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White matter is composed of irregularly packed axons leading to a structural disorder

in the extra-axonal space. Diffusion MRI experiments using oscillating gradient spin

echo sequences have shown that the diffusivity transverse to axons in this extra-axonal

space is dependent on the frequency of the employed sequence. In this study, we

observe the same frequency-dependence using 3D simulations of the diffusion process

in disordered media. We design a novel white matter numerical phantom generation

algorithm which constructs biomimicking geometric configurations with few design

parameters, and enables to control the level of disorder of the generated phantoms.

The influence of various geometrical parameters present in white matter, such as global

angular dispersion, tortuosity, presence of Ranvier nodes, beading, on the extra-cellular

perpendicular diffusivity frequency dependence was investigated by simulating the

diffusion process in numerical phantoms of increasing complexity and fitting the resulting

simulated diffusion MR signal attenuation with an adequate analytical model designed for

trapezoidal OGSE sequences.This work suggests that angular dispersion and especially

beading have non-negligible effects on this extracellular diffusion metrics that may be

measured using standard OGSE DW-MRI clinical protocols.

Keywords: diffusion time-dependence, white matter microstructure, trapezoidal OGSE sequences, axonal

diameter, Monte-Carlo simulations, biomimicking numerical phantoms

1. INTRODUCTION

Diffusion-weighted magnetic resonance imaging (dMRI), sensitized to the diffusive motion of
water along the direction of an applied magnetic field gradient, has become a well-established
technique to non-invasively probe the cellular organization of tissues in vivo. Diffusion NMR
measurements embed some information about the inhibition of particles motion due to the
presence of barriers in the local environment, and can therefore be exploited to map some specific
microstructural features characterizing the brain white matter ultrastructure at cellular scales.
While Pulsed Gradient Spin Echo (PGSE) sequences [1] are still widely used in clinical routine,
alternative schemes such as Oscillating Gradient Spin Echo (OGSE) sequences seem a promising
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approach since they enable to explore the diffusion pattern in the
frequency domain dual to the diffusion time domain and are able
to probe shorter diffusion times compared to conventional PGSE.
Some OGSE studies have reported that, at frequencies below
400 Hz, the OG-measured extra-axonal diffusivity transverse to
axons in white matter is linearly dependent on the frequency
of the employed OGSE sequence [2], whereas state-of-the art
multi-compartment models of white matter relying on PGSE
or OGSE sequences usually assume a Gaussian diffusion in the
extra-axonal space [3–6]. A theoretical explanation was given in
Burcaw et al. [7], where the observed frequency-dependence is
interpreted as resulting from the extra-axonal 2D short-range
disorder of axonal packings in the plane transverse to white
matter fibers.

The extra-axonal perpendicular diffusivity transverse to axons
was thus written as

D(t) = D∞ + A.
ln (t/tc)

t
, tc ≪ t (1)

and, equivalently, in the frequency domain:

ReD(ω) ∼ D∞ + A.
π

2
|ω|, |ω|tc ≪ 1 (2)

where t is the diffusion time, ω is the dual frequency and tc
represents the time to diffuse across the correlation length lc of
the packing geometry (lc closely follows the mean external radius
rext of the axon packing [7, 8]).

Similar to recent models accounting for extra-axonal
time-dependence in the case of single diffusion encoding
sequences [9], a multi-compartment model for cosine OGSE
sequences was proposed in Ginsburger et al. [10] which added a
frequency-dependent term in the extra-axonal diffusion tensor
perpendicular diffusivity based on Equation (2), showing a
significant improvement of the model fit quality.

The first contribution of this article is to show the relevance of
such a frequency-dependent correction using clinically feasible
cosine trapezoidal OGSE sequences. The theoretically predicted
linear relationship between the extracellular perpendicular
diffusivity and the OGSE frequency was observed using 3D
simulations of the diffusion process with different values of
signal-to-noise ratios (SNR).

Having introduced a physically plausible frequency-
dependent correction in our model, the next step is to study
the dependence of its scaling coefficient A (Equation 2) to the
geometrical features of the extracellular space. Indeed, to our
knowledge, this dependence is very little known. An empirical
law A ∼ l2c relating A to the correlation length lc was given in
Burcaw et al. [7] and Fieremans et al. [8] but is not sufficient to
catch the complexity of the scaling coefficient A. The value of
A is a measure of the strength of the structural disorder [7, 11],
thus related to the geometrical properties characterizing the
spatial organization of white matter at various scales. A possible
approach to decipher the complex relationship between A and
white matter features is to perform Monte-Carlo simulations of
the diffusion process in diffusing media with increasing level of
structural disorder.

The simulation of the diffusion process in state-of-the-art
Monte-Carlo simulators such as CAMINO [12] and DMS [13]
is decomposed into three main steps: (1) the generation of a 3D
numerical phantom representing the diffusion medium (2) the
Monte-Carlo simulation of the Brownian motion of spins (3)
the synthesis of a DW-NMR signal. Simulators like CAMINO
or DMS are able to extract triangle meshes from histological
samples in step (1) in order to simulate diffusion in ultra-
realistic media. However, this approach does not allow to have
access to the plethora of possible geometries but only to the
limited set of configurations provided by the reduced set of
histological samples. Beside the possibility to use geometries
extracted from histological samples in step (1), state-of-the-art
simulators can only generate a limited number of geometries
which might not represent white matter sufficiently well. For
instance, the CAMINO and DMS simulators are able to simulate
the diffusion process in any triangle mesh, but the algorithm
used to construct simulation meshes from input geometrical
parameters only generates substrates with straight cylinders of
various diameters (including crossing between two populations
of fibers). Other simulation tools like Fiberfox [14] rely on
analytical models associated to each particular cell geometry,
including various combinations of sticks, tensors, zeppelins,
balls, dots, and astrosticks. They are inherently limited by the
realism of the used geometries and the employed analytical
models do not account for the presence of structural disorder
in the extracellular space. There is thus a real need to propose
alternative generative algorithms able to create more complex
geometries while controlling the parameters driving the various
sources of geometrical disorder to explore more extensively the
vast domain of possible geometries.

The main contribution of this article is therefore the
development of a novel algorithm to produce a wide variety of
biomimicking numerical phantoms representing more realistic
white matter tissue configurations from a reduced set of
control parameters. Embedded in the Diffusion Microscopist
Simulator (DMS) [13], this algorithm enables to control the
degree of complexity of the generated geometrical configurations
(induction of global angular dispersion and local tortuosity,
presence of Ranvier nodes along the axonal membrane, presence
of beading) with few design parameters, andwithout the necessity
of any input histological sample. Such numerical white matter
phantoms are then used to perform Monte-Carlo simulations of
the diffusion process from which simulated diffusion-weighted
NMR signals can be synthesized using trapezoidal OGSE
sequences at different values of SNR. The obtained signal is
fed into our analytical model to explore the evolution of the
structural disorder coefficient A for various well-characterized
geometrical configurations of the extracellular space.

2. MATERIALS AND METHODS

2.1. White Matter Numerical Phantoms
Actual simulation tools rely either on membrane surfaces
extracted from manual or automatic segmentations of
microscopic imaging data stemming from histological
tissue samples or on algorithms generating designs of axonal
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membranes built from a distribution of rectilinear cylinders
(possibly with angular dispersion) which diameters d follow a
Gamma distribution h. The function h can be tuned using a α

shape parameter and a β inverse scale parameter such that:

h(d;α,β) =
βαdα−1e−βd

Ŵ(α)
(3)

where Ŵ is a complete Gamma function. The first approach
is hard to achieve and generally yields a limited collection
of membrane configurations, whereas the second approach
provides over-simplistic representations of white matter. Here,
we propose a novel framework to design more realistic
membrane geometries better mimicking white matter structure.
One of the challenging issue of such an approach is to design a
tool enabling to cover a wide range of actual geometries while
using a limited number of parameters. Several observations can
be taken into account to improve the development of more
realistic white matter geometries:

• Several heterogeneous populations of fibers can populate the
field of view (FOV) of interest; whatever the target FOV
(from mesoscale to millimeter scale), complex configurations
of fibers are likely to happen and several studies in the field of
diffusionMRI have reported a percentage of around 60 percent
of voxels containing crossing, kissing or splitting fibers at the
conventional millimeter resolution of diffusion MRI data [15].

