇ iC − CV jBij)dS =
∫

�

F
i
Aid�

(53)

Equations (53) are the master equations of motions.
A case that deserves some attention is the homogeneous

symmetrical surface. In that case the only nonzero allowed
“force” is FA 6= 0 and F iAi = 0. This leads to
significant simplification of the third equation from (53) and
the second equation can be analytically solved for homogeneous,
equilibrium surfaces as we have done for micelles [28]. When
FA 6= 0 and F iAi 6= 0 then motion of the surface induces
swimming of the body. The case FA = 0 and F iAi 6= 0, as
shown below, simplifies to the Euler equation for dynamic fluid
free motion and to the Navier-Stokes equation or to magneto-
hydrodynamic (MHD) equations if one takes into account
interactions with the environment.

Equations (53) are correct for freely moving manifolds of
the body in a vacuum. Generalization can be trivially achieved
if instead of the electromagnetic tensor Fαβ one proposes the
electromagnetic stress energy tensor Tαβ , which is related to the
electromagnetic tensor by the relationship

Tαβ =
1

µ0
(ηγ νF

αγ Fνβ +
1

4
ηαβFγ νF

γ ν) (54)
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For objects in matter the electromagnetic tensor Fµν in (47, 53)
is replaced by the electric displacement tensor Dµν and by the
magnetization-polarization tensorMµν so that

Fµν

µ0
= Dµν +Mµν (55)

The charge density Q and four current J become the sum of
bound and free charges and of bound and free four currents,
respectively. The electric displacement tensor, magnetization
tensor, free and bound charges/currents can be modeled
differently for different problems, therefore the general equations
(53) can be modified as needed.

3.2. Physical Models
To link the above formulated problem with real physical surfaces
it is necessary to do some modeling. To begin let’s illustrate
macromolecules10 as two dimensional fluid manifolds with
the thickness of variable mass density Figure 4. Even though
molecular surfaces are three manifold in Minkowski space, in
some cases11 it can be modeled as moving two manifolds in
Euclidean space. The surface is considered to be semipermeable
against partial charges and water molecules. The permeability
defines the surface mass density as a variable and the volume
charge also becomes variable. The variability of charge and mass
densities is properly taken into account in the equations of
motion (53).

Let’s model a bio-macromolecular surface as a Gaussian
map contoured at 2 Å to 8 Å resolution. Figure 4 shows
Gaussian maps for the protein (Figures 4A,B) and for the DNA
(Figures 4C,D). � is the space inside the macromolecules and
the boundary of the space is the surface S. Si base vectors are
defined in the tangent space of the Gaussian map. Sij is the
metric tensor of the map. These are illustrations of surfaces
as two-manifolds embedded in Euclidian space and are only
true for non-relativistic representations, therefore they do not
show the shape of three-manifolds in Minkowski space-time.
Figures 4A,C show a Gaussian map of the polypeptide main
chain of a protein and of a polynucleotide double helical
DNA dodecamer, respectively12. Figures 4B,D show thickness
variations, captured by surface mass density, of the modeled
surfaces for the protein and DNA. Light gray is the Gaussian
map at 5 Å resolution while the blue surface indicates a more
detailed surface contoured at 2 Å resolution. Thickness variation
can be induced by diffusion of solvent molecules at solvent
accessible sites; e.g., sites marked by water molecules obtained
from crystal structures as illustrated in the Figures 4A,C (red and
white sticks), or by thermal fluctuation of amino acid sidechains.
In all these cases, the surface thickness variation, captured by ρ

surface mass density, is in the range of angstrom to nanometer.
This range is higher for micelles, cell membranes, fluid films etc.

10Or surface made from groups of molecules, for instance lipids.
11Especially for relatively slowly moving surfaces, for instance: cell surface, which
is bio-membrane; vesicles; micelles etc.
12The model protein is the peroxide sensitive gene regulator with Protein Data
Bank (PDB) ID 3HO7 [32]. The model DNA is the double helical dodecamer
generally known as library DNA with PDB ID 1BNA [33].

FIGURE 4 | Top (A,B): Gaussian map of the protein and Bottom (C,D): of the
DNA dodecamer. (A,C) highlights smoothed Gaussian mapping of the
macromolecules, at 5 Å resolution, indicating crystallographic distribution of
the water molecules on the surface. (B,D) shows the mapping of the
macromolecules at two different resolutions, capturing surface thickness
variation incorporated in δρ. Blue surface is mapping at 2 Å resolution and
indicates distribution of the atoms on the surface, while light gray is the
smoothed Gaussian map indicating how surface thickness may vary if free
diffusion of the solvent molecules on the surface is taken into account.

If the system is in aqueous solution then the surface motion is
determined by so called hydrophobic-hydrophilic interactions.

