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We implement an efficient numerical method to calculate response functions of complex

impurities based on the Density Matrix Renormalization Group (DMRG) and use it as

the impurity-solver of the Dynamical Mean Field Theory (DMFT). This method uses the

correction vector to obtain precise Green’s functions on the real frequency axis at zero

temperature. By using a self-consistent bath configuration with very low entanglement,

we take full advantage of the DMRG to calculate dynamical response functions paving

the way to treat large effective impurities such as those corresponding to multi-orbital

interactingmodels andmulti-site or multi-momenta clusters. This method leads to reliable

calculations of non-local self energies at arbitrary dopings and interactions and at any

energy scale.

Keywords: density matrix renormalization group, dynamical mean field theory, correlated electrons, density of

states, multi-orbital models

1. INTRODUCTION

Among the most intriguing problems in physics is the behavior of strongly correlated materials
which present emergent behavior such as high temperature superconductivity, ferroelectricity,
magnetism and metal-insulator transitions. These systems have triggered a great deal of research
and are still far from being understood. However, a complete theoretical understanding is still
lacking due to the presence of strongly interacting local orbitals in these materials. Methods to
calculate electronic structure of weakly correlated materials, such as the Density Functional Theory
(DFT) [1] which use the local density approximation (LDA) [2] and other generalizations, are
unable to describe accurately the strong electronic correlation case. Non-perturbative numerical
methods are, thus, the only reliable approach.

To include correlations, the Dynamical Mean Field Theory (DMFT) was developed more
than 20 years ago. Together with its sucessive improvements [3–8], these methods have led to
more reliable results. The combination of the DMFT with LDA has allowed for band structure
calculations of a large variety of correlated materials (for reviews see [9, 10]), where the DMFT
accounts mainly for local interactions [11, 12]. A recent proposal, the Density Matrix Embedding
Theory (DMET) relies on the embedding of the wave functions of a local cluster fragment (instead
of the local Green functions) in a self-consistent finite environment [13, 14].
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The DMFT requires the calculation of an interacting quantum
impurity for which the fermionic environment has to be
determined self-consistently until convergence of the local Green
functions and the local self-energies is reached. Therefore, the
success and scope of the DMFT will depend on the existence
of accurate methods to solve correlated and complex quantum
impurities. This approach is exact for the infinitely coordinated
system (infinite dimensions), the non-interacting model and in
the atomic limit.

Several quantum impurity solvers have been proposed
since the development of the DMFT, among which we can
mention the iterative perturbation theory (IPT) [15, 16],
exact diagonalization (ED) [17, 18], the Hirsch-Fye quantum
Monte Carlo (HFQMC) [19], the continuous time quantum
Monte Carlo (CTQMC) [20–24], non-crossing approximations
(NCA) [25], the numerical renormalization group (NRG)
[26–29], the rotationally invariant slave-boson mean-field theory
(RISB) [30–32] and quantum chemistry-based techniques [33].
Although these methods allow for the calculation of relevant
properties such as the metal-insulator transition and other
low-lying energy properties, they present some problems.
Among them, one can mention the sign problem and
the difficulty in reaching low temperatures in the QMC-
based algorithms, the difficulty of the NCA in obtaining
a reliable solution for the metallic state, the limitation to
few lattice sites of the ED, far from the thermodynamic
limit, and the reduced high-energy resolution of the NRG
technique.

To overcome some of these difficulties an impurity
solver based on the Densit Matrix Renormalization Group
(DMRG) technique [34–38] was proposed [39–42]. Subsequent
improvements to this were introduced, such as those using
the time evolution DMRG algorithm [43, 44], dynamical
calculations using the Kernel Polynomial Method (Chebyshev
expansion for Green functions) [45–48] and the application to
non-equilibrium DMFT using MPS [49]. In a recent work [50],
the authors converge the DMFT loop on the the imaginary-
frequency axis rather than on the real-frequency one, reducing
computational costs by orders of magnitude. This is because the
bath can be represented in a controlled way with fewer bath sites
and, most importantly, the imaginary-time evolution does not
create quantum entanglement. This imaginary time algorithm is
able to treat much more complex model Hamiltonians. However,
the price to be paid is a reduced resolution on the real-frequency
axis.