• Each fiber population is composed of myelinated or
unmyelinated axons which diameters follow the previous
Gamma distribution (Equation 3) but the shape and inverse
scale parameters can vary from a population to another;
in addition, each population is characterized by its mean
orientation in the 3D space and by its volume fraction.

• Myelinated axons are regularly interrupted by Ranvier nodes
along the axon main direction [16]; the internode distance d
has been extensively studied in Rushton [17] leading to the
maximum conduction relationship

d

D
= kg

√

log

(

1

g

)

(4)

where k is a constant, D is the external diameter of the axon
(including themyelin sheath) and g is the g-ratio defined as the
ratio between the axonal membrane and the external myelin
sheath outer membrane diameters.

• The fibers of a given population depict a macroscopic angular
dispersion that corresponds to the global misalignment of
the axons which has previously been modeled both in
ActiveAx [4] and NODDI [5] models using Watson’s or
Bingham’s distributions relying on the knowledge of the
principal orientation and of one or two concentration
parameters respectively, thus imposing a strong assumption
on the nature of angular dispersion.

• The fibers of a given population also depict local tortuosity
than can be simply measured by the ratio between the geodesic
distance along the curvilinear frame defined by the centroid
axis of the fiber and the Euclidean distance between the two
extremities of the fiber.

• It is not clear whether the axon diameter and myelin
sheath thickness remain constant along the axon; several
studies have assumed this absence of variation [18, 19]
whereas there is no clear assessment of such a property; in
particular, it is known thatmembrane injury can induce axonal
beading for instance due to cytoskeletal damage. According
to Budde and Frank [20], beading-induced changes in cell-
membrane morphology are sufficient to significantly hinder
water mobility and thereby decrease the apparent diffusion
coefficient; it is therefore recommended to account for this and
allow axon diameter variation.

Accounting for all these observations, we propose an algorithm
relying on a six-fold strategy to design white matter mimicking
numerical phantoms, that do not present the actual limitations
of existing phantom design tools. Such phantoms will allow
to go further into the study of the impact of both intra- and
extra-axonal compartments on the diffusion signal. In particular,
current achievable numerical phantoms do not provide the
possibility to induce local fiber tortuosity, which might have
a significant impact on the signal stemming from the extra-
axonal compartment by modifying the parallel and transverse
diffusivities along and perpendicular to the fibers.

The phantom generation algorithm takes a maximal number
of 14NPopulations + 2 parameters to generate complex axonal
geometries, where NPopulations is the number of fiber populations
(NPopulations > 1 in the case of crossing fibers). The list of control
parameters used to design a fiber population is summarized in
Table 1.

Step 1—During the first step of the phantom construction,
similarly to state-of-the-art simulation tools, a set of over-
simplistic fiber populations is constructed, each fiber population
corresponding to a set of rectilinear and parallel outer envelopes.
To each population corresponds an orientation, a Gamma
distribution of fiber envelope diameters (defined by a mean
diameter D and a standard deviation σD related to the shape
α and scale β of the Gamma distribution, such that αβ = D
and αβ2 = σD ), and an intracellular fraction, amounting to
4 parameters (Figure 1A). In the case of multiple populations,
the degree of interweaving of axons from different populations
is ruled by 2 scale parameters which control the distance
between axons within the same population, thus enabling to
create aggregated structures or a sheet organization [21] where
axons find their way amongst other populations. At each step
of the algorithm, the absence of intersection between the outer
envelopes of fibers populating the phantom is ensured using a 3D
collision algorithm.

Step 2—Once the fiber populations composed of parallel,
rectilinear axons are constructed, the second step of the
algorithm consists in the induction of global orientation
dispersion requiring one further parameter per fiber population.
As depicted in Figure 1B, global angular dispersion is created
by selecting randomly one fiber among a fiber population. The
fiber population is randomly selected among those that did
not reach their target angular dispersion yet. Then, a center
of rotation is selected along this fiber, following a Gaussian
distribution to ensure that most of the selected rotation centers
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TABLE 1 | List of control parameters names associated to each step of the

phantom generation algorithm.

Geometrical

characteristics

Control

parameters

names

Parameters description

Axon diameter

distribution

u Mean orientation of the

population

8 Target volume fraction of the

population

< D > Axon diameter mean value

σD Axon diameter standard

deviation

Global angular dispersion GAD Target global angular dispersion

Local tortuosity LAD Additional angular dispersion

due to tortuosity

Ranvier nodes < R > Mean ratio (internodal length) /

(node width)

σR Ratio standard deviation

Beading < BS > Beading spacing mean value

σBS Beading spacing standard

deviation

< BA > Beading amplitude mean value

σBA Beading amplitude standard

deviation

Myelin sheath < g > Mean g-ratio value

σg g-ratio standard deviation

belong to the central part of the fibers (see Figure 1B). A
perturbation vector g is then added to the orientation vector
u of the considered fiber, resulting in a rotation around the
center and in a new orientation vector u’. Each component of g
is obtained randomly, following a Gaussian distribution whose
variance is proportional to the target angular dispersion. The
proposed rotation is accepted if and only if the modified fiber
does not collide with another fiber. The global angular dispersion
AD is computed as follows:

AD =
1

∑

P∈P
Card(P)

∑

P∈P

∑

f∈P
θ(u′f , uP) (5)

where u′
f
is the new orientation vector of fiber f in fiber

population P, uP is the principal orientation vector of fiber
population P, θ(u′

f
, uP) is the angle between the two lines

supported by u′
f
and uP vectors, P denotes the ensemble

of all fiber populations in the considered field of view and
Card(P) corresponds to the number of fibers in each fiber
population P.

Step 3—The third step of the phantom generation algorithm
consists in the induction of local tortuosity in the geometry. To
this aim, one population is randomly selected from the set of
populations that did not reach their target angular dispersion yet.
One fiber of this population and a point along this fiber are then
selected randomly. A random orthonormal trieder (x, y, z) is built
such that z corresponds to the local direction uf of the fiber f .
The y-axis of the direct trieder defines the direction along which

is applied the tortuosity deformation on the fiber (see Figure 1C).
This deformation follows a Gaussian distribution with a zero
mean and a variance proportional to the tortuosity perturbation
value provided as an input. It moves all the points of the fiber
in the neighborhood of the selected point that is defined using
a tortuosity neighborhood size given as an input parameter of
the algorithm for each fiber population. The neighborhood size
controls the frequency of the undulations, e.g., the larger this size,
the smoother the undulations. Provided that all the deformed
points remain in the field of view and that the modified fiber
does not collide with any other fiber, the Gaussian deformation is
accepted. The induction of local tortuosity is a computationally
complex problem. Indeed, the total number of points NPoints in
the field of view is given by

NPoints = NPopulations.
∑

P∈P

∑

f∈P
Card(f ) (6)

where NPopulations is the number of fiber populations and Card(f )
stands for the number of control points of the centroid of a
given fiber f . A typical order of magnitude of NPoints is 104

which means that at each step of the induction of local tortuosity,
the algorithm must check at 104 points whether the fibers
are colliding, which can be computationally heavy. Thus, our
algorithm is based on the construction of a look-up table (LUT)
which is updated at each step of the tortuosity induction and
whose size is optimized so that we check the intersection at each
point of the fiber only with all the points in a neighborhood of this
very point. The LUT size must be adequately chosen to optimize
the computation time. If the LUT size is too small, collisions
might be missed whereas a too large LUT size will drastically
increase the computation time.

