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In diffusion weighted imaging (DWI), the apparent diffusion coefficient (ADC) has

been recognized as a useful and sensitive surrogate for cell density, paving the way

for non-invasive tumor staging, and characterization of treatment efficacy in cancer.

However, microstructural parameters, such as cell size, density and/or compartmental

diffusivities affect diffusion in various fashions, making of conventional DWI a sensitive

but non-specific probe into changes happening at cellular level. Alternatively, tissue

complexity can be probed and quantified using the time dependence of diffusion

metrics, sometimes also referred to as temporal diffusion spectroscopy when only using

oscillating diffusion gradients. Time-dependent diffusion (TDD) is emerging as a strong

candidate for specific and non-invasive tumor characterization. Despite the lack of a

general analytical solution for all diffusion times/frequencies, TDD can be probed in

various regimes where systems simplify in order to extract relevant information about

tissue microstructure. The fundamentals of TDD are first reviewed (a) in the short

time regime, disentangling structural and diffusive tissue properties, and (b) near the

tortuosity limit, assuming weakly heterogeneous media near infinitely long diffusion times.

Focusing on cell bodies (as opposed to neuronal tracts), a simple but realistic model for

intracellular diffusion can offer precious insight on diffusion inside biological systems,

at all times. Based on this approach, the main three geometrical models implemented

so far (IMPULSED, POMACE, VERDICT) are reviewed. Their suitability to quantify cell

size, intra- and extracellular spaces (ICS and ECS) and diffusivities are assessed. The

proper modeling of tissue membrane permeability—hardly a newcomer in the field, but

lacking applications—and its impact on microstructural estimates are also considered.

After discussing general issues with tissue modeling and microstructural parameter

estimation (i.e., fitting), potential solutions are detailed. The in vivo applications of this new,

non-invasive, specific approach in cancer are reviewed, ranging from the characterization

of gliomas in rodent brains and observation of time-dependence in breast tissue lesions

and prostate cancer, to the recent preclinical evaluation of new treatments efficacy. It is

expected that clinical applications of TDD will strongly benefit the community in terms of

non-invasive cancer screening.

Keywords: diffusion, diffusion magnetic resonance imaging, temporal diffusion spectroscopy, diffusion time

dependence, diffusion time, PGSE, OGSE, MRI of cancer
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INTRODUCTION

By probing the water molecule displacement at the microscopic
scale, Diffusion Weighted Imaging (DWI) is well established as
a powerful non-invasive MRI technique to characterize tissue
order—or disorder. Since diffusion gradients sensitize the overall
MR signal to potential fine changes occurring at cellular level,
DWI has been extensively used to study the abnormal cellular
growth characterizing cancer development [1] and/or predict
therapeutic outcome [2].

The apparent diffusion coefficient (ADC)—a hallmark of
DWI—has been recognized as a useful and sensitive surrogate
for cell density [3, 4], paving the way for non-invasive tumor
staging and characterization of treatment efficacy in cancer [5].
However, sensitivity does not equate with specificity, generating
confusion when attempting to interpret diffusion changes in a
meaningful manner. Cell size, density and/or compartmental
diffusivities can all affect ADC measurements so that changes
in the diffusion signal cannot be unambiguously attributed to
specific tissue properties.

Diffusion is in general not Gaussian. While the reasons tissue
complexity cannot be reduced to a single indirect diffusionmetric
are manifold, two particular aspects of non-gaussian diffusion
deserve our special attention.

For a given diffusion time, the full diffusion signal
S description can be written as a Taylor series, also
known as cumulant expansion [6, 7]: ln (S/S0) =
−bD + (bD)2K/6 + O(D2), where D is the diffusion
coefficient and K the kurtosis. The first-order approximation
therefore only holds for bD ≪ 1/K, i.e., small b-values (b < 1
ms/µm2 in vivo). The estimation of the full kurtosis tensor can
help characterize tissue structure more specifically, at the cost of
extended scan time. Successful examples in cancer can be found
in Jensen and Helpern [7] and Szczepankiewicz et al. [8] but fall
outside the scope of this review.

Alternatively, this review focuses on time-dependent diffusion
(TDD), i.e., the manifestation of tissue complexity through the
dependence of the metrics previously introduced with diffusion
time t: D = D(t) (and K = K(t)), sometimes also referred
to as temporal diffusion spectroscopy [9]. The objective of
this review is to provide the interested reader with all the
keys and tools required to design a TDD experiment in which
tissue microstructure parameters can be judiciously and non-
ambiguously estimated.

The main issue with TDD is that, for a biological system, there
is no analytical solution for the diffusion time-dependence in
general.

Starting on a positive note, there are two extreme time
domains where an exact solution exists. Diffusion in the

Abbreviations: ADC, apparent diffusion coefficient; DWI, diffusion-weighted

imaging; ECS, extracellular space; ICS, intracellular space; IMPULSED, imaging

microstructural parameters using limited spectrally edited diffusion; OGSE,

oscillating gradient spin echo; PGSE, pulsed gradient spin echo; POMACE, pulsed

and oscillating gradient MRI for assessment of cell size and extracellular space;

RBPM, random barrier permeable model; STEAM, stimulated echo acquisition

mode; VERDICT, vascular, extracellular, and restricted diffusion for cytometry in

tumors; TDD, time-dependent diffusion.

infinitely short time regime is well defined for any system, and
disentangle geometric from purely diffusive tissue properties
[10]. Alternatively, diffusion in the infinitely long time regime can
be characterized based on universal classes of tissue disorder [11].

In-between, a simple geometrical model, for which
intracellular diffusion can be conveniently derived for any
given time/frequency [12, 13], is presented. For a biological
system and/or cancer cells, the range of cell size to which it can
be applied is discussed.

Using these results, the main models used to characterize
tumor tissue using TDD are reviewed: IMPULSED [14],
POMACE [15], and VERDICT [16]. Modeling cells as
impermeable spheres, additional assumptions are made to
describe the ECS, and finally estimate diffusivities, cell size and
volume fraction ex vivo and in vivo. Non-geometrical models
[17, 18] are also discussed.

Membrane permeability is a key parameter often neglected
during tissue characterization. Using time dependence, we
discuss how this parameter—likely to vary in tumors—can be
estimated in particular time regimes [17, 19] or via novel
modeling [20].

Potential issues to keep in mind when modeling tumor tissue
are also discussed. Experiments should be carefully designed in
order to justify any modeling assumption, avoid overfitting and
optimize the fit accuracy and precision.

At last, the growing impact of TDD in the preclinical and
clinical setting is reviewed. A distinction is made between highly
sensitive but non-specific results, often lacking the rigor of
proper tumor tissue modeling, and specific yet less sensitive
studies, whose conclusions are not always backed up by different
methodologies. Issues regarding clinical scanners, as well as the
perspectives and potential of TDD regarding new avenues of
cancer research is finally discussed.

TIME DEPENDENT DIFFUSION:
FUNDAMENTAL ISSUES AND CONCEPT

There is in general no analytical solution for the time dependence
of diffusion. The problem only simplifies in three particular
regimes: at infinitely short times, at infinitely long times (also
known as tortuosity limit), and near the long time regime. We
will briefly summarize how diffusion behaves in these three time
domains.