As we already stated in the introduction, hydrophobic
and hydrophilic interactions incorporate dispersive interactions
throughout the molecules, mainly related to electrostatics and
electrodynamics (Van der Waals forces), induced by permanent
(water molecules) or induced dipoles (dipole-dipole interactions)
and possibly quadrupole-quadrupole interactions (for instance
stacking or London forces) plus ionic interactions (Coulomb
forces) [20]. The hydrophobic effect can be considered as
synonymous with dispersive interactivity with water molecules
and the hydrophilic one as synonymous with polar interactivity
with water molecules [14, 19, 20]. All these interactions have
one common feature and can be unified as electromagnetic
interaction’s dependence on interacting bodies’ geometries,
where by geometries we mean shape of the objects’ surfaces. To
model potential energy we note that on the scale of hydrophobic-
hydrophilic interactions, which usually occurs at nanometer
distances [19, 20], no interactions other than electromagnetic
forces are available. An electromagnetic field is set up by dipole
moments of water molecules and partial charges of molecules.
In other words, we have a closed, smooth manifold in aqueous
solution where charge and water molecules could migrate
through the surface Figure 4. The surface can be of mixed nature
(hydrophobic, hydrophilic, or both) with randomly distributed
polar or non-polar groups and can be compressible, continuously
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deformable and permeable against water and ionic charges. At
the nanometer scale, for small masses, potential energy can be
electromagnetic only. Therefore, we have potential energy density
constructed from the electromagnetic tensor plus the term
related to variation of charges as it is defined in (27). Even though
modeling of potential energy as electromagnetic interaction
energy is fairly clear, the dependence of these interactions on
the object’s geometry is not. The geometry dependence becomes
visible only after the complete formulation of the equations of
motion (53).

4. RESULTS AND DISCUSSIONS

4.1. Poisson-Boltzmann Equation
To demonstrate effectiveness of (53) let’s discuss free motion of
two manifolds embedded in three dimensional Euclidean space
for the stationary surface in an electrostatic field. We have the
following conditions: V = 0 stationary surface in electrostatic
field where a = 0, j = 0, A· = (−ϕ/c, 0), J· = (cQ, 0) and
∂ = (0, ∂x, ∂y, ∂z). Then from second equation of (53) with the
condition (46), we find

cQ−
1

µ0
∂βF

β0 = 0 (56)

Taking into account the definition of electromagnetic tensor and
that we consider the electrostatic field, the partial derivative of the
electromagnetic tensor in (56) is (1/c)∂βE

β and therefore

∂βE
β = c2µ0Q (57)

By the definition of the electric field Eβ = −∂βϕ and
c2µ0 = 1/ǫ0 so that (57) transforms to

∂α∂αϕ = ∇2ϕ = −
Q

ǫ0
(58)

The equation (58) is generally known as the Poisson-Boltzmann
equation in vacuum and was proposed to describe the
distribution of the electric potential in the direction of the normal
to a charged surface [34–36].

Here we demonstrate that the Poisson-Boltzmann equation is
a special case and can be obtained from the equations of motion
(53) for stationary surfaces in an electrostatic field. To support
this statement we have generated electrostatic field lines using the
Adaptive Poisson-Boltzmann Solver (APBS) [37] software for the
protein [32] and the DNA [33] (Figure 5). As can be seen from
Figure 5 field lines follow the surface normal as expected from
the second equation of (53) for the V = 0 stationary case.

4.2. Classical Electrodynamics, Maxwell
Equations
In this subsection we demonstrate that, the equations of motion
simplify toMaxwell equations for stationary interfacesC = 0 and
massless ρ = 0 three manifolds embedded in Minkowski space.
Indeed, from the second and the third equations of (53), taking

FIGURE 5 | Color-coded electrostatic surface where red indicates negatively
charged regions of the surface, white neutrally charged and blue positively
charged one. Simulated electrostatic field lines are displayed as hairs on the
surface of the protein (A) and the DNA (B). Hairs are generated by the adaptive
Poisson-Boltzmann solver and highlight how variations of the field lines on the
surface describe the charge distribution pattern on the surface. The right side
of the figure shows the position of the surface normal N and electrostatic hairs.

into account that in the stationary case the second term in (32)
vanishes, we find

∫

�

FAd� = 0 (59)
∫

�

F
i
Aid� = 0 (60)

Adding (59) to (60) and taking into account (47) and (49) one
obtains

FA+ F
i
Ai = FFF ·

∂A

∂t
= 0 (61)

(61) must hold for any partial time derivative of the four vector
potential, therefore

FFF = (Fα) = (Jα −
1

µ0
∂βF

βα) = 0 (62)

and the Maxwell equations with the source in the vacuum follow.

