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This work has shown the way to put the formal statistical-mechanical basement under

the hotly debated notion of enthalpy-entropy compensation. The possibility of writing

down the universal equation of state based upon the statistical mechanics is discussed

here.
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INTRODUCTION

The present communication is based upon the work of an outstanding Viennese-born USA-
American physical chemist, Dr. Georg(e) Augustus Linhart (1885–1951) [1–11] and aims at
demonstrating its fundamental significance, in an attempt to bridge the gap between Linhart’s
approach and those introduced and followed by other colleagues. In fact, this report is the sequel to
our most recent publications on this theme [12–15], and our work is still going on, but we would
greatly appreciate presenting some preliminary results herewith.

We realize that submitting such a manuscript to a modern physical journal ought to
be running a gauntlet—both for the authorship and for the readership. The present author
would greatly appreciate to revitalize a number of well-forgotten ideas expressed long time
ago by “widely unknown” colleagues, and this warrants the novelty of the communication at
hand.

Specifically, Dr. Linhart could have managed to formally infer the “notoriously magic”
Boltzmann-Planck logarithmic formula connecting the entropy notion with some Probability.
Linhart’s idea was to employ the Bayesian approach to clarify the physical sense of the latter, and
he successfully solved the problem by demonstrating that the “Probability” is in effect nothing
else than just a handy algebraic function of the absolute temperature, and it is this way that it
could have become possible to start building up the physically sound statistical mechanics. To our
regret, Dr. Linhart had no chance to complete his seminal work, and this communication ought to
represent one of the steps in our already active project aiming at the revitalization of his legacy.

In analyzing Dr. Linhart’s published and unpublished work, we have encountered a totally
fresh, unconventional and, howbeit, fully professional line of sight as concerns thermodynamics.
Further, in thoroughly digging the available literature we have encountered works by a non-
negligible number of colleagues, who were consistently following strikingly similar trains of
thoughts. This has clearly suggested that trying to combine the details of the latter ones might
definitely be throughout fruitful. Hence, by choosing the word “unconventional” here we would
greatly appreciate attracting the attention of the young professional readership in the first
place.
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RESULTS AND DISCUSSION

Dr. Linhart could not only manage to formally prove the
ingenious Boltzmann-Planck guess that entropy is proportional
to the natural logarithm of some fancy probability. He could
also clarify the physical sense of the latter in demonstrating
that it ought to be a handy algebraic function of the absolute
temperature [1–3, 6].

In our works [12, 15] we have shown that Linhart’s
representation of the heat capacity at constant volumes, CV ,
as an algebraic function of the absolute temperature might
not only lead to the formal inference of the Boltzmann-Planck
formula, but also to revealing the actual physical sense of
the fancy probability variable under the natural logarithm’s
sign. It also occurs to be possible to introduce the “Bayesian
Statistical Mechanics” upon such a ground, which is not in
contradiction with the conventional one, but definitely extending
the applicability scope of the latter.

Here we would greatly appreciate presenting some further
formal proof of the above statement.

Entropy-Enthalpy Compensation at the Tip
of Pen
In the works [12, 15] we could have derived handy mathematical
expressions for the entropy, internal energy—and therefore
for the Helmholtz free energy—as functions of the absolute
temperature and demonstrated that the actual statistical
properties of the systems under consideration ought to obey the
Beta probability distribution. This way it is throughout possible
to treat mathematically formally and rigorously the ubiquitous
fuzzy aspects of the problem under study.

Meanwhile, the next important theoretical problem is to how
might we treat further important thermodynamic functions,
namely, the enthalpy—and therefore the Gibbs free energy?

It is well known [16, 17] that enthalpy is connected with
the heat capacity at constant pressures, Cp, which might well
be approximated by CV , but solely at low and intermediate
temperatures, whereas at higher temperatures there are always
discrepancies between the both. The actual reason for such
a behavior has been thoroughly studied both empirically and
computationally, and the point is that CV gets anyway saturated
at approximately Dulong-Petit level, whereasCp is still noticeably
temperature-dependent (see e.g., [1–3, 6, 18, 19] and the
references therein).

This urges us to look in for the physical sense of the enthalpy
notion in much more detail.