The Short Time Regime
The universal behavior of diffusion measured with Pulsed
Gradient Spin Echo (PGSE, Figure 1A) at short times t was
initially derived in porous media byMitra et al. [10]. In amedium
with free diffusivity D0, the overall diffusion coefficient D can be
written as:

DPGSE (t) = D0

(

1−
4

3d
√

π
·
S

V
·
√

D0t

)

+ O(D0t),

with O (D0t) ≪
√

D0t when t → 0. (1)

with d the number of dimensions along which molecules
can diffuse and S/V the surface-to-volume ratio of the
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FIGURE 1 | Pulse sequence diagram for PGSE (A) and OGSE (B) and diffusion in a biological system, measured with PGSE (C) and OGSE (D). In the short time

regime (red), diffusion is fully characterized by the medium free diffusivity D0 and the surface-to-volume ratio S/V. At long times (blue), diffusion reaches its tortuosity

limit D∞ with 1/t (PGSE) or ω3/2 (OGSE). There is no exact solution for the time dependence of diffusion in-between. A and B are geometry-dependent constants.

barriers/walls/cellularmembranes. A similar formula was derived
for Oscillating Gradient Spin Echo (OGSE, Figure 1B) using a
cosinusoidal waveform acquired at frequency ω [21]:

DOGSE (ω) = D0

(

1−
c(N)

d
√
2
·
S

V
·
√

D0

ω

)

+ O

(

D0

ω

)

,

with O

(

D0

ω

)

≪
√

D0

ω
when ω → ∞. (2)

The correction factor c (N) depends on the number of oscillations
N and rapidly converges toward 1 [22].

Interestingly, this regime unambiguously decouples the
medium diffusive properties D0 from the purely geometric
restrictions embedded in S/V. The linearity of diffusion vs.
t1/2/ω−1/2 remain valid for a typical biological system consisting
of intra- and extracellular water molecules, if the short time
regime is reached in both compartments.

The validity of surface-to-volume ratio estimates was first
verified experimentally using stimulated echo acquisition mode
(STEAM) measurements on sedimentary rocks [23, 24] and large
size beads [25]. It was later verified in smaller structures [26] and
solutions of packed beads of various size (radius 1–400µm) using
OGSE [27].

The short time regime is only valid if the typical restriction
scale R far exceeds the NMR diffusion length

√
D0t [10].

For small in vivo structures (R < 10µm), only OGSE can
achieve sufficient diffusion strength to probe this regime, by
accumulating contrast over N oscillations: btotal = N × bN=1

[27]. The linearity of D with ω−1/2 was recently demonstrated
for f = ω/2π > 90 Hz in mice brain glioma [18] with large
cellular radius (GL261, Rcell ∼ 5µm). The quadratic inequality
f ∼ 1/t ≫ D0/R

2 rapidly becomes impossible to satisfy for
smaller structures (healthy brain tissue, astrocytes, neurons, with
R∼1µm). For these applications, dedicated and strong custom-
built diffusion gradients should be used [27, 28].

The Tortuosity Limit
At very long times, diffusion lengths exceed the typical length
of restriction within the medium to approach the macroscopic
“tortuosity” limit D (t) = D∞ (Figure 1C). Diffusion becomes
Gaussian, and time dependence and fine microstructural details
are lost. For a non-exchanging multi-compartment system, each
compartment cannot be distinguished from a homogeneous
medium, and multi-exponential behavior is observed as a
result. Various models used to describe white matter in this
regime are detailed and reviewed in Ferizi et al. [29] and
Panagiotaki et al. [30].

Frontiers in Physics | www.frontiersin.org 3 November 2017 | Volume 5 | Article 58

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Reynaud Time-Dependent Diffusion in Tumors

In a totally confined geometry, D (t) = 〈x2(t)〉/2t < 2R2/t.
The diffusion inside closed impermeable structures converges to
D∞ = 0 as 1/t.

Approaching the Long Time Regime
A perturbative solution to the time-dependence of diffusion
exists near the tortuosity limit [11, 31]. In this regime, Novikov
et al. [11] demonstrated that the diffusion depends on large scale
structural fluctuations via the power law:

DPGSE (t) = D∞ + A · t−ϑ (3)

with ϑ = (p + d)/2, p and d being respectively the discrete
structural exponent and spatial dimensionality of the problem,
as in Equations (1) and (2) in Novikov et al. [11]. The exponent
p characterizes global structural complexity, opposing regular
lattices (p = ∞) to highly disordered media (p < 0). The case
p = 0 corresponds to short-range disorder, when restrictions are
uncorrelated or exhibit finite correlation length. Outside three
dimensional dilute structures lacking long range order, such as
cancer cells, PGSE and OGSE diffusion can then be expressed as
Novikov et al. [11] and deSwiet and Sen [32]:

DPGSE (t) = D∞ + A/t when t → ∞ (4)

DOGSE (ω) = D∞ + B · ω3/2 when ω → 0. (5)

The previous equations highlight that there is no one-to-
one correspondence between diffusion time and oscillation
frequency. This becomes apparent when combining OGSE and
PGSE measurements on similar graphs [28, 33]. A common
approach when combining PGSE and OGSE is to use a single
PGSE measurement as a surrogate for a diffusion measurement
with zero frequency [27, 33–35]. This should be avoided as the
PGSE time dependence cannot be neglected, as illustrated in
Figure 5.

For All the Rest of Time
Both the extent of the intermediate regime and the diffusion
behavior in that regime are in general unknown (Figures 1C,D).
As an alternative, a Padé approximation [36] was considered in
several studies to interpolate between the short and long time
regime. Excellent agreement was found between S/V estimates
from the Padé approximant and microscopy performed on
monosized sphere packs [17, 37]. To date, this non-specific
approach has not been applied to the characterization of cancer
cells.

TUMOR TISSUE MODELING: VARIOUS
APPROACHES

A Simple Model for Intracellular Diffusion
A practical solution to characterize tissue structure using
TDD is to (a) model the cellular microenvironment using
simple geometries, where an analytical solution for the
intracellular diffusion Dics exists, and (b) consider the
extracellular contribution in one of the aforementioned regimes
(short/long/tortuosity limit). The case of impermeable spheres,
that represent the simplest three-dimensional geometrical model

for characterizing cells—and therefore cancer cells (Figure 2)—
is detailed here.

Diffusion Inside Impermeable Spheres
The signal attenuation inside impermeable spheres was first
derived for PGSE by Murday and Cotts [12] and for OGSE by
the Vanderbilt group [13]. The PGSE intracellular diffusion is
expressed as:

Dics,PGSE (t) =
4R2

(1 − δ/3)

(τR

δ

)2∑

n

1

µ6
n(µ

2
n − 2)

{

µ2
n

δ

τR
− 1

+ exp

(

−µ2
n

δ

τR

)

+ exp

(

−µ2
n

1

τR

)[

1− cosh

(

µ2
n

δ

τR

)]}

(6)

Here R is the cell radius, δ and 1 the gradient and inter-gradient
duration, and τR = R2/D0 the characteristic diffusion time of
the cell (R =

√
D0τR). µn is numerically estimated as the nth

root of ∂ j1(µ)/∂µ, where j1 (µ) = (sin(µ)− µ · cos(µ))/µ2 is
the spherical Bessel function of the first kind. For the PGSE
experiment in the narrow pulse regime, the diffusion time t
equates the inter-gradient duration 1. Finite pulse widths δ act
as low-pass filter on the velocity autocorrelation function [38,
39], potentially impacting the functional form of the diffusion
time–dependence (see for instance Equation 8 vs. Equation 9 in
Fieremans et al. [40]—an axon study).