Step 4—Our phantom generation algorithm also enables
to distinguish the myelin sheath from the axon. The axon
membrane is created within the fiber envelope with a radius
computed from a predefined g-ratio, corresponding to the ratio
between the axon membrane diameter and the outer fiber
diameter. For each population, the g-ratio follows a Gamma
distribution, thus adding two further control parameters for each
fiber population. The myelin sheath corresponds to the space
between the axon membrane and the outer envelope of the fiber
(see Figure 1D).

Step 5—The algorithm also accounts for the presence
of Ranvier nodes along the myelin sheath (Figure 1E). The
internodal distance d is set using Equation (4) (maximal
conduction relationship [17]). The width wR of each Ranvier
node corresponds to a fraction αR of the internodal length d such
that wR = αR.d, with αR typically equal to 10−3, as described in
Salzer [16]. This fraction follows a Gamma distribution adding
two further control parameters.

Step 6—Finally, our algorithm gives the possibility to
represent beading caused by cytoskeletal damage of the axon
membrane: the contours of both axonal and outer myelin
membranes are swollen using adequate bell-shaped functions
like sine functions (see Figure 1F). The amplitude and spacing
of those lobes both follow a Gamma distribution (adding four
control parameters for each fiber population).
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FIGURE 1 | (A) Phantom generation for two populations (blue and green) with orientations ui (B). Global angular dispersion is created by selecting randomly an axon

among a given fiber and a point on this axon which will be the center of rotation of the fiber. The selection of the rotation center follows a Gaussian distribution with

mean µ and variance σ. A perturbation vector g whose components follow a Gaussian distribution with a variance proportional to the target angular dispersion is

added to the orientation vector u, resulting in a rotation around the selected fixed point and in a new orientation vector u′. (C) Local angular dispersion is induced by

deforming each axon separately. A point on the axon (in red) and a direct trieder (ux , uy , uz ) are chosen randomly. uy defines the direction of the tortuosity deformation

whose amplitude follows a Gaussian distribution with a variance depending on the number of points which are affected by the deformation around the central red

point. (D) Creation of the myelin sheath. Inside each cylinder of radius Rtot, an inner cylinder of radius R = g.Rtot (g is the g-ratio) is created which represents the

axonal membrane, and the external cylinder represents the outer layer of myelin sheath. (E) Creation of Ranvier nodes. The resolution of the fiber mesh around each

Ranvier node is refined to better account for the exponential decay of the myelin thickness around the node. (F) Beading generation. Both the axonal contour (inner

mesh) and the myelin sheath (external mesh) are swollen with a sine function. The myelin sheath thickness is preserved since beading comes from the swelling of the

axonal membrane due to injury.

2.2. Multi-compartmental Model for
Trapezoidal OG Measurements
Oscillating gradient spin echo (OGSE) sequences are sensitive
to diffusion on the time scale of the oscillation period
rather than the interval between the pulses and can thus
enhance the sensitivity to small axonal restrictions. Recently, an
ActiveAx OGSE model was proposed in Ginsburger et al. [10]
which accounts for the frequency-dependence of the diffusivity
transverse to axons in the extra-axonal space using cosine OGSE
schemes. A frequency-dependence correction was proposed for
the extra-axonal tensor and showed significant reduction of
the fit error. However, the correction derived in Ginsburger

et al. [10] is only valid for sinusoidal waveforms, while square
(or in practice trapezoidal) wave oscillating gradients maximize
sensitivity to smaller pore sizes in comparison with sinusoidal
sequences. Indeed, they yield the highest diffusion weighting
within one period compared to other periodic waveforms [22],
which also makes trapezoidal sequences more clinically feasible.
The aim of this section is thus to adapt the previous model
proposed in Ginsburger et al. [10] to trapezoidal waveforms.

2.2.1. General Model
White matter tissues are modeled using three tissue
compartments embedding three types of micro-structural
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environments: intra-cellular, extra-cellular, and cerebro-spinal
fluid (CSF) compartments. A common assumption of effectively
impermeable axonal walls is used [3–5]. Thus each compartment
provides a separate normalized MR signal and no exchange
between the populations of water molecules occurs. The
resulting model for the diffusion MR signal S can thus be
written as

S = (1− νiso)(νicSic + (1− νic)Sec)+ νisoSiso (7)

where Sic and νic are the normalized signal and volume fraction
of the intra-cellular compartment, Sec is the normalized signal
of the extra-cellular compartment, and Siso and νiso are the
normalized signal and volume fraction of the CSF compartment.
The model for Siso assumes an isotropic Gaussian distribution
of displacements [23]. Water diffusion in the intra-cellular
compartment is restricted by axonal walls and further restricted
by myelin sheath in case of myelinated fibers. Fibers are assumed
to be parallel and oriented along a single direction n. Hence, one
computes the intra-cellular signal Sic using the Gaussian Phase
Distribution approximation of the signal from particles trapped
inside a cylinder, which has been derived for trapezoidal OGSE
sequences [6, 24]. Diffusion in the extra-axonal compartment
is assumed to be hindered. This compartment is generally
characterized by a 3D Gaussian displacement distribution:

Sec = ebG
TDec(n,νic)G (8)

where b is the diffusion sensitization for a given tuning of a
diffusion-weighted NMR sequence, G represents the gradient
magnitude andDec is the extracellular diffusion tensor. Assuming
that the diffusion tensor is cylindrically symmetric,Dec is defined
as [5, 25]

Dec(n, νic) = (d − d⊥(νic))nn
T + d⊥(νic)I (9)

where d⊥ is the apparent diffusion coefficient perpendicular to
axons and I is the identity tensor [5].

2.2.2. Frequency Dependence of Extra-Axonal Space

with Trapezoidal OGSE Sequences
In Ginsburger et al. [10], a correction to the d⊥ component of
the extracellular diffusion tensor Dec which describes diffusion
perpendicular to the fibers was proposed for cosine OGSE,
making the diffusion transverse to the fiber bundle in the extra-
axonal space d⊥ dependent on the frequency of the OGSE
sequence ω0 :

d⊥(ω0) = d⊥,∞ + A
π

2
|ω0| (10)

where d⊥,∞ is the bulk diffusion constant [5].
Equation (10) was obtained combining two observations.

First, the signal attenuation can be written as a function of the
dispersive diffusivity D(ω) [26]

− ln S ∼
∫

dω

2π
q−ωD(ω)qω (11)

where qω is the Fourier transform of the integral
∫ t
0 dt

′ g(t′) of
the applied Larmor frequency gradient g(t). Second, the Fourier

transform qω of the integral
∫ t
0 dt

′ g(t′) of the applied Larmor
frequency gradient g(t) can be written as follows

qω =
iπγ g0

ω0

[

δ(ω − ω0)− δ(ω + ω0)
]

(12)

where δ is the Dirac distribution, for an OG profile g(t) =
g0 cos (ω0t) and for a sufficiently large number of oscillations

[ω0T
2π ≫ 1, T being the total duration of the gradient train g(t)].
Indeed, the presence of these Dirac distributions in qω leads to

the much simplified expression of the signal attenuation

− ln S(T) ∼ b. ReD(ω0) (13)

which, combined with Equation (2), results in Equation (10).
In the case of cosine trapezoidal OGSE (OGSE-CT), the peak

frequency (frequency at which qω reaches its maximum) will be
the same as for a cosine OGSE (OGSE-C) sequence with the same
frequency ω, since the Fourier expansion of the OGSE-CT ftrap(t)
is a infinite sum of odd cosine functions

ftrap(ωt) =
∞
∑

n=0

a2n+1 cos ((2n+ 1)ωt) (14)

where |a2n+1| is a decreasing sequence. However, it is not a priori
clear whether the frequency selectivity (which is characterized
by both the full-width-half-maximum of the main lobe and
the maximum ratio between the side lobes and main lobe
amplitudes) will be preserved using OGSE-CT, which might
potentially prevent the use of Equation (12) for OGSE-CT. This
question was disambiguated in Van et al. [27] who compared
the encoding spectrum F(ω) of both sequences. The encoding
spectrum for a OGSE-C sequence is:

|F(ω)|2 =
(

πγG

ω0

)2

[δ(ω + ω0)+ δ(ω − ω0)] (15)

It was shown that the differences between the encoding spectra
of OGSE-CT and OGSE-C waveforms with equal frequency
are minimal, thus justifying as well the use of Equation (12)
for OGSE-CT sequences having a high selectivity around the
frequency ω0 of interest (see also Figure 2).