In spite of these developments, several difficulties still remain
which hinder the calculation of reliable spectral densities for
complex multi-band and multi-orbital correlated systems [51].
In this paper we present a novel technique based on the DMRG
which includes important improvements and complements
previous methods. It is based on an efficient selection of the
relevant states due to low entanglement bath configurations and
on the targetting of the correction vector for small real energy
windows. This method, thus, provides detailed spectral functions
for complex Hamiltonians at zero temperature and for any
doping and correlations. In the following sections we describe the
method and show some applications and potential uses.

2. GENERAL FORMULATION

In order to present a unified treatment of multi-site (or cluster)
and multi-orbital Hamiltonians on the lattice, we start by
interpreting the lattice as a superlattice such that:

1. The interaction V̂ is local and completely contained in the unit
cell: V̂ =

∑

i V̂i, where i is the cell index.

2. The non-interacting Hamiltonian Ĥ0 is characterized by its
local Green function matrix G0(ω 1 − T); being T =

(

tIJ
)

the

coefficients of the local part ĥ0i of Ĥ0: ĥ0i =
∑

IJ tIJc
†
iIσ ciJσ ,

where c†
iIσ creates an electron in cell i and local “orbital”

I = 1, 2, ..,Nc with spin σ =↑,↓.

These two points completely define our problem through the
parameters V̂i, G0, T. Notice that G0 and T are typically well
known one-particle quantities for a given lattice problem.

The key idea of the DMFT is to neglect the self-energy between
different cells i and j in the lattice, that is, to consider only the
local self-energy:6ij(ω) ≈ 6(ω)δij. In this way, we are neglecting
spatial correlations up to a certain degree while a good treatment
of the local dynamical correlations is made. The relevant point
is that the problem becomes tractable, as we will see in the
following. Note that G0, T, and 6 are Nc × Nc matrices for the
spin-symmetric solution, and 2Nc × 2Nc matrices in the general
case. Spatial correlations or the momentum dependence of6 can
be obtain by periodization [52].

The local Green function is now given by DMFT [53]

G(ω) = G0

(

ω 1− T − 6(ω)
)

(1)

which defines the self-consistency condition for the Nc × Nc

matrices G and 6. The lattice problem can now be mapped onto
an auxiliar impurity problem that has the same local magnitudes
G(ω) and 6(ω). This impurity problem should be determined
iteratively. The impurity Hamiltonian can be written:

Himp = ĥ00 + V̂0 +Hb, (2)

where the non-interacting part Hb represents the bath:

Hb =
∑

IJqσ

λIJq b
†
Iqσ bJqσ +

∑

IJq

υIJ
q

[

b†
Iqσ c0Jσ +H.c.

]

, (3)

b†
Iqσ corresponds to the creation operator for the bath-site q,

associated to the “orbital” I and spin σ (see Figure 1), λIJq are real

and symmetric and υ
IJ
q are symmetric coefficients.

The self-consistent iterations can be summarized as follows:
(i) Start with 6(ω) = 0,
(ii) Calculate the Green’s function:

G(ω) = G0

(

ω1− T − 6(ω)
)

, (4)

(iii) Obtain the hybridization

Ŵ(ω) = ω 1− T − 6(ω)−
[

G(ω)
]−1

, (5)
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FIGURE 1 | Graphic representation of Hamiltonian Equation (2) corresponding

to the impurity problem for the one, two, and four-site cellular DMFT. The

circles (squares) represent the non-interacting (interacting/impurity) sites. The

red lines correspond to the λIJq parameters between bath sites q related to

impurities I and J (they are the only hybridization between the baths related to

different impurities). The blue lines are the υ IJq with I 6= J while the black lines

are the υ IIq. In the bottom scheme we omit some obvious connections for

clarity.