The interconnections between the CV and Cp are well known
as well (cf. e.g., [20]). Specifically, to work with an intensive
property, we first define the specific heat capacity

c =
C

m
≡

C

ρV
⇒ cp =

(

∂C

∂m

)

p
, cV =

(

∂C

∂m

)

V
. (1)

Here C stands for the heat capacity of some physical-chemical
system of interest, being built-up by a definite material; m is the
mass of this system, whereas ρ and V are the corresponding

density and volume, respectively. With this in mind, we might
speak of the following basic relationship, first of all:

cp − cV =
α2T

ρβT
;

α =
1

V

(

∂V

∂T

)

p

βT = −
1

V

(

∂V

∂p

)

T

.

(2)

Here α stands for the thermal expansion/compression coefficient,
whereas βT is isothermal compressibility, p–pressure, T–absolute
temperature. Moreover, there is ratio cp/cV as well

cp

cV
=

βT

βS
;

βS = −
1

V

(

∂V

∂p

)

S

. (3)

Here βS stands for the adiabatic/isentropic compressibility, S is
the entropy.

Further, in general terms, the enthalpy change ought to be
expressed as follows:

dH = CpdT + V (1− αT) dp . (4)

Taking into account (Equations 1–3), we get:

dH =
βT

βS
cVdT + ρ−1dp−

(

(βT)2

βS
− βT

)

cV dp . (5)

Of considerable interest would be evaluating how enthalpy is
dependent on the absolute temperature. With this in mind, first
we would like to neglect the pressure dependence of enthalpy,
in considering the case of the ideal gas. Otherwise, to avoid
working with basically ideal systems, we might wish to consider
some realistic isobaric situation. Then, dp = 0, implying that in
our considerations we might control from outside the pressure
imposed on our system, and wish now to ensure that the pressure
imposed on our system is constant. This way, we might recast
Equation (5) as follows:

H =
∫

βT

βS
cVdT . (6)

As we do know from Linhart’s work what the temperature
dependence of cV should be, of our primary interest is to correctly
assign the temperature dependences of both the isothermal and
the adiabatic compressibility.

In the literature we might fetch an extended row of papers
dealing with this topic thoroughly and in detail (cf. e.g., [21–42]
and the references therein). After taking into account this entire
information, we dare to conclude that whereas the adiabatic
compressibility might largely be considered a linear function
of temperature, the isothermal compressibility is dependent on
temperature in a much more non-trivial way, namely:

βT ∝ a1T + a2(T)−
1
2 +

a3
T

;

βT ∝ exp[c1 +
c2
T

+ c3 ln T] . (7)
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In these relationships, the temperature is in Kelvin, whereas

isothermal compressibility is in
(

J · cm−3
)−1

.
The work [26] shows that the both relationships given

by Equation (7) properly guarantee satisfactory fitting the
relevant experimental results, while using the exponential
expression leads to noticeably better results than employing
the algebraic equation. On the other hand, to our mind, the
exponential functional dependence is muchmore difficult to treat
theoretically, while the latter one enables us to evaluate and
analyze the anti-derivative of Equation (6) in a straightforward
way.

This is why we employ the algebraic formulation in our
present work, implying that it delivers a handy functional
approximation to the exponential one. That the latter one
is possessed of the better numeric properties renders our
conclusions a rather reasonable approximation.

With this in mind we shall present here our result, with
sending the readership to the mathematical Appendix here for
all the necessary technical details.

To sum up, we adopt here the relative absolute temperature
like in our work [12], x ≡ T

/

Tref , where Tref is some reference
temperature, the physical sense of which we shall clarify.
Bearing this in mind; we arrive at the following result for the
isobaric temperature dependence of enthalpy, Hp (“2F1” denotes
below the conventional Gaussian hypergeometric function 2F1
(a, b; c, z)):

Hp (x) =
∫ (

a1 +
a2
x
√
x
+

a3
x2

)

·
xKdx

(

1+ xK
)

≡ a1 ·
xK+1

K + 1
· 2F1

(

[1,
K + 1

K
], [

2K + 1

K
],−xK

)

+

a2 ·
xK−

1
2

(

K − 1
2

) · 2F1

(

[1,
2K − 1

2K
], [

4K − 1

2K
],−xK

)

+

a3 ·
xK−1

K − 1
· 2F1

(

[1,
K − 1

K
], [

2K − 1

K
],−xK

)

. (8)

Analyzing Equation (8) enables to recast it in the following
approximate form (see the Appendix in Supplementary Material
for the technical details):

Hp (x) ≡ ln
(

1+ xK
)

·

(

a1x
(

1+ xK
)

K + 1
+

a2
(

K − 1
2

)√
x
+

a3
(

1+ xK
)

x (K − 1)

)

.