For OGSE, using the same formalism:

Dics,OGSE (ω) = 2D0(ωτR)2
∑

n

1

(µ2
n − 2)

{

1

µ4
n + (ωτR)

2

+
2µ2

nτR/δ
(

µ4
n + (ωτR)

2
)2

[

exp

(
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n

δ

τR

)

− 1

+ exp

(

−µ2
n

1

τR

)[

1− cosh

(

µ2
n

δ

τR

)]]}

(7)

The diffusion behavior inside impermeable spheres is illustrated in

Figure 2C, most changes happening around the tissue characteristic

frequency 1/τR = D0/R
2.

The complete list of TDD studies and models used to characterize

tissue structure based on this geometry are detailed in another

section of the manuscript. In addition to the unrealistic case of

infinite impermeable membranes already described by Tanner and

Stejskal [41], similar expressions were derived for diffusion inside

spherical shells [42] and infinite cylinders [43]. The former, in order

to represent cellular nuclei and cytoplasm, adds two extra degrees of

freedom to a problem already prone to overfitting [15]. The latter

was shown successful in estimating the size of small cylinders in the

absence of an extracellular medium [44] and could be promising for

axonal size estimation but is of little use for MR in cancer.

Oscillation Frequency vs. Cell Size
Depending on cell size, the tissue characteristic frequency D0/R

2

can remain out of reach using OGSE and conventional diffusion

gradients, thus preventing a good sampling of the diffusion time-

dependence. Figure 3A highlights the diffusion behavior over a

realistic range of cellular size radii (R = 1–10µm) and ICS free

diffusivity (D0 = 2 µm2/ms). Without a dedicated gradient insert,

the only oscillation frequencies that can be probed with sufficient
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FIGURE 2 | Tumor tissue modeling: intracellular diffusion. Electron micrograph (EM) of murine glioblastoma GL261 cells (A). The approximate cell contours are

delineated in red. (B) Simple three-dimensional geometrical model for tumor cells. Cells are assumed perfectly spherical, homogeneous in size and fully impermeable.

(C) Diffusivity inside impermeable spheres (black) and its frequency- derivative: the instantaneous dispersion rate (gray, arbitrary units). Oscillations frequencies are

normalized to the tissue characteristic frequency D0/R2. The EM was extracted from the dataset used for cell size measurement in Reynaud et al. [15].

FIGURE 3 | Intracellular diffusivity and cell size. (A) The oscillation frequency range available on preclinical scanners (fOGSE < 300Hz, gray area) is most suited to

characterize the diffusion time-dependence inside large structures (R > 3µm). (B) The short time regime, characterized by a linear dependence between D and ω−1/2

(Equations 1 and 2), is only accessible for very large cells (R > 5µm). Plots were adapted from the equations derived in Xu et al. [13].

diffusion contrast on commercial scanners are restricted to the far

left side of the spectrum (fOGSE < 300Hz), insufficient to explore

diffusion inside small structures (R = 1–2µm). On the other hand,

the short-time limit—characterized by the linear relationship between

D andω−1/2–is already within reach for larger cells (R= 5–10µm, see

Figure 3B), as demonstrated in vivo in Reynaud et al. [18].

Modeling Impermeable Tumor Tissue
A commonly used picture to describe tumor tissue is a

non-exchanging multi-compartmental model distinguishing

intracellular from extracellular diffusivity.

Impermeable Spheres within the Extracellular Space
At least four independent parameters (cell radius R, ICS/ECS free

diffusivities Dics
0 /Decs

0 , intracellular volume fraction f ) are needed to

describe the system {impermeable spheres + ECS compartment}.

Additional parameters are required to describe the ECS diffusion

outside the tortuosity limit (D = cste) and short-time regime

(Equations 1–2), or to model additional compartments, such as

vasculature with VERDICT [16]. In practice, multiple PGSE [16, 45]

or a combination of PGSE and OGSE [14, 15] measurements are

combined in order to probe diffusion in a specific or over several

frequency/time domains.

Frontiers in Physics | www.frontiersin.org 5 November 2017 | Volume 5 | Article 58

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Reynaud Time-Dependent Diffusion in Tumors

The IMPULSED model
The IMPULSED (imaging microstructural parameters using limited

spectrally edited diffusion) model combines multiple low-frequency

OGSEmeasurements (fOGSE < 150Hz) and a single PGSE acquisition

in the long time regime (Figure 4A) to quantify the characteristic size

of restriction and ICS fraction [14, 46].

This approach was shown successful in estimating cancer cell

size in vitro in the range (5–10) µm using only a small subset of

measurements on murine (MEL) and human leukemia cells (K562)

[14]. In vivo, the correlation between histology and IMPULSED-

based cellularities were found superior than between histology

and conventional PGSE measurements, in three different colorectal

cancer xenograft tumor models (DiFi, HCT116, and SW620) [46].

This model assumes that the ECS diffusion varies linearly with

frequency fOGSE in the range 50–150Hz. This assumption was

motivated by (i) the empirical linear behavior of the overall ADC

(intra- and extracellular) measured in the healthy mouse brain [34]

and (ii) simulations in extra-axonal space derived from histology

samples [43]. Unfortunately, this would only be valid of a two-

dimensional problem (d = 2 in Equation 3) and the correct formula

for the ECS diffusion around spheres at long times is given by

Equation (5) instead. However, the linear approximation can be

considered as an approximation in a narrow frequency range, with

little impact on estimated parameters.

The POMACE model
The POMACE (Pulsed and oscillating gradient MRI for assessment

of cell size and extracellular space) model combines multiple OGSE

and PGSE measurements in different time domains (Figure 4B).

Microstructural parameter estimation is performed in two steps. The

surface-to-volume ratio and free diffusivity are first evaluated using

high-frequency OGSE in the short-time regime [18] using Equation

(2). These values are then used as constraints when fitting the low-

frequency OGSE and PGSE data (Figure 5, fOGSE < 88Hz) to a model

of impermeable spheres bathing in ECS [15].

Using a dedicated histology coil [47], the validity of POMACE

was tested ex vivo. ICS maps correlated well with optical microscopy

performed on the same samples used for MRI [15]. In vivo, ICS

estimates were found in agreement with ECS estimates from an

effective medium theory [25], while cell sizes matched electron

microscopy measurements in mice gliomas (GL261).

The POMACE framework was later applied to the in vivo

assessment of treatment response in GL261 gliomas and 4T1

mammary carcinomas [48]. Following tumor treatment with 5FU

and bevacizumab, a significant ECS decrease was observed with

POMACE, while the absence of impact on S/V or cell radius suggested

partial membrane deterioration and/or a decrease of the apparent

restrictive surface due to increased cell packing in both cell lines.

The VERDICT model
VERDICT (vascular, extracellular, and restricted diffusion for

cytometry in tumors) is the only model to consider the impact of

tumor vasculature on the directionality of diffusion (Figure 4C).