(iv) Find a Hamiltonian representation Himp with hybridization

Ŵ̃(ω) to approximate Ŵ(ω). The hybridization Ŵ̃(ω) is

characterized by the parameters ϒq =
(

υ
IJ
q

)

and 3q =
(

λ
IJ
q

)

of

Hb through:

Ŵ̃(ω) =
∑

q

ϒq ·
[

ω 1− 3q

]−1 · ϒq. (6)

(v) Calculate the impurity Green’s function matrixGimp(ω) of the
Hamiltonian Himp using DMRG. (vi) Obtain the self-energy

6(ω) = ω 1− T −
[

Gimp(ω)
]−1 − Ŵ̃(ω). (7)

Return to (ii) until convergence. Step (iv) is a fitting problem
for ϒq and 3q, where we can use the general symmetries of the
hybridization function matrix. If Ŵ can be diagonalized using the
same unitary rotation R for all ω then we obtain (at most) Nc

independent fittings. This can be seen from Equation (6) after
applying R:

R† · Ŵ̃(ω) · R = R† ·





∑

q

ϒq ·
[

ω I − 3q

]−1 · ϒq



 · R, (8)

Ŵ̃D(ω) =
∑

q

ϒD
q ·

[

ω 1− 3D
q

]−1
· ϒD

q , (9)

where the superscript D is used to stress that these matrices
are diagonal, and MD = R† · M · R where M is an Nc × Nc

matrix. In this new basis (the so-called molecular-orbital basis),
we have to fit ŴD

11(ω) using the expression (9) for Ŵ̃D
11(ω) which

depends on the parameters
(

ϒD
q

)

11
and

(

3D
q

)

11
, and similarly

for ŴD
22(ω), etc. Once these independent fittings are done, we

bring the parameters back to our original basis through M =
R ·MD · R†.

In general, symmetries can be expoited for a better
performance and stability. For example, at half-filling we could
also have the electron-hole symmetry, giving a conection
between G(−ω) and G(ω), implying the same structure for the
hybridization Ŵ(ω).

The most resource-demanding part of the algorithm is carried
out at step (v), where the dynamics of a complex many-body
problem (see Figure 1) is calculated. Here we use the correction-
vector method together with the DMRG essentially following
[54, 55], although other methods to calculate dynamical response
functions withing the DMRG can also be used [56, 57].
The one-dimensional representation of the problem (needed
for a DMRG calculation) is shown in the figure, where we
are also duplicating the graph when considering spin degress
of freedom (not shown for clarity). In this configuration
(star geometry), in spite of the high connectivity of the
Hamiltonian, the DMRG shows a much better performance
[50, 58].

The correction vector method is implemented in DMRG by
targeting not only the ground state |E0〉 of the system but also
the correction vector |CVr〉 associated to the applied operator
at frequency ωr (and its neighborhood). For example, to obtain
the single-particle density of states (DOS), the correction vector
reads:

(

ωr + iη −Himp+E0
)

|CVr〉 = c†
0Iσ |E0〉 ,

where a Lorentzian broadering η was introduced to deal with the
poles of a finite-length impurity model. In this way a suitable
renormalized representation of the operators is obtained to
calculate the properties of the excitations around ωr , particularly
the Green’s function, for instance, G>

JIσ (ω) = 〈E0| c0Jσ |CVr〉
and GJIσ (ω) = G>

JIσ (ω) + G<
IJσ (−ω). Here ωr with r =

1, 2, ...,Nω is a grid covering the frequencies of interest, typically
Nω = 40–50 and are treated independently. Thus each DMFT
iteration uses around 30 cores totalling less than 3 h for all cases
considered in this work, considering system sizes of up to 36
sites.

3. ONE-SITE DMFT

As we remark, only three parameters should be defined in
order to apply the DMFT algorithm: V̂i, G0, T. We study the
paramagnetic solution of the DMFT in the square (and Bethe)
lattice using the following:

V̂i = Uni↑ni↓,

T = −µ,
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G0(ω) =







1
N

∑

k

[

ω − ǫ(k)
]−1

Square lattice

2
[

ω +
√

ω2 − 1
]−1

Bethe lattice

where ǫ(k) = −2t
(

cos kx + cos ky
)

− 4t′ cos kxcosky, with k =
(kx, ky) the Fourier space of the square lattice with N sites,
N → ∞, and t ( t′) denotes the (next-)nearest-neighbor hopping
integral [59].