1

µ0
∂βF

βα = Jα

This is a somewhat unexpected result: any three manifold with
stationary interfaceC = 0 and withmassless surface mass density
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ρ = 013, satisfies Maxwell equations. However, the photon is
arguably the only massless particle that satisfies the Maxwell
equation, therefore the photon can be interpreted as a stationary
interface three manifold embedded in Minkowski space with
vanishing surface mass density.

4.3. Classical Hydrodynamics, Euler
Equation
In this section we simplify the equations of motion using physical
arguments and demonstrate that the equation system (53) yields
the Euler equation for a dynamic fluid for some simplified cases.
Let’s propose that a moving fluid has a planar surface Bij = 0 with
stationary interface C = 0 and is embedded in Euclidean three
space. Then simplifications of (53) lead to a system of equations
of motion

∇̇ρ + ∇i(ρV
i) = 0

FA = 0
∫

S
ρVi(∇̇V i + V j∇jV

i)dS =
∫

�

F
i
Aid� (63)

The first equation of (63) is the continuity equation for the
surface mass density and is conservation of mass at the flat space;
the second one yields that normal component of the dot product
FFF · (∂A/∂t) vanishes. To simplify the last equation of (63) we
note that the total ’force’ acting on the volume is equal to the
integral−

∫

S pdS of the total pressure p, taken over the boundary
(surface) of the volume. Applying Gauss’ theorem to the surface
integral by taking into account that pressure across the surface
acts in a normal direction so that it can be written as p = pαN

α ,
then

−
∫

S
pdS = −

∫

S
pαN

αdS = −
∫

�

∇αpαd� (64)

On the other handF iAi is a cause of the gradient of the tangential
velocity and the tangential gradient of the pressure, therefore

F
i
Ai = −∇α(Vi∇ ipα) (65)

Taking into consideration (64, 65) in (63) and applying Gauss’
theorem to the space integral, we find

∫

S
ρVi(∇̇V i + V j∇jV

i)dS =
∫

�

F
i
Aid�

= −
∫

�

∇α(Vi∇ ipα)d�

= −
∫

S
ViN

α∇ ipαdS (66)

According to Weingarten’s formula (24) Nα is invariant vs the
surface derivative for flat manifolds and therefore, can be taken

13Here surface mass density is the same as the mass density of the three manifold,
because the three manifold is the surface in 4D space.

into the surface covariant derivative, so that ViN
α∇ ipα =

Vi∇ ip14. Then (66) after subtracting Vi yields

ρ(∇̇V i + V j∇jV
i) = −∇ ip (67)

Taking into account that for flat surfaces Christoffel symbols
vanish and ∇j = ∂j one immediately recognizes that the last
equation (67) becomes the classical Euler equation of fluid
dynamics.

As stated above the equations of motion (53) are formulated
for freely moving manifolds; i.e., interaction with the
environment is ignored and matter is set to be a vacuum.
Though it can be trivially generalized for the matter and then
simplified, instead of giving Euler equation, will lead to the more
complete Navier-Stokes equation and or magnetohydrodynamic
equations. For instance, in matter, according to (55), the
electromagnetic tensor becomes the sum of the electric
displacement and magnetization tensors. Therefore, in (67),
instead of a pure pressure gradient we will have an additive term
coming from the magnetic field so that (67) will transform to the
ideal magneto hydrodynamic equation.

Analogously, if interaction with an environment is taken into
account, then instead of a single surface we have two surfaces at
the surface/environment interface and the Lagrangian (30) is split
into two kinetic energy terms, one for surface and another one for
the environmental interface. All these will occur as additive terms
in the third equation of (53) so that equation (67) will transform
to the Navier-Stokes equation.

4.4. Equilibrium Shapes of Micelles
Let’s answer the question: what is the shape of micelles
formed from lipid molecules when they are in thermodynamic
equilibrium with solvent. Lipids have hydrophilic heads and
hydrophobic tails, so that in solutions they tend to form a surface
with heads on one side and tails on the other. Since the tails
disperse the water molecules, the surface made is closed and has
some given volume. Such structures are calledmicelles [38]. Since
lipids form a homogeneous surface, in equilibrium conditions we
must have

FA = const 6= 0 (68)

and F iAi = 0. Usually the speed of micelle interface motion is
in the range of nm/ns and, therefore there is no necessity of
discussion of a relativistic formalism so that the surface is two
dimensional and the space is Euclidean. The surface dynamic is
slow, magnetic field is much smaller then electric field B2 << E2

and the potential energy becomes

U = −
∫

�

(
ǫ0

2
E2 + ϕQ)d� (69)

Using the first law of thermodynamics, (69) can be modeled as a
volume integral from the surface pressure [28] and

p =
ǫ0

2
E2 + ϕQ (70)

14More information about how the termFFF · ∂A/∂t can be modeled as gradient of
pressure times velocity can be found in Svintradze [28].
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On the other hand, taking into account the conditions (68, 69),
the total potential energy of the surface can be modeled as