Cancer cells are modeled by spheres, the extracellular diffusivity by

an isotropic diffusion tensor, and the vascular compartment by an

additional highly anisotropic tensor [16], although its precise form

can vary depending on the application [49].

This more complex modeling comes at the expense of a large

number of parameters to estimate. To ensure fit robustness, the free

diffusivities in the ICS and ECS are fixed. Six independent parameters

are estimated: intracellular and extracellular volume fractions fics and

fecs, cell size R, the pseudo-diffusion coefficient of water inside blood

vessels P, and two angles characterizing the directionality of the

vascular compartment. The intravascular fractions is then calculated

as fv = 1− fics − fecs.

This model successfully differentiated two human colorectal

carcinoma cell lines based on their vascular fraction [16]: SW1222

xenografts exhibited dense perfusion (fv = 0.22) while LS174T

(Figure 5) were properly categorized as densely packed (fecs <

0.05) with low perfusion (fv = 0.12). In addition, significant

changes in intravascular and intracellular volume fractions were

observed in response to a chemotoxic agent leading to cell apoptosis

(gemcitabine), as confirmed by flow cytometry [16].

Focusing on PGSE acquired at several diffusion times (10–40ms),

diffusion contrast is plentiful and VERDICT can be easily adapted

to a clinical setting. After preliminary work on model selection,

FIGURE 4 | MR parameters and diffusion signal for three geometrical models: IMPULSED (A), POMACE (B) and VERDICT (C). Only 20 measurements (5 b-values, 4

diffusion times) are required to fit the diffusion signal with IMPULSED (red). With POMACE (blue), 42 points are acquired (3 b-values, 14 diffusion times), strictly

restricted to the DTI regime (b < 0.5 ms/µm2). The full implementation of VERDICT (green) requires 44 measurements repeated along three orthogonal axes (X/Y/Z),

plus acquisitions at b = 0. Note the different scale of b-value along the horizontal axis. The plots illustrate the protocols described in Reynaud et al. [15], Panagiotaki

et al. [16], Jiang et al. [46].

Frontiers in Physics | www.frontiersin.org 6 November 2017 | Volume 5 | Article 58

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Reynaud Time-Dependent Diffusion in Tumors

FIGURE 5 | In vivo time-dependent diffusion in tumors plotted vs. frequency (A) and diffusion time (B). Synthetic data for different cell lines (SW620, GL261, and

LS174T) were generated using the best fits for the diffusion signals respectively reported in Reynaud et al. [15], Panagiotaki et al. [16], Jiang et al. [46]. The range of

frequencies and diffusion times probed with IMPULSED (red), POMACE (blue) and VERDICT (green) can be appreciated in (A,B). The gray area delineates the limit

between OGSE (circles) and PGSE (stars) datapoints. For display purposes, PGSE and OGSE measurements were attributed the equivalent frequency fOGSE and

diffusion time t according to fOGSE = 9/64× t−1, as discussed in Novikov et al. [79].

the previous model was modified to (i) consider the vascular

compartment as isotropic and (ii) fix the free diffusivities and pseudo-

diffusion coefficient to 2 and 8 µm2/ms, respectively. In vivo, the

new model (with only three independent parameters) was able to

distinguish tumor from benign prostatic areas in eight patients at 3T

under acceptable scan times (35min) [49].

A prospective study—INNOVATE [50]—recently started

combining the VERDICT framework with novel blood and urine

sampling based potential biomarkers in an attempt to affine patient

screening and promote the use of multi-parametric MRI before

biopsy for the diagnosis of prostate cancer. Patient follow-up is

needed before assessing the potential improvement in patient care by

diagnosing early aggressive prostate cancer.

ADC dispersion rate
A linear increase of ADC vs. OGSE frequency was reported in the ex

vivo mouse brain in the range 0–150Hz [34]. Regions of large ADC

changes (1f ADC) colocalized well with Nissl staining and densely

packed neuronal regions, suggesting a link between ADC dispersion

and ICS volume and/or cell size.

A theoretical justification for this effect can be found in Equation

(7) and Figure 3. At low frequency OGSE, the intracellular diffusion

in small structures (R ≤ 5 µm) does not approach the asymptotic

short-time limit and can be considered linear with fOGSE, as a first

approximation in a narrow frequency range. Fixing D0, the slope of

this linear relationship increases with cell size (Figure 3A) and ICS

volume, assuming slower diffusion time-dependence in the ECS.

The ADC dispersion rate averaged in the range 50–250Hz

was shown sensitive to treatment of colorectal tumor SW620 with

barasertib (AZD1152) [51], known to induce the formation of new

chromosomic structures at subcellular level, increased cell size and

eventually apoptosis [52].

A closer look on Figure 2C highlights that the instantaneous

dispersion rate ∂D/∂f is non-monotonous with OGSE frequency.

A maximum is reached around 0.4 × D0/R
2, suggesting potential

for characterizing the tissue characteristic restriction scale. This

was demonstrated in vitro using two cell lines with different

radius (R = 5/10µm for MEL/K562) with significantly different

instantaneous dispersion rate around 60Hz [53].

Although ex vivo experiments performed on kidney and liver

tissue highlighted very little contrast with dispersion rate compared

to conventional ADC [53], these result are dependent on sample

preparation and fixation, and should be reproduced in vivo. Larger

diffusivities might shift the oscillation frequency range of interest.

Impermeable Model-Free Approaches
Non-geometrical models can also be used to describe tumor

microstructure. Systems can indeed simplify in a specific time regime,

where geometry is partly irrelevant, such as the very short or long time

regime. This results almost always in a more accurate estimation of a

certain tissue parameter, at the expense of another.

The short time regime
As discussed in the first section, the universal behavior of short-time

diffusion is described for PGSE and OGSE by Equations (1) and

(2). In this regime, any system can be considered made of two spin

populations. Regardless of the particular geometry, some random

walkers will never experience the cell walls (and freely diffuse with

D0) while the displacement of the population within diffusion length

of the wall (with volume fraction: height× surface/volume =
√
D0t×

S/V) will be restricted. At such short times, neither the curvature nor

the permeability of the cell walls impact diffusion [10, 19].

The validity of the short diffusion-time regime was demonstrated

in vivo and ex vivo in mice gliomas (GL261, R∼5µm) in the range

88Hz ≤ fOGSE ≤ 225Hz [18]. The decoupling of diffusive and

geometric properties was assessed ex vivo by varying the sample

temperature, only impacting the term D0 in Equation (2). Parametric

maps of S/V and D0 were easily accessible in vivo, paving the way for

robust—thanks to linear fitting—and unambiguous interpretation of

TDD in tumors.

Potential applications in a clinical setting include characterization

of breast cancer. Recently, this regime was demonstrated in vivo at
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3T in healthy breast tissue using STEAM and diffusion times in the

range 80–900ms [54], following up on muscular studies [55, 56] with

similar restriction scale (hundreds of microns).

Effective medium theory at long times
On the other side of the spectrum, the effective medium theory

(EMT) only focuses on the macroscopic properties of tissue. At long

times, molecules have diffused around and inside each structure, so

that microscopic information such as cell size is lost. Using an EMT

analogous to that of conductivity in porous media, the long time limit

of diffusion in a biological system {permeable spheres + ECS} was

derived [17]. In the impermeable case, Equation (2) from Latour et al.