4. TWO-BAND BETHE LATTICE

We consider the interaction:

V̂i = U
∑

I niI↑niI↓ +
∑

σσ ′ (U2 − Jδσσ ′) ni1σni2σ ′−
−J
(

c†

i1↑ci1↓c
†

i2↓cj2↑ + c†

i1↑ci1↓c
†

i2↓ci2↑
)

−J
(

c†

i1↑c
†

i1↓ci2↑ci2↓ + c†

i2↑c
†

i2↓ci1↑ci1↓
)

(10)

where J > 0 is the Hund exchange, U (U2) is the intra (inter)-
orbital Coulomb repulsion, and I = 1, 2 are the orbitals. The
on-site non-interacting coefficients are

T =
(

−µ t12
t12 −µ

)

,

and the local Green’s function:

G0(ω) = 2
[

ω 1+
√

ω2 1− 4B2
]−1

(11)

where B =
(

t1 0
0 t2

)

, and t1, t2 are the nearest-neighbor hoppings

for each orbital.

Concerning step (iv), if t12 = 0 then all our 2 × 2 matrices
are diagonal and we have only to calculate two Green’s functions
and do two independent fittings, one for each orbital. On the
other hand, if t1 = t2 but t12 6= 0 then we can introduce the

rotation R = 1√
2

(

1 1
1 −1

)

to diagonalize the hybridization and

we do again only two independent fittings. In the general case,
a non-diagonal matrix fitting should be done to obtain a bath
representation of the given hybridization Ŵ(ω), that is, to find

the parametersϒq and3q which minimize
∑

ω

∥

∥

∥
Ŵ(ω)− Ŵ̃(ω)

∥

∥

∥

2

using, for instance, the matrix norm ‖M‖2 = Tr
[

MT ·M
]

.
In Figure 2 we present the results for this model where,

by analyzing the DOS for the different bandwidth case, the

orbital-selective Mott transition can be clearly observed for a

finite Hund’s coupling J. This phase is robust for a certain

range of interband hybridization, as is also shown in this figure.

Previous calculations [60–62] either resorted to approximate

analytic continuation methods to obtain the DOS or used exact
diagonalization for small baths. The results shown here are

calculated on the real energy axis directly (except for the small
imaginary shift η). This is a main advantage over other methods
and leads to much more precise and reliable results. It also

has the potentiality of treating even larger clusters or more
orbitals. For example, the advantages of the method presented
here were crucial to find the in-gap holon-doublon quasiparticle
peaks in the DOS when we appied it to calculate the asymmetric
Hubbard model [63]. These quasiparticle peaks would have been
either hindered using QMC or NRG solvers or they would have
lacked a proper finite size analysis had an ED method been
used.

FIGURE 2 | DOS for the half-filled two-band Kanamori-Hubbard model on the Bethe lattice showing the orbital-selective Mott transition for different bandwidths:

t1 = 0.5 (Top panels) and t2 = 0.25 (Bottom panels). (Left panel) varying U for t12 = 0. (Right panel) Varying t12 for U = 1.5. We consider the rotationally

invariant case U2 = U− 2J and J = U/4. Two different values of the broadening η are depicted to emphasize the gapped region for the insulating phase.
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5. CELLULAR DMFT ON THE SQUARE
LATTICE

We consider the same physical problem of section 3 on the square
lattice, but interpreted now in a superlattice of unit cell of size
Nc = 2 (or 4) corresponding to the two-site (c2) or four-site (c4)
cellular DMFT [5, 64]. This case is illustrated in Figure 1. The
next-nearest-neighbor-hoppings t′ for the c4-DMFT connect the
opposite vertices of the 4 impurity square depicted at the bottom
of this figure. Our three parameters V̂i, T, G0 are now:

V̂i = U

NC
∑

I = 1

niI↑niI↓,

T =







































(

−µ t

t −µ

)

c2-DMFT











−µ t t t′

t −µ t′ t

t t′ −µ t

t′ t t −µ











c4-DMFT

G0(ω1) =
Nc

N

∑

k̃

[

ω 1− ǫ̃(k̃)
]−1

,

respectively. Here, T is the non-interacting intracluster matrix

and ǫ̃(k̃) is the intercluster hopping on the superlattice Fourier

space k̃, which is connected to the one-site lattice through

ǫ̃(k̃)IJ = 1
Nc

∑

K exp
[

i(K+ k̃) · RIJ

]

ǫ(K + k̃) with K the

intracluster Fourier-space vectors, see Equation (23) of Maier et
al. [6].

