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Indirect reciprocity is one of the basic mechanisms to sustain mutual cooperation,

by which beneficial acts are returned, not by the recipient, but by third parties. This

mechanism relies on the ability of individuals to know the past actions of others, and

to assess those actions. There are many different systems of assessing others, which

can be interpreted as rudimentary social norms (i.e., views on what is “good” or “bad”).

In this paper, impacts of different adaptive architectures, i.e., ways for individuals to adapt

to environments, on indirect reciprocity are investigated. We examine two representative

architectures: one based on replicator dynamics and the other on genetic algorithm.

Different from the replicator dynamics, the genetic algorithm requires describing the

mixture of all possible norms in the norm space under consideration. Therefore, we also

propose an analytic method to study norm ecosystems in which all possible second

order social norms potentially exist and compete. The analysis reveals that the different

adaptive architectures show different paths to the evolution of cooperation. Especially

we find that so called Stern-Judging, one of the best studied norms in the literature,

exhibits distinct behaviors in both architectures. On one hand, in the replicator dynamics,

Stern-Judging remains alive and gets a majority steadily when the population reaches a

cooperative state. On the other hand, in the genetic algorithm, it gets a majority only

temporarily and becomes extinct in the end.

Keywords: evolutionary game theory, evolution of cooperation, indirect reciprocity, social norms, ecosystems,

adaptive systems

INTRODUCTION

Cooperative relationships such as I-help-you-because-you-help-me relations can often be found
in both biological systems and human societies. Cooperative behaviors are obviously essential to
make societies effective and smooth. However, evolutionary biologists and social scientists have
long been puzzled about the origin of cooperation. Recently, scientists from a variety of fields such
as economics, mathematics and physics have been tackling the puzzle using tools developed in each
discipline.
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According to a thorough review published from statistical
physics viewpoints recently [1], there have been numerous
contributions from physicists to this area for the past decade.
In those researches, diverse methods to handle many interacting
particles developed in statistical physics are used to investigate
interactions of biological and social elements.

Following the context of the physics literature, in this paper,
we deal with interactions of “social norms.” Social norms are
interpreted as views on what is “good” or “bad” and play an
essential role in indirect reciprocity based on reputation systems.
Indirect reciprocity is known as one of the main mechanisms for
the emergence of cooperation. It has a long history and has been
amply documented in human populations [2–12]. One feature of
indirect reciprocity is that helpful acts are returned, not by the
recipient as in direct reciprocity, but by third parties [13–15]. To
decide helpful acts therefore needs information on others, who
can be possible recipients in the future.

As mentioned in Nowak and Sigmund [16], there are
two main motivations to pursue the investigation of indirect
reciprocity. One concerns the evolution of human communities:
how can cooperation emerge in villages and small-scale societies?
(see for instance [17, 18]) The other motivation is related to the
recent rapid growth of anonymous interactions on a global scale,
made possible by the spread of communication networks on the
internet: how can cheating be avoided in on-line trading [19]? In
both cases, simple, robust methods for assessing others, i.e., social
norms are necessary.

Vast studies on indirect reciprocity in the framework
of evolutionary game theory have discovered various types
of norms or assessment rules that enhance the evolution
of cooperation in the modern society with highly mobile
interactions. Theoretically, assuming that the same norm is
adopted by all members of a population, Ohtsuki and Iwasa have
shown that only eight out of 4,096 resulting possible norms lead
to a stable regime of mutual cooperation. These are said to be
the “leading eight” [20, 21]. In this context, “stable” means that
the corresponding population cannot be invaded by other action
rules. However, this does not settle the issue on whether the focal
norm can be invaded by other norms (i.e., assessment rules) or
not.

Many theoretical studies also considered another stability
criterion. Those studies focus on whether the corresponding
population cannot be invaded by or can invade into
unconditional strategies such as perfect cooperators and
perfect defectors [21–24]. Clearly, these previous studies do not
allow us to fully compare different norms either.

If one wants to analyze the evolution of even the simplest
system of morals, one has to consider the interaction of several
assessment rules in a population. Some studies meet the theme.
For example, comparing Simple-Standing with Stern-Judging,
both members of the leading eight, is an important task to
explore a champion of the assessment rules using second-order
information. Uchida and Sigmund [25] analyzed the competition
of these two different rudimentary norms and established
significant findings.