[17] becomes:

D∞ =
(

1− f
)3/2 × D0 (8)

where f is the ICS volume fraction and D0 the free extracellular

diffusivity. Since microstructural information is lost, changing cell

shapes should not affect Equation (8).

This EMT establishes the well-known relationship between PGSE

measurements at long times and cellularity for a simple system [3, 4].

Provided the cell size is of little interest, estimating the tortuosity

limit with multiple PGSE in the long time regime (Figure 1C) is

indeed an alternative way of estimating the size of the ICS. A priori

knowledge on D0 is however required to quantify f using Equation

(8). Additional information on D0 can be gathered in the short-time

regime using Equations (1) and (2).

An EMT approach was successfully demonstrated in mice gliomas

using only four diffusion times (6–31ms) [15]. ICS estimates

were found in excellent agreement with that of POMACE, fewer

acquisitions were required, and fit estimates found very robust.

Unfortunately, cell sizes could not be estimated using this technique.

CURRENT RESEARCH GAPS AND
PITFALLS

Modeling Issues
In this section are detailed problems commonly encountered when

modeling and fitting tissue microstructure. Potential solutions are

discussed when available. The objective is not to compare the

various fitting frameworks, but rather to discuss common flaws when

modeling biological tissue.

Accuracy and Precision of Fitting
Albeit simplistic, geometrical models require the simultaneous

estimation of at least four independent parameters: cell size R,

ICS volume fraction f, and intra- and extracellular diffusivities Dics

and Decs. Additional parameters are required for modeling time-

dependence in the ECS [14] and/or a vasculature compartment [16].

In practice, the narrow range of diffusion times available in most

scanners (Figure 5) prevents the completely unambiguous estimation

of all model parameters.

Accuracy
Accuracy represents the closeness of fit estimates compared to the

ground truth. In the absence of a ground truth, a commonly used

approach is to generate synthetic data based on the model, add noise,

and compare the “noisy” fit outputs to the initial “clean” input.

For preclinical brain studies, typical in vivo SNR values range were

reported between 100 and 150 [15].

We consider here the case of impermeable spheres within the

ECS. As in POMACE, the ECS is modeled in the tortuosity limit

for low-frequency measurements, and in the short time regime for

high-frequency OGSE acquisitions. The problem is further simplified

by initiating the fitting algorithm from the ground truth in order to

minimize the influence of local minima when estimating parameters.

Synthetic data is generated from the parameters best describing TDD

in murine glioblastoma [15].

Without PGSE, a large range of solutions emerge from noise

propagation (Figure 6A) despite high SNR (SNR= 120) and multiple

OGSE time-points (10 fOGSE steps from 60 to 225Hz). This model

is obviously not well suited to characterize tumor microstructure

accurately, its solutions are not centered on the ground truth.

This issue can be resolved here by increasing the SNR or

incorporating additional data points (b-values and/or diffusion

times), for instance PGSE measurements. Incorporating a priori

knowledge on the system—by fixing one parameter—will also help

by reducing the degree of freedom of the problem. A combination

of the last two approaches was chosen to improve the robustness of

the POMACE framework [15], as can be seen in Figure 6B. Another

“angle” can be to use the directionality of diffusion, only useful when

properly accounted for in tissue modeling [16].

Similarly, synthetic diffusion data was generated using the

IMPULSED framework [46] in order to mimic TDD in colorectal

tumors (see Table 1). Multiple instances of gaussian noise (typical

in vivo SNR = 120, n = 2,500) were added to the signal before

fitting. Although the distribution of fit estimates were not found

normal (Figures 6C,D), average fit estimates matched the ground

truth (SNR = ∞) with good accuracy for most parameters (Table 1,

relative bias below 3/13% for f, R, Dics for DiFi/HCT116 cell

lines). The matlab code used to generate synthetic tumor data and

plot parameter accuracy with POMACE and IMPULSED is readily

available for download at https://github.com/oreynaud/FIT_TDD.

Precision
The primary objective behind the development of TDD was to

attribute the changes in the diffusion signal to specificmicrostructural

metrics, without ambiguity. Even if the fit is accurate, microstructural

variations—in space or time—can only be reliably estimated if they

exceed the fit precision, defined by the reproducibility of parameter

estimation.

Small changes in volume fraction are likely to be picked up by

POMACE (Figure 6B and standard deviations in Table 1), due to

the large amount of data acquired in the long time regime. On the

other hand, the IMPULSED framework is well suited to detect small

variations in cell size (Table 1) and would benefit from a reduced

scan time. Results might depend on the particular microstructure, as

illustrated by the different precision available on diffusivities estimates

between the two colorectal cell lines.

In general, it appears unreasonable to attempt to detect variations

below the following thresholds: 1fmin = 3% and 1Rmin = 0.5µm.

Since low image SNR is extremely detrimental to the fit precision,

smoothing and/or averaging the signal within regions of interest

might be preferred to raw single-voxel parametric mapping in order

to enhance the robustness and specificity of the analysis. Special care

should however be taken in very heterogeneous tumors.

Fixing Parameters
Because of model over-parametrization, most TDD frameworks

resort to fixing one or several parameters in order to improve the
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FIGURE 6 | Model accuracy and precision. Distributions of intracellular volume fractions and cell radius estimates on noisy data (synthetic GL261 glioma signal, SNR

= 120, n = 2,500) using (A) OGSE measurements in the range (65–225) Hz, or (B) a combination of PGSE (16/9/16/31ms) and OGSE data as in POMACE [15]. Fit

estimates distribution when characterizing tumor microstructure in vivo inside DiFi (C) and HCT116 (D) colorectal tumors with IMPULSED [46]. The ground truth is

indicated by a black square. For each framework, the full list of fit estimates can be found in Table 1. The matlab code used to generate synthetic tumor data and plot

parameter accuracy with POMACE and IMPULSED is readily available for download at https://github.com/oreynaud/FIT_TDD.

fit stability and precision. This comes at the expense of accuracy,

because errors on fixed parameters can propagate into the remaining

fit estimates.

In the first VERDICT framework, the ICS and ECS diffusivities

were fixed based on fit optimization performed on preliminary data

[16], and found consistent with values derived from ex vivo studies

with high SNR [57]. To further improve the fit robustness, the

pseudo-diffusion coefficient of the water inside blood vessels was also

fixed when characterizing prostatic tissue lesions in vivo in a later

study [49].

In POMACE, the extracellular free diffusivity Decs
0 was also fixed

(Decs
0 = 2.7/1.9 µm2/ms in vivo/ex vivo) and used as an additional

constrain to reduce the degree of freedom to three parameters, using

short time limit measurements [15].

Despite being central to the fit accuracy and precision, it is not

always clear how other frameworks deal with these practical issues.

Data and code sharing, a good example of which can be found

in Panagiotaki et al. [16], would help increase the transparency so

desperately needed when dealing with complex modeling.

Diffusion Is Not Constant in the ECS
The main three geometrical models (IMPULSED, POMACE,

VERDICT) all assume that the extracellular diffusion is in the

tortuosity limit for PGSE [14, 16] and/or low-frequency OGSE [15].
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TABLE 1 | Accuracy and precision of all fit estimates (average ± std, n = 2,500).