(9)

One striking feature might be of immediate interest, namely
the similarity of the functional expressions of the enthalpy and
entropy’s temperature dependencies. Indeed, Linhart’s result for
the entropy’s temperature dependence dictates [1–3, 6, 12] that

S (x) =
C∞

K
ln
(

1+ xK
)

. (10)

Here C∞ stands for the limiting heat capacity (C∞ ∼= 3NAkB ≡
3R, where NA is the Avogadro number, kB−the Boltzmann’s
constant and R−the universal gas constant) [1–12]. Figure 1
depicts typical behavior of entropy and enthalpy vs. temperature,

FIGURE 1 | The graphs of Equations 9 (magenta) and 10 (blue) with some

plausible parameters.

and one can immediately recognize the convergent behavior of
the both up to the value of x= 1, after which the graphs diverge.

Hence, it is throughout possible to interpret this as an
enthalpy-entropy compensation (EEC), whereas x = 1, that is,
T = Tref defines the so-called “enthalpy-entropy compensation
temperature” Tc, that is, Tref ≡ Tc (see e.g., [43–52] and the
references therein).

Noteworthy, the approximate considerations here (cf.
Figure 1) support our conclusion that the generic functional
form of the EEC ought to be rather non-linear, although linear
function still appears to be a rather good approximation for the
EEC anyway (for details, see [44, 45] and the references therein).

Howbeit, in the work [12] we discussed a possibility of
interpreting the temperature values Tref as points of some
“hidden zero-order phase transition.” Such a conclusion is firmly
supported by finding a discontinuity at x = 1 in the temperature
dependencies of the internal energy U(T) and, accordingly, in
the Helmholtz free energy F(T), without revealing it in the
temperature dependencies of both CV (T) and S(T).

Interestingly in this respect, according to our isobaric analysis
above, the temperature dependence of the Gibbs’ free energyG(T)
does not exhibit any discontinuities for the whole range of x
values from zero to unity:

G
(

p,T
) [

it should be G (T) , in our isobaric case
]

= H (T)

−TS (T) ⇒ G (T)

=

(

a1x
(

1+ xK
)

K + 1
+

a2
(

K − 1
2

)√
x
+

a3
(

1+ xK
)

x (K − 1)
−

x · C∞Tref

K

)

· ln
(

1+ xK
)

. (11)

Noteworthy, this is a very interesting result, for our earlier
elementary thermodynamic consideration of the EEC
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phenomenon reveals a definite interrelationship between
the Helmholtz’ and Gibbs’ free energies [51].

Meanwhile, the both free energy types are possessed of quite
different mathematical properties, and therefore ought to reveal
two quite different sides of one and the same phenomenon.

Indeed, the first idea coming to mind would be that although
the enthalpy notion does contain the internal energy notion,
adding the pV product to the latter ought to remove the
discontinuity in the U as a function of T. This means that
the absolute temperature dependence of the pV product does
somehow compensate the discontinuity in the U(T). In more
mathematical and physical detail we would like to analyze
and discuss this point in the mathematical Appendix in
Supplementary Material.

This train of thoughts brings us immediately to the old and
good poser of writing the equation of state, as here we have
just arrived at the fundamental problem of properly describing
correlations among volume/density, pressure and temperature.

Universal Equation of State
After reading the above headline our readership might
immediately exclaim: Stop, there is but still no universal equation
of state, see any serious handbook of thermodynamics (e.g., [53]).

Indeed, we open this book and read in its Chapter 6 on the
Page 280 as follows:

“If we only had a general relation that perfectly described P = P(V,
T) for all the chemicals in the universe, it could be combined with
the tools in this chapter to compute any property required by the
energy and entropy balances. At present, no such perfect equation
exists. This means that we need to understand what makes it so
difficult to develop such an equation and how the various available
equations can be applied in various situations to achieve reasonable
and continuously improving estimates.”

Without going in for answering the question as to “what makes
it so difficult to develop such an equation?”—This exciting topic
will be discussed in a separate publication—we just give here
the pointer to the ingenious works by Swedish colleagues Dr.
Nils Engelbrektsson (1875–1963) and Karl Alexius Franzén
(1882–1967), who had answered this poser quite positively and
very constructively. Specifically, Dr. Engelbrektsson could have
inferred such an equation by analyzing in detail the fundamental
principles of thermodynamics, whereas Mr. Franzén could
have successfully checked Dr. Engelbrektsson’s inferences
experimentally and proven their complete validity. Back in 1920
they both have published their seminal results as a separate
book in Swedish, but until now nobody had anywhere come
to pay attention to this publication. Dr. Engelbrektsson had
devoted his whole life in working on the formulation of the basic
thermodynamics, being also an interesting publicist as a hobby
aside of this. His works might now be fetched in the Swedish
National Library, and we would greatly appreciate presenting
here his full publication list [54–68].