Consequently, the same frequency-dependence correction of
the extra-axonal space tensor (Equation 10) can be used for both
OGSE-C and OGSE-CT waveforms.

2.3. Monte-Carlo Simulations and NMR
Signal Synthesis
The Diffusion Microscopist Simulator (DMS) [13] relies on a
three-fold architecture:

• a 3D phantom generation engine
• a Monte-Carlo simulator engine
• a DW-NMR signal synthesizer
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FIGURE 2 | Power modulation spectra for trapezoidal cosine OGSE gradient waveforms at 64 Hz for different number of half periods (or lobes), showing the influence

of the number of lobes on the frequency selectivity. The theoretical peak frequency is denoted as fth. We observe that the difference between this theoretical peak and

the actual frequency peak of the sequence decreases with increasing number of lobes. The actual frequency peak (not the theoretical one) of the OGSE sequences

employed in this article is fed in our model for better precision.

The 3D phantom generation engine, improved using our novel
algorithm to produce biomimicking numerical phantoms, creates
the 3D triangulated surfaces from the fiber descriptions. It
includes two non-linearly sampled curves (also called axon and
outer myelin sheath membrane centroids), and two profiles of
radii to represent the axon membrane and the outer myelin
sheath membrane, respectively.

The Monte-Carlo simulator engine is composed of several
element that have to be individually tuned:

• A scene modeler that contains the description of the evolving
simulated space, including the dimensions of the simulation
domain corresponding to a global bounding box set to
(−60,+60,−60,+60,−60,+60µm) in all our simulations,
the temporal resolution set to 10 µs, the number of simulation
steps set to 50,000, the set of membranes generated by the
3D phantom generation engine and the set of particles used
to perform the Monte-Carlo simulation (106 particles in our
simulations).

• A motion model that drives the motion of particles, set to
a Brownian random walk model tuned using a parameter
corresponding to the diffusivity of the medium (2.0 ×
10−9 m2/s in our simulations).

• A membrane model built for each individual axon or outer
myelin membrane that integrates:

- the triangulated surface itself
- a particle-to-membrane interaction model set to the total

reflexion interaction in our case
- a vertex evolution function set to static in our case (DMS

is also able to deal with a temporal evolution of the
membranes that is not used in this work)

- a polygon cache that facilitates and speeds up the
computation of the list of the closest membrane triangles
likely to interact with a particle of arbitrary position in the
simulation domain

- a particle or random-walker model that represents water
molecules moving in the simulation domain. Particles are
randomly distributed either over the whole simulation
domain, or only in the intra- or extra-cellular space. In
this work, two types of simulations were performed, either
with particles randomly distributed in the whole domain
or restricted to the extra-cellular space (see Figure 3), since
the present study is focused on the characterization of the
extracellular space signal for different levels of structural
disorder.

The trajectories of random walkers computed using the Monte-
Carlo simulator engine are fed into the diffusion-weighted NMR
signal synthesizer, which synthesizes a volume of DW-MRI
signals for a given DW-MRI sequence and for a specific tuning
of the sequence parameters. The DW-NMR signal synthesizer is
also composed of several elements that have to be individually
tuned:

• A DW-NMR sequence factory that allows to simulate the
chronograms of gradients and radio-frequency pulses; several
schemes are available (bipolar double STEAM sequence,
bipolar STEAM sequence, multiple PGSE sequence, single
PGSE sequence, twice refocused spin echo sequence, OGSE
sequence); in this work, a trapezoidal OGSE sequence was
tuned (see Figure 4), requiring to define the period of
oscillating gradients (varying in this study), the gradient time
resolution (10.0 µs), the maximum gradient slew rate and the
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FIGURE 3 | Illustration of the two simulation modalities available in DMS on an example mesh (A) with intracellular volume fraction of 0.2 and 5◦ angular dispersion

induced by tortuosity. In (B) corresponding to a cross-section of (A), random walkers for Monte-Carlo simulation of the diffusion process are placed only in the

extra-axonal space, with impermeable membranes. The obtained signal thus stems exclusively from the extracellular space. In (C), particles are initially placed in both

intra- and extra-cellular compartments, with impermeable membranes. The diffusion process is thus simulated in both compartments, without exchange between

them.

FIGURE 4 | Schematic representation of the employed trapezoidal cosine OGSE gradient waveform, here with six lobes (half-periods) before and after the 180◦

refocusing pulse. The separation between gradient waveforms, tsep, is required to accomodate the 180◦ RF pulse, and has been set to allow a continuous single

frequency oscillating gradient to be drawn between the two waveforms to obtain a narrower peak at the desired frequency [28]. The duration of the shorter lobes are

increased by half the gradient ramp time, tramp, to ensure zero cumulative gradient area.

maximum gradient magnitude (respectively 200 T/m/s and
80 mT/m corresponding to the latest Connectome gradient
coils available for 3T MRI systems on the market).

• A Cartesian grid defined within the MC simulation domain
using a local bounding box and the 3D volume size; in our
case, to avoid boundary effects, the local bounding box was
chosen slightly smaller than the global bounding box of the
MC domain and set to (−55,+55,−55,+55,−55,+55µm).

• A noise model to simulate the actual level of noise corrupting
the signal of real acquisitions; the analysis of the impact
of the noise on the signal of the extra-cellular space and
on the inference of the structural white matter disorder has
been done for four different values of SNR in this study: an
infinite value corresponding to the absence of noise, a SNR of
30 corresponding to state-of-the-art experimental conditions
with the latest 3T clinical MRI systems available on themarket,
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and SNR of 20 and 10 corresponding to worse experimental
conditions.

• A spin model associated to each random walker in charge
of accumulating the net phase evolution induced by the
trapezoidal OGSE sequence and seen by the random walker
along its trajectory. Although they clearly influence the SNR
when long echo times are chosen, the effects of T1/T2
relaxation have not been taken into account by the spin model
in the performed simulations.

The synthesized DW-MR image consists of a 3D volume
corresponding to the T2 reference volume at b = 0 s/mm2

(set to 10,000 in our case) and a 4D volume corresponding
to the employed trapezoidal OGSE sequence along a set of
uniformly distributed diffusion directions over the unit sphere
(300 directions in our case).