Cell line

(model)

SNR f [%] R [µm] Becs

[1,000*µm2]

Dics

[µm2/ms]

Decs

[µm2/ms]

GL261

(POMACE)

∞ 56 4.8 – 0.95 2.06

120 57 ± 3 5.0 ± 1.0 – 0.98 ± 0.11 2.09 ± 0.23

DiFi

(IMPULSED)

∞ 86 9.5 2.1 1.15 0.44

120 87 ± 8 9.3 ± 0.6 5.2 ± 5.3 1.12 ± 0.09 0.58 ± 0.38

HCT116

(IMPULSED)

∞ 46 6.8 2.4 1.53 0.75

120 52 ± 8 7.2 ± 0.8 3.6 ± 1.8 1.34 ± 0.27 0.81 ± 0.13

The synthetic data was simulated based on the parameters estimated in vivo for GL261

gliomas [15], and DiFi and HCT116 colorectal tumors [46]. Good accuracy was generally

observed for f, R, and Dics under in vivo conditions (SNR = 120).

However, in the long time regime, Equations (6) and (7)

degenerate intoDPGSE,ics (t) ∝ 1/t andDOGSE,ics (ω) ∝ ω2. Therefore,

the ECS time-dependence, supposedly varying as 1/t or ω3/2 using

Equations (4) and (5), is not negligible when t → ∞ or ω →
0. Neglecting the ECS time-dependence is in general wrong (see

Figures 1C,D) and should be carefully justified, depending on the

application.

This problem can be resolved by estimating a lower and upper

bound for the extracellular diffusivity in the range where it is assumed

constant. If ECS diffusion variations cannot be neglected, prior

knowledge on typical restriction scales can be used to justify that

intracellular changes are expected to dominate the overall time-

dependence. Obviously, the validity of such an approach would only

hold in a certain time/frequency range, and for a specific application.

Microscopic Heterogeneity
To date, all geometrical models have considered that each component

of tissue microstructure (compartment size, diffusivities. . . ) could be

properly modeled by a single metric per voxel, fully depicting the

value of a particular parameter. This can potentially lead to substantial

bias, since tumor heterogeneity—revealed with histopathology—is

present both at macroscopic and microscopic scale.

Because the relationship between the different estimated

parameters and the resulting MR signal is not linear (see Equations

6 and 7), the various outputs of the fit procedure are likely not to

represent neither the average nor the median value of any physical

metric that could be measured using a more direct imaging method

(electron/optical/fluorescence microscopy).

Interestingly, DWI can be used to probe intra-voxel parameter

variance using conventional kurtosis imaging [7] and/or the recently

introduced kurtosis-based DIVIDE technique [8]. These techniques

can be used as safeguards to delineate areas of strong heterogeneity

in order to minimize parameter bias with TDD due to strong intra-

voxel variance. In their absence, most parameters shall be regarded as

indexes, rather than specific precise markers of tumormicrostructure.

Accounting for Tissue Permeability
All the models introduced so far consider cells to be fully

impermeable. The present section will focus on (a) how to properly

model membrane permeability κ at short and long times, (b) whether

it impacts parameter estimation using geometrical models and (c)

alternative models that attempted to account for permeability, using

TDD and/or filter exchange imaging.

The short time limit
Cell permeability does not impact diffusion measurements at very

short times: Equations (1) and (2) are always valid regardless of cell

permeability κ . However, as time increases, diffusion departs from

the previous equation and can be expressed as in Sen [19] and Sen

[58]:

D1 (t) = D1

(

1−
S1

V1

[

4
√
D1t

9
√

π
−

√
D2

(√
D2 +

√
D1

)

6D1
κt

−
ρt

6
+

D1t

12

〈 1

R1
+

1

R2

〉

R

]

·
)

+ O(D0t
3/2) (9)

Here ρ is the surface relaxivity, and Di, Si/Vi, and Ri the free

diffusivity, surface-to-volume ratio, and radius of curvature of

compartment i = {1,2}. A similar expression describes the diffusion

in the second compartment, by interchanging the subscripts {1,2} and

the sign of the last term 〈 1
R1

+ 1
R2
〉R, representing the average inverse

curvature radius over the interior surface.

The models simplifies under two assumptions: ρ ≪ κ (true

for most biological systems) and D1 = D2. The curvature terms

cancel each other in the overall diffusion D = f D1 + (1 − f )D2.

From there follow that the linear dependence of the diffusion directly

represents the influence of permeability κ . Estimates are weighted by

the surface-to-volume ratio counted twice, as randomwalkers explore

the walls both from inside and outside the cells.

Using the diffusivity and permeability calculated for packed

erythrocytes (red blood cells) in Latour et al. [17], Sen [19] estimated

that permeability only becomes a relevant model parameter when

diffusion times approach or exceed 60ms.

Since in vivo diffusion deviates from the short-time limit regime

around fOGSE = 88Hz for cancer cells [18], one could wonder

whether permeability might already impact low-frequency diffusion

measurements. However, the mismatch between experimental data

and Equation (2) could not be fitted by a linear relationship with

fOGSE.

The long time regime
The impact of permeability on diffusion at long times can be derived

using the EMT proposed by Latour et al. [17]:

(

D∞ − D∗

Decs − D∗

)

×
(

Decs

D∞

)1/3

=
(

1− f
)

, with

D∗ = DicsκR/ (κR+ Dics) (10)

Equation (10) was successfully used to estimate membrane

permeability in bovine red blood cell samples around 6.3 × 10−3

cm/s [17]. Diffusion results were found well in agreement with

extensive literature in red blood cell permeability [59, 60].

This equation simplifies for f = 1 (i.e., no ECS) to the well-

known equation derived by Tanner [61] for a stack of flat layers with

characteristic length R: D−1 = D−1
ics + (κR)−1. This approximation

was later used to accurately measure cells permeability in yeast

suspensions [62].

Permeability and geometrical models
The lesser tortuosity expected from permeable cells according to

Equation (10) was observed experimentally on human leukemia K562

cells treated with saponin [63], for the multiple diffusion times and

oscillation frequency available on preclinical scanners.

The impact of non-zero permeability on parameter estimation was

simulated using a finite difference method within the IMPULSED

framework [64]. The robustness of most fit estimates (f, R, Dics) was

demonstrated under two conditions: the image SNR must remain

large (≥ 50) and the water exchange time τ–related to permeability

via κ−1 = 3τ/R− R/5Dics – must exceed 100ms.
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Such results would in all likelihood hold for other frameworks,

provided tissue exchange times exceed the longest diffusion times

used to probe diffusion. In cancer, water residency times were

estimated around hundreds of milliseconds [65–67], suggesting

that permeability could bias but not severely impact parameter

estimation performed using PGSE and OGSE. However, changes of

cell permeability due to treatment during longitudinal studies could

impair the specificity of the model via the apparent variation of other

microstructural estimates, such as cell size and ICS diffusivity.

Empirical “permeable planes/spheres” models
The analytical solutions for the diffusion inside impermeable spheres

Dspheres (R,D0) or between planes Dplanes (R,D0) predict D = 0

at infinite times. Rather than evaluating the contribution of a

second—extracellular—compartment, a handful of studies attributed

the disparity between these models and the observed diffusion

(D∞ 6= 0) to membrane permeability, and modeled the TDD

of a biological system using empirical formulas such as: D =
D∞ + Dplanes/spheres(R,D0 − D∞) [28, 35]. It should be noted that

permeability cannot be estimated using those models.