May the above be considered an answer to our poser in such
a case? In our opinion, not to 100%, for Dr. Engelbrektsson
was not studying interrelationships between thermodynamics

and statistical mechanics. Instead, Dr. Linhart could have solely
managed to show the way of developing the statistical mechanics
in connection with thermodynamics, and thus duly pursuing
Prof. Dr. J. W. Gibbs’ train of thoughts. This is why; to answer
the above poser we would actually need bridging the gap between
Linhart and Engelbrektsson’s approaches.

Still, our picture would be largely incomplete, if we would
not mention here the works by another outstanding theoretical
physicist, who was working in Germany: Prof. Dr. Max Bernhard
Weinstein (1852–1918). Prof. Dr. Weinstein is presently known
solely as a harsh censor of A. Einstein’s approach to the relativity
theory, whereas in fact, he was one of the serious and productive
multitalented workers in the fields of theoretical metrology,
physics and natural philosophy. Here we would like to present
the full list of his works (the publications in the periodic media
as well as monographs, including both his original works and
German translations of the classical physical treatises) [69–101].
As it is apparent from his publication list, among other important
problems, Prof. Dr. Weinstein was productively working on
the formulation of the equation of state. These works by him
have been noticed and taken into detailed consideration by
Dr. Engelbrektsson.

Apart from the above, of immense interest for us here ought
to be Prof. Dr. Weinstein’s immense and productive efforts in the
fields of thermodynamics and statistical mechanics’ foundations.
Specifically, to bementioned are Prof.Weinstein’s criticism of the
then vogue in connection with the so-called “Third Basic Law
of Thermodynamics” and the reaction to it from the scientific
community [102, 103], as well as Prof. Weinstein’s grounded,
constructive criticism of Ludwig Boltzmann’s approach to the
statistical thermodynamics [104] (noteworthy, Prof. Weinstein
has published this work under the pseudonym of “Mr. F. Cohen”),
as well as the immediate reaction to this publication by Max
Planck (revealing but not much more than his outrage and
voluntarism in this particular case) [105].

Meanwhile, as we know now, Dr. Linhart could
mathematically formally infer the famous, but mostly
guessed Boltzmann-Planck formula S = kB· ln W. He had
demonstrated that revealing the important details of the function
S ≡ S (T) , where T is the absolute temperature, leads to the
conclusion that S (0) = 0. As it is throughout possible to infer
the latter fact in the mathematically rigorous way, it immediately
loses its truly fabulous context of some Basic and Fundamental
Natural Law... This interesting theme will be discussed elsewhere
in detail.

CONCLUSIONS AND FUTURE
PROSPECTS

To sum up, here we could show that the Bayesian Statistical
Mechanics initiated by Dr. Linhart allows us to put the
rational statistical-mechanical basement under the phenomenon
of the valid enthalpy-entropy compensation hotly debated till
nowadays. Recently, we have carried out a detailed overview
and thoroughly discussed the possible implications of the valid
enthalpy-entropy compensation at the molecular level [106].
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Following this direction, it becomes in principle possible to
approach the problem of statistically-mechanically deriving the
universal equation of state, and we have demonstrated here, how
this might be accomplished for a particular case of an isobaric
system, where the externally applied pressure might be reliably
controlled. Meanwhile, Dr. Engelbrektsson had already inferred
the truly universal equation of state, whereas Mr. Franzén could
successfully check its validity in the pertinent experiments. Still,
Dr. Engelbrektsson was employing a unique thermodynamic
approach, without any application to statistical mechanics. Prof.
Dr. Weinstein has approached solving the latter problem, but all
the mentioned colleagues had no more lifetimes to accomplish
their seminal task.

Therefore, we might conclude that ultimately writing down
the universal equation of state based upon the statistical
mechanics ought to be throughout possible, if we would manage
to properly synthesize the approaches by G. A. Linhart, N.
Engelbrektsson and M. B. Weinstein. Writing down such a form
of the universal equation of state would definitely open us the way
to pertinent and handy mechanistic analyses of the whole wealth
of interesting and important physical-chemical-biological events
at the molecular level.
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