2.4. Estimation of the Scaling Coefficient A
with Simulations
Monte-Carlo Simulations were launched by placing 106 particles
in the extra-axonal space of each studied white matter numerical
phantom. The employed phantoms composed of a single fiber
population, listed in Table 2, have an intracellular volume
fraction of 0.2 and the fiber radii follow a Gamma distribution

whose shape and scale parameters α and β are set to obtain
a mean diameter αβ = 2.0µm and a standard deviation
αβ2 = 0.2µm. The signal obtained from diffusion MRI data
synthesis comes only from the extra-axonal space, since the fiber
membranes were set to be impermeable. Thus, the intra-cellular
volume fraction was set to 0 in the employed multi-compartment
model. For each studied geometrical configuration, 4D DW-
volumes were synthesized for five distinct frequency values of
the employed trapezoidal OGSE sequence : 60, 70, 80, 90, and
100 Hz. In order to have a constant b-value of 200 s/mm2 and
a constant TE of 116ms, the gradient magnitude was varied
up to 80 mT/m (corresponding to the maximum achievable
gradient magnitude of modern clinical 3T MRI systems) and the
number of lobes (half-periods of the OGSE sequence) on each
side of the refocusing pulse was also varied, as follows: 6, 8,
8, 10, and 12 lobes/50, 57, 70, 75, and 80 mT/m for encoding
frequencies of 60, 70, 80, 90, and 100 Hz. Figure 4 gives an
illustration of the employed trapezoidal OGSE sequence. The
multiple-frequency sampling enables to perform a linear fitting
procedure on Equation (10) in order to obtain reliable estimates
of the scaling coefficient A of the extra-axonal perpendicular
diffusivity linear-in-frequency term. The error associated to the
linear fit was assessed using the covariancematrix returned by the
linear least-square procedure employed to estimate the scaling

TABLE 2 | Values of the control parameters of the phantom generation algorithm for each studied configuration (C1 to C5).

C1 C2 C3 C4 C5

C21.5◦ |C22.5◦ | C35◦ |C310◦ | C4R32|C4R16| C5BS80|C5BS60|

C23.5◦ |C24.5◦ C315◦ |C320◦ C4R8|C4R4 C5BS40|C5BS20

u (0.0, 0.0, 1.0) (0.0, 0.0, 1.0) (0.0, 0.0, 1.0) (0.0, 0.0, 1.0) (0.0, 0.0, 1.0)

8 0.2 0.2 0.2 0.2 0.2

< D > 2.0µm 2.0µm 2.0µm 2.0µm 2.0µm

σD 0.2µm 0.2µm 0.2µm 0.2µm 0.2µm

GAD 0◦ 1.5◦|2.5◦| 3.5◦ 3.5◦ 3.5◦

3.5◦|4.5◦

LAD 0◦ 2.5◦ 5◦|10◦| 15◦ 15◦

15◦|20◦

< R > ∅ ∅ ∅ 100 100

32|16|
8 | 4

σR ∅ ∅ ∅ 5 5

< BS > ∅ ∅ ∅ ∅ 80.0µm|60.0µm|
40.0µm|20.0µm

σBS ∅ ∅ ∅ ∅ 20.0µm|15.0µm|
10.0µm|5.0µm

< BA > ∅ ∅ ∅ ∅ 1.5

σBA ∅ ∅ ∅ ∅ 0.5

< g > ∅ ∅ ∅ 0.6 0.6

σg ∅ ∅ ∅ 0.05 0.05

In configurations C2–C5, one or two parameters are varied: GAD for C2, LAD for C3, < R > for C4, < BS > and σBS for C5. The parameter value in bold corresponds to the default
value used to generate each configuration, which are employed in Figure 9 to study the evolution of the scaling coefficient A for different types of structural disorder. Other values below
correspond to variants of each configuration, which are employed in Figure 10 to study the evolution of A with respect to the variation of one given geometrical parameter, associated
to one specific disorder type.

Frontiers in Physics | www.frontiersin.org 9 February 2018 | Volume 6 | Article 12

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ginsburger et al. Improving White Matter Numerical Phantoms

coefficientA in Equation (10). These fitting errors are represented
by error bars in figures giving estimated values of A for various
geometric configurations (see section 3).

The evolution of the scaling coefficient A with respect to
the various sources of disorder is explored by simulating the
diffusion process within the geometric configurations presented
in Table 2 (configurations C1–C5, as well as some variants of
those configurations). Table 2 provides the list of all the control
parameters as well as their values employed for the construction
of the numerical phantoms. The purpose is to catch the complex
dependence of A with respect to geometrical characteristics of
the diffusion medium. The degree of complexity of the employed
numerical phantom is fully monitored using the DMS simulator,
thus enabling a very precise study of the influence of each
parameter on the fitted coefficient A.

3. RESULTS

3.1. Numerical Phantoms Mimicking White
Matter
We present in this section numerical phantoms generated with
our novel algorithm. Figure 5 represents various configurations
with one, two, and three fiber populations and with or without
global angular dispersion. Figure 6-1 represents a set of straight
parallel fibers randomly placed in the phantom volume, with
mean fiber diameter of 2.0µm (diameter variance of 0.2µm) and
volume fraction of 0.1. In Figure 6-2, global angular dispersion
is induced, enabling to reach 5.6◦ of angular dispersion (for
a target value of 10◦). The tortuosity induction (Figure 6-3)
brings this angular dispersion up to the 10◦ target. Figures 6-4,5
illustrate the creation of myelin sheath and Ranvier nodes
which account for the actual structure of myelinated fibers.
Beading -consisting in a swelling of both axonal and myelin
sheathmembranes—is also handled (Figure 6-6). In all presented
surface renderings, there is no collision between the membranes.
Figure 6-6 presents a realistic geometry mimicking a complex
white matter environment, taking into account all the putative
deformations of membranes observed in real tissues (angular
dispersion, tortuosity, myelination and creation of Ranvier
nodes, beadings). We note that the generated phantoms have
been presented here in the case of multiple fiber populations for
more generality. However, the simulations performed to study
the structural disorder of white matter in next sections only used
phantoms with a single fiber population. While essential to make
our approach directly applicable to most white matter regions,
the study of the structural disorder induced in crossing areas of
multiple fiber populations is out of the scope of this study. This
topic is addressed in the section 4.

3.2. Measuring Structural Disorder in the
Extra-Axonal Space
3.2.1. Validation of the Employed Trapezoidal OGSE

Model
A linear relationship between the extra-axonal perpendicular
diffusivity and the frequency of the employed trapezoidal OGSE
sequence is shown in Figure 8, where the frequency was varied

from 60 to 100Hz at a constant b-value of 200 s/mm2. This result
validates the use of Equation (10).

3.2.2. Studying Different Types of Structural Disorders
Monte-Carlo simulations were run in geometries characterized
by increasing structural complexity. In what follows, the different
geometrical configurations were classified according to the type
of structural disorder they represent, from configurations C1 to
C5. Table 2 lists all the employed geometrical configurations and
gives the associated set of control parameters.

In configuration C1 (Figure 7), parallel axons are randomly
placed in the simulation volume. The centers of the cross
section of the cylinders representing the axons follow a uniform
distribution. The diameters follow a Gamma distribution, with
a mean axonal diameter of 2.0µm. The value of the scaling
coefficient A reaches its maximum value of 9.09µm2 (all the
values of A are given for a SNR of 30) in this configuration which
corresponds exactly to the 2D short-range disorder geometry
described in Burcaw et al. [7] and Novikov et al. [11] . From
C1 to C2, the induction of global angular dispersion (fibers
remain straight but are rotated to induce angular dispersion) of
3.5◦ yields to a substantial diminution of the scaling coefficient
from 9.09 down to 8.54µm2. Local tortuosity is induced
in configuration C3 (fibers are deformed to induce angular
dispersion), enabling to reach an angular dispersion value of 15◦

and yielding a moderate decrease of the scaling coefficient from
8.54 down to 8.26µm2. The addition of Ranvier nodes along the
myelin sheath (with a g-ratio of 0.6) in configuration C4 does
not significantly change the value of the estimated A coefficient
with respect to the previous configuration (A = 8.24µm2 vs.
A = 8.26µm2 in configuration C3, which is negligible given the
fitting uncertainty at a SNR of 30). From C4 to C5, beading is
introduced (swelling of the axonal membrane andmyelin sheath)
with amplitudes equal to 1.5 times the fiber radii in average, and
mean spacing of 20.0µm, yielding a significant decrease of A (up
to 19% with A going from 8.32 to 6.76µm2).