Such models can be used to sensitize MRI to small tissue changes

thanks to a restricted number of fit parameters, andwere shown useful

in assessing tumor treatment efficacy in two ovarian human cell lines

(OVCAR-8 and NCI/ADR-RES) [35].

However, interpretation of the results is limited as only a mere

qualitative insight into tissue structural changes is possible. Without

ECS, the pseudo-intracellular diffusivity D0 − D∞ is void of physical

meaning. At best, R can represent a “restriction index”, based on

D0 − D∞ and the characteristic oscillation frequency (Figure 2C).

The random permeable barrier model (RBPM)
In cancer, randomly oriented flat membranes represent a more

realistic model than a stack of flat layers, for which a solution

accounting for permeability can be derived [20]. Using the EMT

formalism for the diffusion signal proposed in Novikov and Kiselev

[31], D(t) is related to the dispersive diffusivityD(ω) via:

D (t) =
1

t

∫

dω

2π
e−iωt D(ω)

(ω + i0)2
(11)

andD(ω), for random permeable barriers, is described by Novikov et

al. [20]:

D0

D(ω)
= 1+ ξ + 2zω (1− zω)

[
√

1+ ξ/(1− zω)2 − 1

]

(12)

where ξ represents the effective volume fraction of membranes via

ξ = S/V × D0/2κd in d dimensions, and zω = i
√
iD0/2κ is a

dimensionless frequency.

Although never applied in tumors, the RBPM geometry is well

suited for muscle studies [56], and tissue permeability and cell size

were recently estimated in vivo and on clinical scanners [68]. This

approach could provide an interesting approach to characterizing

sarcomas using TDD in the near future.

Filter exchange imaging (FEXI)
A promising alternative to TDD for characterizing cell permeability

might lie in apparent exchange rate/filter exchange imaging (FEXI)

[69, 70]. In FEXI, a stimulated-echo double diffusion encoding

sequence uses two PGSE diffusion blocks separated by a mixing

time td, during which exchange between intra- and extracellular

compartments (where diffusion is assumed to be approximately

Gaussian) occur. The water exchange rate is estimated by measuring

a mono-exponential decay of diffusion with mixing time td [69].

The clinical potential of FEXI was first assessed in the brain, in

both healthy and brain cancer patients, where viable and necrotic

parts of the tumor could be clearly differentiated based on exchange

rate [70]. More recently, FEXI was shown capable of differentiating

two brain cancer types (astrocytomas vs. meningiomas) in vivo based

on exchange rate using only a small sample size (5–10 subjects) [71].

In breast cancer, FEXI could differentiate between multiple cell lines

in vitro, while its potential for in vivo imaging was also demonstrated

[72].

Time and Hardware Issues
Acquisition Time
A typical TDD experiment relies on the acquisition of multiple

diffusion measurements performed when varying the diffusion

time/oscillation frequency. Multiple diffusion times are required to

extract relevant microstructural information from variable molecular

restriction via Equations (6) and (7). It is also recommended to

acquire a large range of b-values due to the large amount of

parameters to estimate when fitting diffusion data to a specific model

for tissue microstructure. The multiplicity of scans considerably

lengthens the acquisition time dedicated to TDD.

Long scanning times are detrimental for the translation of newly-

derived frameworks in a clinical setting. In that view, efforts are being

made to shorten the number of measurements [46, 49].

This issue can be magnified for anisotropic media, where some

compartments should be characterized by a tensor. Tissue lesions

are often considered isotropic for convenience and practicality [49],

potentially at the expense of specificity [57].

Frequency Range and Cell Size
The apparent mismatch between preclinical and clinical applications

originates from restricted scanner capabilities.

Preclinical scanners
For a given gradient strength and duration, bOGSE ∝ f−3

OGSE for

cosine OGSE [27]. As a result, reasonable contrast at large oscillation

frequencies can only be achieved by compensating the lesser temporal

window allow for molecular diffusion by stronger dephasing, i.e.,

stronger gradient strength.

This sets an upper bound limit for the frequency of OGSE

measurements around 300–350Hz (using bOGSE = 0.4 ms/µm2 and

typical echo times) on preclinical scanners equipped with diffusion-

friendly gradients (1 T/m). This in turns sets a lower limit for the

range of restriction scales that can be probed using TDD around

R ∼
√

D0/fOGSE ∼ 2µm.

As a result, most preclinical applications of TDD so far have

focused on relatively large structures, such as brain glioma or

colorectal cells (R ∼ 4–20µm). An obvious downside is that—in

the brain—the comparison of diffusion-based tumor microstructural

metrics with healthy tissue remains out of reach, since TDD is not

adapted to characterize normal brain tissue structure (white/gray

matter).

Although sinusoidal OGSE exhibit larger b-values than their

cosine counterpart, a DC component is introduced into the

frequency spectrum, effectivelymixing conventional PGSE andOGSE
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measurements [27]. Compared to cosine OGSE, the gain in diffusion

contrast does not originates from the frequencies of interest.

Clinical scanners
The situation worsens for clinical scanners, where fOGSE = 100Hz

can only be achieved with b < 120 s/mm2 (3T, gradient strength

80 mT/m). While intra-voxel incoherent motion effects [73] do

not affect cosine modulated OGSE or other sequences with no

sensitivity to the zero frequency of the diffusion spectrum relating

to translation, this results in poor diffusion contrast. In addition,

diffusion is in that range already highly restricted in small structures,

and microstructural information cannot be retrieved using diffusion

time-dependence [74]. The development and availability of high

gradients systems is crucial to the eventual translation of the full TDD

potential to the clinic.

On the contrary, clinical diffusion—using STEAM and PGSE—

is already well adapted to characterizing breast and muscle tissues,

where the restriction scale approaches hundreds of microns. TDD

applications in sarcomas and breast cancer are well within reach of

the current hardware systems, and are expected to flourish over the

next few years.

In addition, the potential success of the INNOVATE study [50] on

a large cohort could represent a tremendous springboard for prostate

cancer characterization using TDD, as well as a major billboard for

promoting TDD applied to various forms of cancer.

APPLICATIONS OF TIME-DEPENDENT
DIFFUSION IN CANCER AND FUTURE
DEVELOPMENTS

Range of Applications
The full list of studies combining TDD with in vivoMR of cancer can

be found in Table 2.

At preclinical level, in vivo time-dependent studies have focused

on brain gliomas using rat [45, 75, 76] and mice models [15, 18, 48],

as well asmice xenografts models of colorectal [16, 46, 51] and ovarian

cancer [35].

On the other hand, human in vivo applications have targeted

prostatic tissue [49, 50, 77, 78] and breast lesions [54], while its

potential in muscle was shown in Sigmund et al. [56].

Tumor Treatment
A distinction is made between two classes of studies. On one hand,

sensitive metrics can be derived from TDD experiments without

proper tissue modeling, by benefiting from a small number of

degrees of freedom. Alternatively, the diffusion frameworks based on

geometrical modeling and multi-compartmental approaches provide

specific insight into tumor structure. This comes at the expense

of parameter accuracy and precision due to the large number of

estimates to quantify.