U = σ

∫

S
dS (71)

Taking into account (71), the system Lagrangian becomes the
same as it is in (1) and its variation leads to the equation

ρ(∇̇C + 2V i∇iC + V iV jBij) = σBii (72)

(72) was first reported in Grinfeld [10]. Using (69,70,72) in the
equations of motion (53), after simple algebra we find

∂α(σV
αBii + pVα) = −Vα∂αp (73)

When the homogeneous surface, such as a micelle, is in
equilibrium with the environment then the solution of the
(73)15 is

Bii = −
p

σ
(74)

From equation (74) the generalized Young-Laplace relation
which connects the surface pressure to the curvature and
the surface tension immediately follows. (74) dictates that the
homogeneous surfaces in equilibrium with environment adopt
a shape with constant mean curvatures (CMC), which explains
the well anticipated lamellar, cylindrical and spherical shapes
of micelles. This is another unexpected and surprisingly simple
solution to the equations of motion (53).

4.5. Motion of Two Surfaces
Equations of motion (53) further simplify for two dimensional
surfaces. In non-relativistic framework the space is three
dimensional Euclidean (α = 1, 2, 3 andV0 = 0 limit), the surface
is two-dimensional Riemannian (i = 1, 2) and the potential
energy becomes

U =
∫

�

(−
ǫ0

2
E2 +

1

2µ0
B2 − ϕQ+ ajajaj)d� (75)

whereEEE,BBB are electric andmagnetic fields and ϕ,Q,aaa, jjj are charge
density, electric potential, magnetic vector potential and current
density vector respectively. Using same formalism as in (65, 66,
69, 70) into account we find

FA =− Vα∂αp (76)
∫

�

FiA
id� =−

∫

S
VjN

α∇ jpαdS (77)

Taking (76, 77) along with that p = ǫ0
2 E

2 − 1
2µ0

B2 + ϕQ− ajajaj

into account we end up with the following equations of motion
for two dimensional surfaces:

∇̇ρ + ∇i(ρV
i) = ρCBii (78)

∂µ(V
µ(ρ(∇̇C + 2V i∇iC + V iV jBij)+ p)) = −Vα∂αp (79)

ρVi(∇̇V i + V j∇jV
i − C∇ iC − CV jBij) = −VjN

α∇ jpα (80)

15A shorter alternative way to deduce (73) and it’s solution in equlibrium
conditions is given in Svintradze [28].

Alternative way of deducing (78–80) without using (53) is given
in Svintradze [28]. In equations of motions for two dimensional
surfaces (78–80) we mention that only first equation (78) is
the same as dynamic fluid film equations [10]. (78) captures
surface mass density variation during the manifold motion,
second equations (79) shows how the surface moves in normal
direction and third equation (80) shows how the surface moves
in tangent directions. Soup films, water droplets and for all
two dimensional surfaces which satisfies preconditions: (1) the
surface is homogeneous, (2) surface potential energy density
σ is time invariable, and (3) the surface is in thermodynamic
equilibriumwith environment can be solved exactly the sameway
as it is done in sub-section 4.4 with the solution (74).

5. CONCLUSIONS

We have proposed equations of moving surfaces in an
electromagnetic field and demonstrated that the equations
simplify to: (1) Maxwell equations for massless three manifolds
with stationary interfaces; (2) Euler equations for dynamic fluid
for planar two manifolds with stationary interface embedded
in Euclidean space, which can be generalized to Navier-Stokes
equations and to magneto-hydrodynamic equations; (3) Poisson-
Boltzmann equation for stationary surfaces in electrostatic
field.

We have applied the equation to analyze the motion of
hydrophobic-hydrophilic surfaces and explained “equilibrium”
shapes of micelles. Analyses were in good qualitative as well
as quantitative agreement with known experimental results for
micelles [28]. Analytic solutions to simplified equations for
homogeneous surfaces in equilibrium with the environment
produced generalized the Young-Laplace law and explained
why mean curvature surfaces are such abundant shapes in
nature.

Also we have shown that hydrophobic-hydrophilic effects
are just another expression of well known electromagnetic
interactions. In particular, equations of motion for moving
surfaces in hydrophobic and hydrophilic interactions, together
with the analytic solution, provide an explanation for the
nature of the hydrophobic-hydrophilic effect. Hydrophobic and
hydrophilic interactions are dispersive interactions throughout
the molecules and conform to electromagnetic interaction
dependence on surface morphology of the material bodies.
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