It appears from Figures 7A–D. that the diffusion signal
variation between configuration C1 and configurations C2–C5
is stronger for diffusion sensitization directions perpendicular to
fibers, meaning that most of the information stemming from the
increasing complexity of the studied geometrical configurations
is included in the evolution of perpendicular diffusivity.
Figure 7 also clearly indicates that beading (corresponding to
configuration C5) has the strongest effect on the perpendicular
diffusivity. This result can be directly related to the important
variations of A observed in configuration C5, as reported
previously.

3.3. Understanding the Quantitative
Influence of Each Disorder Parameter
The different configurations studied in Figure 9 correspond to
qualitatively different geometric configurations. The quantitative
evolution of the structural disorder coefficient A with respect to
each geometrical parameter has also been studied (see Figure 10),
by varying one geometrical parameter in each configuration
separately. The evolution of each parameter is explained in
Table 2.
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FIGURE 5 | (Top) Surface renderings of outer fiber envelopes corresponding to one (left), two (middle), and three (right) fiber populations with intracellular fraction of

0.06 for one population, 0.03 each for the two populations, 0.02 each for the three populations and mean diameters 2.5 µm (one population), 1.5 and 2.5 µm (two

populations), 1.5, 2.0, and 2.5 µm (three populations). Bottom same as top. with global angular dispersion of 10◦ for the single population, 5.5 and 8.5◦ for the two

populations, 5.5, 6.7, and 8.5◦ for the three populations (for a target angular dispersion of 10◦ each).

The induction of global angular dispersion from 0◦ to 4.5◦ in
configuration C2 (see Table 2) results in a decrease of the scaling
coefficient A (see Figure 10A) from 9.09 to 8.43µm2 for the
biggest value of global angular dispersion of 4.5◦. The diminution
of A gets stronger for increasing values of global angular
dispersion. However, the study of the influence of global angular
dispersion on Awas limited to small values of angular dispersion,
owing to the fact that higher values of angular dispersion were
not reachable for the specific fiber density and radii distribution
of C2. These values of angular dispersion are far from the values
of microscopic misalignments of axons estimated up to 18◦ [29].
One possibility to reach this target is to decrease the intracellular
volume fraction. Another option consists in increasing angular
dispersion using local tortuosity, as was done in configuration
C3. The induction of tortuosity in this configuration causes
a moderate decrease of the scaling coefficient from 8.54µm2

corresponding to configurations C2 (global angular dispersion of
3.5◦) to 8.24µm2 for the biggest tortuosity value (20◦ of angular
dispersion), as shown in Figure 10B.

In configuration C4 (corresponding to a global angular
dispersion of 3.5◦ and to a total angular dispersion of 15◦ after
the induction of tortuosity, with the presence of Ranvier nodes),
a small increase of the scaling coefficient is observed due to

demyelination, from 8.24 up to 8.32µm2 for a demyelination
ratio of 25% (see Figure 10C), which is not significant given the
uncertainties of the estimated values of A at a SNR of 30.

The introduction of beading in configuration C5 causes
important variations of the scaling coefficient A (Figure 10D).
As mentioned previously, a mean beading spacing of 20.0µm
yields a significant decrease of A (up to 19% with A going from
8.32 to 6.76µm2 The scaling coefficient A = 7.95µm2 is still
4.5% smaller for a beading spacing of 100.0µm, corresponding
to a low density of beads, than in the absence of beading where
A = 8.32µm2.

4. DISCUSSION

4.1. White Matter Biomimicking Numerical
Phantoms
Designing realistic numerical phantoms of white matter tissue
seems to be a promising approach to study the influence
of various structural properties of white matter on the
measured diffusion signal. Being able to construct biomimicking
simulations geometries without using histological samples is an
essential step toward the comprehension of the specific effect of
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FIGURE 6 | (1) Surface renderings corresponding to three fiber populations with mean diameters 1.5, 2.0, and 3.0 µm, respectively with intracellular volume fraction of

0.05 each. N is the number of populations in general (here N = 3). (2) Global angular dispersion is induced (4.7, 2.5, and 2.8◦ per population). (3) Tortuosity is induced,

enabling to reach 10◦ of angular dispersion for each population. (4) Creation of the myelin sheath. (5) Creation of Ranvier nodes with mean ratio 1,000 between

internodal length and node width. (6) Creation of beadings with 20.0 µm mean inter-beading length and beading magnitude ratios of 1.7, 1.5, and 1.2, respectively.

each geometrical characteristic of the diffusing medium on the
obtained signal. An important aspect of our phantom generation
algorithm is its ability to deal with multiple fiber populations,
which was reported to represent up to 60% of the number of
voxels of a mask of the brain white matter at a spatial resolution
of 2 mm [15]. However, generating phantoms with multiple fiber
populations come with additional difficulties, notably related to
the generation of global angular dispersion. Phantoms presented
in Figure 5 exhibit geometrical configurations with multiple fiber
populations. In Figure 5, the target angular dispersion value of
10◦ can be reached only in the single population case for an

intra-cellular fraction of 0.2. The maximum reachable global
angular dispersion strongly depends on the number of fiber
populations, on the distribution of radii and on the target intra-
cellular volume fractions of these populations (for instance, the
lower the intra-cellular fraction, the higher the reachable angular
dispersion). The use of tortuosity is essential to reach high values
of angular dispersion in multiple population configurations.
Indeed, in Figure 6-2, the induction of global dispersion enables
to reach 5.6◦ of angular dispersion (for a target of 10◦). The
tortuosity induction (Figure 6-3) brings this angular dispersion
up to the 10◦ target.
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FIGURE 7 | From left to right, simulation domains corresponding to different geometrical configurations (from C1 to C5) are shown. A 3D rendering of the

root-mean-squared difference (represented by the minus sign) between the diffusion signal stemming from each configuration and the “reference” configuration C1

(most left configuration composed of straight parallel cylinders) is shown on a spherical surface. (A) The RMS signal difference is computed between configuration C1

and C2. The red area where the diffusion signal difference is the strongest corresponds to diffusion sensitization directions perpendicular to fibers. Blue areas

correspond to directions parallel to fibers where the signal differences are weaker but not null, and originate from the variations of diffusion properties around those

directions when structural disorder is added. (B–D) Represent the same RMS signal differences between configurations C1 and C3, C1 and C4R4 (corresponding to

configuration C4 with a demyelination ratio of 25%, see Table 2), C1 and C5, respectively.

FIGURE 8 | Frequency-dependent perpendicular diffusivity in the extracellular space measured by performing Monte-Carlo simulations with diffusing particles in the

extracellular space of configuration C1 (see Table 2), plotted against the frequency of the employed OGSE-CT sequence. A linear fit is also plotted which shows the

linear dependence of diffusivity to frequency.

4.2. Characterizing Structural Disorder
with A
As shown in Figure 7, the differences between diffusion signals
obtained by simulating the diffusion process in the extra-axonal
space of various geometrical configurations are predominant in
the diffusion direction perpendicular to fibers, although there
exists differences in all directions. This observation shows that

most of the structural disorder effects are caught by the diffusion

signal around the equator perpendicular to the mean fiber
orientation. Modeling structural disorder using an additional
term in the extra-axonal perpendicular diffusivity thus appears
to be physically reasonable.