Sensitive Markers
The impact of tumor treatment on TDD measured with OGSE was

first observed in vivo in the rat brain following the injection of

BCNU in 9L gliomas [75]. A significant increase in contrast (tumor

vs. healthy brain) was obtained from ADC maps at high oscillation

frequencies (fOGSE = 240Hz).

From the same group, Xu et al. [51] acquired the diffusion

signal for a wide range of oscillation frequencies 2 and 4 days after

chemotherapeutic treatment on SW620 colorectal tumors grafted in

mice limbs. Results differed from the previous experiment in that the

treated tumor ADC decreased for high frequencies, but still increased

for PGSE and low-frequency OGSE. These observations, consistent

with a decrease in cell density simultaneous to an increase in cell

size following the barasertib treatment, highlighted the necessity

to probe diffusion on a large time scale. Based on these findings,

TABLE 2 | List of in vivo applications of time-dependent diffusion in cancer.

Study Species Organ Cell line Treatment Conclusion

[76] Rat Brain C6 (glioma) *** Increased diffusion contrast in tumor with OGSE

[75] Rat Brain 9L (glioma) BCNU Large ADC increase using OGSE (following tumor treatment)

[51] Mice Limb SW620 (colorectal) barasertib ADC dispersion rate decrease (following tumor treatment)

[16] Mice Limb LS174T, SW1222 (colorectal) gemcitabine Assessment of cell size and vasculature using VERDICT

[15] Mice Brain GL261 (glioma) *** Quantification of Surface-to-volume ratio in tumors

[18] Mice Brain GL261 (glioma) *** Estimation of cell size and ECS volume fraction using POMACE

[48] Mice Brain GL261 (glioma), 4T1 (mammary

carcinoma)

5FU + bevacizumab ECS decrease 1–2 days following tumor treatment

[45] Rat Brain GBM4 (glioma) Non-gaussian diffusion in restricted compartment of high tumor

density regions

[46] Mice Limb DiFi, HCT116, SW620

(colorectal)

Cell size estimation using IMPULSED

[35] Mice Limb OVCAR-8, NCI/ADR_RES

(ovarian)

Nab-paclitaxel Change in restriction size (following OVCAR-8 tumor treatment)

[49] Human Prostate Manifold Vasculature-specific tumor differentiation using VERDICT

[50] Human Prostate Manifold INNOVATE: Prospective cohort study using VERDICT for evaluating

prostate cancer screening

[78] Human Prostate Manifold Model-free observation of diffusion time-dependence in prostate

cancer

[54] Human Breast Cyst, carcinoma, fibroadenoma Observation of short time regime for radial diffusion in healthy breast

and lesions

*** indicates that ex vivo MRI was also performed on fixed tissue.
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the ADC dispersion rate—averaged over the range 50–250 Hz—

was proposed as a promising sensitive (but unspecific) marker for

treatment efficacy [51].

Recently, Jiang et al. [35] evaluated the potential of an empirical

model—of the type D = D∞ + Dplanes/spheres(R,D0 − D∞)–to study

ovarian cancer cells (OVCAR-8 and NCI/ADR-RES) undergoing

mitotic arrest. As already discussed, such models can be used to

sensitize MRI to small tissue changes thanks to a restricted number

of fit parameters. Significant changes of the “restriction index” and

“free diffusivity” were reported following treatment of OVCAR-8 with

Nab-paclitaxel [35].

In summary, TDD has been successfully used to observe a small

trend in ADC and ADC dispersion rate, or using simplistic modeling.

Although sensitive, the reported results remain difficult to interpret

due to the non-physical origin of the measured metrics. Changes

in diffusivities, compartments and cell size cannot be efficiently

disentangled from the estimation of a small number of non-physical

parameters.

Specific Markers
The influence of cell apoptosis on TDD was assessed in vivo using

the VERDICT model on LS174T colorectal xenografts treated with

gemcitabine [16]. The changes in cell size observed in vitro (on the

order of 5%) were not found significant with VERDICT, likely the

result of insufficient precision on fit estimates. However, significant

changes in vascular and intracellular volume fractions were found.

These results were found consistent with cell apoptosis, providing for

once a specific insight into changes at microstructural level based on

diffusion.

The POMACE framework was recently used tomeasure the in vivo

microstructural changes associated with chemotherapeutic therapy

on GL261 and 4T1 cell lines [48]. A small ECS decrease (−10%)

was measured 2 days after injection. Interestingly, surface–to-volume

ratio estimates in the short time regime did not vary significantly

following 5FU treatment, likely the result of a simultaneous—but

small—increase in cell size that could not be detected with POMACE.

In summary, applying the geometrical models detailed in this

review often suffer from a lack of sensitivity to detect and/or reliably

quantify the relatively small changes happening at microstructural

level. Validation is also impaired by the difficulty of confirming MRI

measurements with other imaging modalities. To date, the clear

measurement of a specific change in microstructure (f, R, S/V) or

medium property (Dics, Decs) following tumor treatment—and fully

consistent with histology and/or electron microscopy - has yet to be

demonstrated and reported.

Future Developments
Although TDD has demonstrated great potential for non-invasive yet

specific cancer characterization, many challenges remain before the

technique can be suitable integrated into a clinical setting. Some of

the questions the community will need to answer are non-specific to

the field of TDD in cancer.

In the short term, future areas of research shall include the

integration of permeability into geometrical models of cancer,

a cautious assessment of the sensitivity and utility of each

processing framework, and proper and successful validation of

TDD in cancer using multimodality (MRI/microscopy/fluorescence

imaging/Electron Micrography) imaging of the same tissues both

ex vivo and in vivo.

Addressing the specificity issue is also of prime importance—here

lies the real advantage of performing TDD compared to conventional

DWI, and the number of fixed parameters shall be kept to aminimum,

potentially by combining TDD with additional measurements in

specific extra short/long time regimes.

The added benefit of performing TDD in terms of diagnosis

and/or therapeutic follow-up shall be investigated as well. Results

from the INNOVATE study will inform further about the potential of

TDD in a clinical setting. Time-dependent measurements in muscle

and breast are equally promising, as they can easily be performed

in the clinic using the hardware (i.e., magnetic field gradients)

commercially available today.

The following questions should also be addressed. How can

we model healthy tissue so that we can extract meaningful

parameters and compare them to those of control regions at

individual level? Will TDD ever be applied for human brain cancer

mapping in vivo? Can we find an optimal unifying framework to

perform TDD?

CONCLUSION

TDD is slowly emerging as a strong contender for non-invasive

tumor characterization. Despite the lack of a general analytical

solution, diffusion can be probed in various regimes where systems

simplify to extract relevant information about tissue microstructure.

If modeling is thought adequate, Equations (1)–(8) describe how

to properly model diffusion in both intracellular and extracellular

compartments, or in a combined system. When it cannot be

neglected, permeability should be accounted for in the short and long

time regime using Equations (9) and (10), or within specific models,

as seen in muscle studies. To date, preclinical TDD applications

include amongst others the characterization of rodent brain gliomas,

and murine xenografts of colorectal or ovarian cancer. This approach

has indeed proven successful in estimating tumor intra- and

extracellular volume fraction and cell size, as well as treatment

efficacy. In the clinic, although probing such small restriction

scales is practically impossible due to hardware constraints, it is

expected that human applications on breast and prostate cancer

will strongly benefit the community in terms of non-invasive cancer

screening.
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