ǫ̃(k) =















−t

(

2 cos ky 1+ exp
(

2ikx
)

1+ exp
(

−2ikx
)

2 cos ky

)

−

t′ cos ky

(

0 1+ exp
(

2ikx
)

1+ exp
(

−2ikx
)

0

)

for the c2-DMFT and

ǫ̃(k) =















































−t

(

0 1+ exp
(

2ikx
)

1+ exp
(

−2ikx
)

0

)

⊗
(

1 0
0 1

)

−

t

(

1 0
0 1

)

⊗
(

0 1+ exp
(

2iky
)

1+ exp
(

−2iky
)

0

)

−t′
(

0 1+ exp
(

2ikx
)

1+ exp
(

−2ikx
)

0

)

⊗
(

0 1+ exp
(

2iky
)

1+ exp
(

−2iky
)

0

)

.

for the c4-DMFT. Finally, the hybridization matrix Ŵ has the
following form, see Liebsch et al. [64]:

Ŵ(ω) =







































(

a b

b a

)

c2-DMFT











a b b c

b a c b

b c a b

c b b a











c4-DMFT

which can be diagonalized using the corresponding unitary
rotation R, obtaining (at most) Nc independent fittings.

FIGURE 3 | Comparison of the DOS calculated using different cluster sizes for the Hubbard Hamiltonian on the square lattice for two values of U. As in Figure 2,

results for two different values of the broadening η are shown, emphasizing the gap for the insulating regime. The curves are shifted for clarity.
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FIGURE 4 | Imaginary (continuous lines) and real (dotted lines) Green’s

functions for the doped Hubbard model (µ = −0.3) on the square lattice with

t′ = −0.05 and U = 2 calculated using c4-DMFT, arbitrary units. The red

continuous curve corresponds to the density of states. The Fermi energy lies

at ω = 0 and the horizontal lines are at zero.

In Figure 3 we show the DOS for the Hubbard Hamiltonian
on the square lattice with nearest (t = 0.25) and next nearest-
neighbor hopping (t′ = 0) for two values of U. Larger clusters
lead to a smaller critical U and to the appearence of pseudogaps
[9]. The technique presented here enhances the scope and
potentiality of the DMFT, for example, by considering larger
systems (we considered here 32 bath sites compared to 8 in [65]).

To illustrate the results with finite doping, in Figure 4 we
show the DOS for the Hubbard Hamiltonian on the square lattice
with nearest (t) and a finite next nearest-neighbor hopping (t′),
together with the non-local Green’s functions.

6. CONCLUSIONS

We have presented here an efficient and reliable numerical
method to calculate dynamical properties of complex impurities
based on the DMRG. This technique uses the correction vector
to obtain precise Green’s functions on the real frequency axis
directly thus avoiding ill-posed analytic continuation methods
from the Matsubara frequencies and fermionic sign problems
present in quantumMonte Carlo-based techniques, allowing also

for zero temperature calculations. When used as the impurity-
solver of the DMFT algorithm it leads to highly reliable spectral
functions by using a self-consistent bath with low entanglement
for which the density matrix renormalization works best.

To illustrate the versatility of the method, we have shown
examples of densities of state and response functions within
the DMFT framework for two paradigmatic models such as the
Hubbardmodel at half filling on the square lattice on the one, two
and four-site effective impurity models and at finite doping on
the four-site case and also for the two-band Kanamori-Hubbard
model on the Bethe lattice in the presence of Hund’s coupling and
interband hybridization.

This method leads to reliable results for non-local self energies
at arbitrary dopings, hybridizations and interactions, at any
energy scale. It also paves the way to treating large effective
impurities not only within the framework of the DMFT to
study multi-band interacting models and multi-site or multi-
momenta clusters, but also for complex impurity problems
such as adsorbed atoms, cold atoms and interacting nanoscopic
systems like quantum dot arrays among others.

There is room to include additional improvements such as
the consideration of symmetries, finite temperature, and more
realistic systems by taking into account configurations given by
ab-initio methods.
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