Across all configurations, at a SNR of 30, the values of the

scaling coefficient A vary between 9.09 and 6.77µm2 which is
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FIGURE 9 | Value of the scaling coefficient A in m2 for geometric configurations with increasing structural disorder. The simulation are performed in configurations

C1–C5, whose design parameters are summarized in Table 2.

consistent with previous studies [7, 8] reporting the empirical law
A ∼ l2c were the correlation length lc closely follows the mean
external radius of the fibers. Indeed, in our case the mean axonal
diameter is equal to 2.0µm yielding lc ∼ 1.0µm, which leads to
A ∼ 1.0µm2. This value corresponds to the order of magnitude
of the fitted values of A.

As reported in Fieremans et al. [8], the effect of angular
dispersion introduced in configurations C2 and C3 on the
estimated perpendicular diffusivity can be understood by
considering the diffusion process along each fiber in the presence
of orientational dispersion. When the orientation of a given
fiber differs from the mean orientation of the fibers population,
the diffusion process along this fiber yields a local parallel
diffusivity whose projection on the plane perpendicular to the
mean fiber population direction is not null. Due to this projection
effect, the existence of longitudinal frequency-dependence along
each elementary fiber will yield a frequency-dependence of the
global perpendicular diffusivity. Thus, the frequency-dependence
observed in our work might not only originate from the 2D
short-range disorder in the plane transverse to axons, but
might also be partly explained by the contamination of the
perpendicular diffusivity (and thus of the scaling coefficient
A) with longitudinal diffusion frequency-dependence. As a
consequence, in addition to modeling the 2D short-range
disorder in the plane perpendicular to fibers, the estimated
scaling coefficient Amight also embed some information related
to physical properties along the fibers. While this hypothesis
makes the physical interpretation of the coefficient A tricky,
it would enable to obtain information from both parallel and
perpendicular extra-axonal diffusion processes by measuring
only one coefficient. The interest of such an approach is that the

estimation of A relies on a simple and robust fitting procedure. It
only requires to perform data acquisition using trapezoidal OGSE
sequences with a sufficient number of frequencies to be able to fit
the data properly, which is clinically feasible.

The introduction of Ranvier nodes in configuration C4 does
not yield to a significant change in the scaling coefficient A. This
is not surprising since Ranvier nodes correspond to a very low
volume fraction of the extracellular space, due to their low width,
reported to correspond on average to a few thousandths of the
internodal length [16], which is amplified by the low intracellular
fraction of 0.2 employed in our simulations. In Figure 10C,
demyelination is mimicked by progressively increasing the width
of the Ranvier nodes, from 1 to 25% of the internodal length.
The observed increase of the scaling coefficient A is again small
(up to 3% for the maximal demyelination ratio of 25%, roughly
corresponding to the percentage of demyelinated areas observed
in the cerebral cortex of multiple sclerosis patients [30]).

In this study, only the structural effects of Ranvier nodes
and demyelination on diffusion properties in the extra-axonal
space were studied. However, from the diffusion point of view,
the most interesting feature of Ranvier nodes and unmyelinated
regions areas is that they represent those regions along a
myelinated axon where the exchange between intra- and extra-
axonal water is the fastest. The analysis of the effect of such
an increased exchange would be of great interest to thoroughly
study the effect of Ranvier nodes and demyelination on the
scaling constant A. Indeed, in the Appendix F of Burcaw et
al. [7], the authors theoretically tackled this problem and their
prediction is that the values of the scaling constant A may or
may not be affected by the exchange, depending on the exchange
regime (slow, intermediate, or fast). Their theoretical analysis
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FIGURE 10 | (A) Value of the scaling coefficient A in m2 plotted against the global angular dispersion. The simulations were performed in variants of configuration C2

by varying the global angular dispersion value (see Table 2). (B) Value of the scaling coefficient A plotted against the angular dispersion. The simulations were

performed in variants of configuration C3 by varying the local tortuosity value (see Table 2). (C) Value of the scaling coefficient A plotted against the percentage of

demyelination. The simulations were performed in variants of configuration C4 by varying the percentage of demyelination, directly related to the width of Ranvier

nodes (see Table 2). (D) Value of the scaling coefficient A plotted against the mean beading spacing. The simulations were performed in variants of configuration C5

by varying the value of the mean beading spacing (see Table 2). A bigger spacing yields to a lower beading density.

takes into account a general uniform exchange of molecules
between intra- and extra-axonal space. However, the Ranvier
nodes and demyelination around them would introduce a local
exchange linked to the disorder with which the Ranvier nodes
occurs within the voxel. In this condition, it is not clear if the
argument in Burcaw et al. [7] still holds. This question will be
investigated in a future work.

4.3. The Strong Influence of Beading on the
Scaling Coefficient A
The value of the scaling coefficient A appears to be mostly
influenced by the local enlargement of both axonal and myelin
membranes, also called beading. Indeed, Figure 9 shows a
significant decrease of A (up to 19%) in the presence of beading.

According to Figure 10D the scaling coefficient is still 4.5%
smaller for a beading spacing of 100.0µm than in the absence
of beading, suggesting that A could be a putative marker of the
presence of beading, since A is significantly reduced even for a
lower density of beadings within the phantom.

The influence of beading on the diffusion signal has been
extensively studied in Budde and Frank [20], where it was
emphasized that neurite beading might explain the decrease

of the apparent diffusion coefficient after ischemic stroke. Our
results point in the same direction, since the significant decrease
of the coefficient A in case of beading induces a net decrease of
the transverse diffusivity which results in a diminution of the
apparent diffusion coefficient. However, in Budde and Frank [20],
simulations were run on numerical phantoms with an hexagonal
packing of fibers and periodic restrictions along the fiber. The
periodicity of the employed simulation domain might affect the
realism of the obtained diffusion signal since it does not reflect
the 1D short-range disorder along white matter fibers nor the
2D short-range disorder in the plane transverse to fibers [7, 11].
In our simulations, short-range disorder effects are expected to
be accounted for, since the spacing between each beading is
highly variable (as shown in Table 2, the variance of the spacing
distribution is equal to one fourth of the spacing value) and
the fibers are randomly placed in the phantom, thus mimicking
transverse short-range disorder better representing actual brain
white matter tissues.

The extracellular diffusion signal obtained from our
simulations thus gives a more realistic view of the effect of
beading on the transverse diffusion coefficient, which appears
to be quantitatively significant. As discussed earlier, the effect of
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beading on the scaling coefficient A might partly originate from
the hindrance of extra-axonal diffusion along the beaded fibers,
due to the projection of parallel diffusivity on the transverse
plane, as a consequence of angular dispersion.

The effect of beadings on the intra-cellular diffusion process
-which is not studied in this work- might also be quantitatively
substantial, as suggested in Marco et al. [31]. In this work,
the sensitivity of the diffusion signal of intracellular metabolites
with respect to beaded structures was studied using Monte-
Carlo simulation of brain metabolites dynamics, which can be
compared, from the numerical simulation point of view, with
the waters one after proper scaling. A clear dependence of both
radial and axial intracellular dispersive diffusivities with respect
to the frequency of the employed OGSE sequence in the presence
of beadings was observed. Moreover, results of MC molecular
diffusion simulations in complex synthetic substrates mimicking
the presence of beads showed a clear 1/

√
t dependence of the

axial intracellular Apparent Diffusion Coefficient due to 1D
short-range disorder introduced in the axial direction by the
randomly placed beads, in good accordance with theoretical
predictions in Burcaw et al. [7] and Novikov et al. in [11]. Indeed,
beadings are supposed to primarily affect the diffusion process
along the fibers and a 1/

√
t ∼

√
ω frequency-dependence of

the parallel diffusivity in the intra-cellular space of beaded axons
is expected. Similarly to what was done in Marco et al. [31] for
intracellular metabolites, an interesting approach would be to
capture directly the effect of beading on the intra-cellular parallel
diffusivity

√
ω term, by performing 3DMonte-Carlo simulations

of spin dynamics in the intra-cellular space and fitting the
scaling factor of the

√
ω term for various beaded geometrical

configurations. The amount of variation of this “intra-cellular
disorder” scaling factor in the presence of beading could be
compared to the variation of the scaling factor A studied in this
work. Moreover, since it has been observed in this study that
A depends (mostly) both on angular dispersion and beading,
further information from an intracellular model accounting for
beading would enable to disentangle the influence of angular
dispersion and beading on the coefficient A.

In any case, the presented approach provides a reliable way
to detect beading-induced modifications of the diffusion process,
which are measurable for a SNR greater or equal to 20, as shown
in Figure 9.

The estimation of A was performed using a linear fit with
five values of the perpendicular diffusivity corresponding to five
distinct OGSE frequencies. The degradation of the estimation of
A while reducing the number of measurements (by using only
three OGSE frequencies for instance) should also be studied in
order to reduce acquisition time. However, a protocol relying on
a single b-value at five different OGSE frequencies and along 60
directions already meets the requirements of a clinical research
protocol and will be used in the future to assess all the findings
presented in this work. The range of explored OGSE frequencies
from 60 to 100 Hz allows to obtain a sufficiently short echo
time (< 120 ms) that enables to preserve at least 23% of the
magnetization before diffusion-weighting, when considering an
average T2 value of 80 ms at 3T. A diffusion sensitization of
200 s/mm2 still preserves 20% of the signal after T2 relaxation

and diffusion decay for a diffusion coefficient of 0.7× 10−9 m2/s.
Therefore, it seems possible, if the voxel spatial resolution is kept
on the order of 2mm, to apply this imaging protocol on a clinical
3T MRI system in vivo in human subjects.

4.4. Effect of SNR
In order to invoke practical conclusions from the numerical
simulation results reported here, the present study addressed
the impact of noise on the quality of the A scaling coefficient
fit. Indeed, Gaussian noises with equal standard deviations were
added to the real and imaginary parts of the complex NMR
signal before computing its magnitude which corresponds to
the simulated diffusion-weighted signal, resulting in a Rician
noise corruption, as expected. Three different values of SNR
were employed: SNR = 30 (corresponding to good experimental
conditions with the latest 3T clinical MRI systems available on
the market), SNR = 20 (intermediate experimental conditions),
and SNR = 10 (worse experimental conditions). As shown in
Figure 8, our noise analysis suggests that a SNR of 10 does
not enable to fit the scaling coefficient A properly since the
estimation of the perpendicular diffusivity for each frequency
value has a too large uncertainty: the differences between the
obtained values of A for the different geometrical configurations
(shown in Figures 9, 10) are strongly mitigated by noise.
However, this analysis suggests that it is possible to reliably
detect changes in perpendicular diffusivity and estimate the
corresponding scaling coefficient A for a SNR greater or equal
to 20 (see again Figures 8–10). The algorithm employed to
estimate the parameters of the model presented in this work is
part of a framework which maximizes a Rician log-likelihood
function using a robust Expectation Maximization algorithm.
In the presence of noise in DW data, the use of such a
framework enables to alleviate the fit error of the model
parameters.

4.5. Limitations
An intracellular fraction of 0.2 was employed to generate our
numerical phantoms, which is not realistic since values of
intracellular fraction are reported in the range (0.6–0.8). The
choice of such a low fraction was deliberately made because it
enables an important variation of both global and local angular
dispersion as well as beading amplitude which is not possible at
higher intracellular fractions. Those geometrical considerations
are a major difficulty when trying to design realistic numerical
phantoms, which becomes even stronger in the case of multiple
populations.

The simulations performed in this article only used phantoms
with a single fiber population, thus omitting the effect of crossing
fibers on the scaling coefficient A. Studying the effect of multiple
fiber populations on our model is essential and will be possible
since our algorithm to design numerical phantoms enables to
generate multiple populations geometries. However, we chose to
restrict this study to single populations because (1) this study has
never been performed, even in the case of a single population;
understanding the various structural disorder effects for one
population is, in our opinion, already a major challenge (2) it
enables a more important variation of both global and local
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angular dispersion whose effects are of interest and (3) choosing
a proper adaptation of our model to multiple fiber configurations
requires a thorough investigation which should be the object of a
complete study. Indeed, there are at least two distinct approaches
to adapt our model to fiber crossing configurations. The first
approach relies on the hypothesis formulated in Burcaw et al. [7]
that the behavior of Equation (2) will persist in fiber crossing
regions because as long as the neurites of each tract are randomly
positioned, the dynamical exponent will remain equal to 1, thus
still leading to a |ω| frequency dependence in the extra-axonal
space. However, in the case of fiber crossing, Equation (2)
will no longer describe the frequency-dependence of the
sole perpendicular diffusivity. Indeed, the fact of introducing
fibers with multiple directions leads to a 3D disorder, while
in the case of parallel fibers, the disorder was 2D, in the plane
perpendicular to fibers. Thus, Equation (2) will apply not only to
the diffusion coefficient transverse to axons—the perpendicular
diffusivity—but to the overall diffusion coefficient. The second
approach assumes that there is not a qualitative change of the
underlying physics when introducing fiber crossings. In this
case, an adaptation of our model to fiber crossings would draw
from similar adaptations of state-of-the art microstructure
models to deal with multiple fiber configurations, such as
AMICOx [32] which estimates axon diameter indices in two
fiber orientations (synthetic data only, using ActiveAx model
in two orientations [5]). A second approach [33] introduced
the spherical mean technique, capable of factoring out the
effects of fiber crossing to estimate per-axon parallel and
perpendicular effective diffusion coefficients, and subsequently
extract fiber orientation using spherical deconvolution.
Similarly, estimation of NODDI in two directions [34] for
tractography uses fiber orientation estimates from neighboring
voxels.

5. CONCLUSION

In this article, a novel tool to design more realistic phantoms
of white matter was presented, enabling to study the influence
of different geometrical features on the linear-in-frequency
dependence of the extra-axonal perpendicular diffusivity,
weighted by a scaling coefficient A .

By performing Monte-Carlo simulations in the extracellular
space of numerical phantoms with increasing geometrical
complexity, it was observed that this scaling coefficient A is
sensitive to the modification of geometrical properties of the
diffusing medium, such as the introduction of global angular

dispersion and tortuosity. The presence of Ranvier nodes and

demyelinated areas along the axons in the numerical phantom
did not seem to significantly change the fitted value of A and
further simulations in both intra- and extra-axonal spaces taking
into account the high level of exchange around unmyelinated
areas have to be performed to possibly observe as stronger
effect on the coefficient A. The introduction of beading in the
numerical phantoms was by far the most impacting geometrical
modification, with a strong deviation of the fitted scaling
coefficient A from geometries without beaded structures.

Future work will consist in studying the effect of multiple
fibers populations on the estimation of the scaling coefficient
A, since crossing configurations represent at least 60% of white
matter regions. The effect of further geometrical characteristics
on the structural disorder coefficient A, such as the presence
of astrocytes and oligodendrocytes which could slow down the
diffusion in the extra-axonal space, should also be considered
by introducing those geometries in our numerical phantom
generation algorithm. Further developments are also needed to
be able to reach higher values of angular dispersion and beading
at high and realistic intracellular volume fractions (>0.7).

This simulation study shows the importance of the generation
of more realistic numerical phantoms in order to catch the
complexity of the underlying diffusion biophysics. Analytical
models such as the one employed in this article enable
to assess the degree of realism needed to perform Monte-
Carlo simulations reflecting the actual diffusion process in
white matter without adding dispensable and computationally
costly details in the phantoms geometry. This is a necessary
step towards the construction of dictionaries of simulated
biomimicking geometries to inversely decode white matter
microstructure.
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