Despite the theoretical developments of Uchida and Sigmund
[25] on analyzing multiple rules, its approach cannot describe

a mixture of more than a few rules. Real society, however,
comprises a melting pot of various norms that interact with each
other. Therefore an imperative next step of studies on indirect
reciprocity would be to develop an analytical tool which can
deal with “norm ecosystems” in which more than a few norms
coexist, interact and compete. Although some insights have been
derived in a research using individual-based simulations [26], a
new theoretical approach may capture co-evolution of diverse
norms more in detail.

Therefore the main focus of the present paper is in developing
a systematic analytical methodology with which entanglements
of all sixteen norms using second-order information can be
formulated in an equation system. Extending the methodology
proposed by Uchida and Sigmund [25], we see that the key
problem, i.e., determining the average payoff of each norm
surrounded by other norms to determine its fitness, comes down
to a linear problem (i.e., a task of solving an inhomogeneous
linear equation system). Thus it is computationally feasible to
calculate the payoffs even when to deal with mixture of many
norms. Uchida and Sigmund [25] treated a special case of the
linear problem analyzed here.

The authors’ development is useful not only for rigorous
analysis of norm ecosystems, but also helps compare different
“adaptive architectures.” Here an adaptive architecture means
a way for individuals to adapt to their environments. In this
paper, we take up the two representative architectures, replicator
dynamics and genetic algorithm. Although these architectures
are popular in the literature, they are studied independently in
different domains and their comparison in the framework of
evolutionary game theory has not yet been done because there
has been no technical method developed to capture all strategies
in a norm space at once as the study of genetic algorithm requires.
Our approach offers a first opportunity to theoretically analyze
a comparison of replicator dynamics and genetic algorithm in
evolutionary game theory.

The analysis reveals that the two representative adaptive
architectures show different paths to the evolution of
cooperation. We find that Stern-Judging, one of the best
studied norms in the literature, plays important but different
roles in both cases [25, 27, 28]. In the replicator dynamics,
Stern-Judging remains alive and gets a majority whenever the
population reaches a cooperative state. On the other hand, in the
genetic algorithm, it gets a majority just before cooperation rate
starts rising but becomes extinct after the cooperation has been
accomplished.

In the next section, we describe the model ecosystem,
derive the equation to analyze it and introduce the adaptive
architectures. Then we present the results and discuss them.

MATERIALS AND METHODS

Game, Norm, and Payoff
An infinitely large, well-mixed population of individuals (or
players) is considered. From time to time, one potential donor
and one potential recipient are chosen at random from the
population and they engage in a donation game: the donor
decides whether to help the recipient at a personal cost c. If the
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donor chooses to help, the recipient receives a benefit b > c;
otherwise the recipient obtains nothing. Each individual in the
population experiences such decision makings many times both
as a donor and as a recipient [29–31]. From here on, we denote
the action “help” by “1” and “refuse” by “0.”

Individuals in the population have the ability to observe
and assess others following their assessment rules (or social
norms). Here “assess” means that players label other players
“good” or “bad” according to their actions as a donor in their
last interactions. The images of players are also denoted by
“1” (for “good”) and “0” (for “bad”). The assessment is done
privately but the information needed for the assessment is so
easily accessed that all individuals have the same information (on
private information see for example [29–31]).

A donor determines whether or not to help the recipient,
depending on the current image of the donor (i.e., whether the
recipient is labeled as 1 or 0). If the recipient is viewed as 1
in the eyes of the potential donor, the recipient will be given
help, otherwise the recipient will not be offered a help. Note that
we do not assume any kind of error in the model because this
is a first attempt to describe competitions of all norms in the
focal norm space (for the role of errors, see [32–34]). Moreover,
we assume that all individuals are trustful, therefore, initially
good.

The social norms in this present research are at most of second
order, i.e., they take the image of the recipient as well as the
action of the donor into consideration. Denoting the action of
the donor by α ∈ {0, 1} and the image of the recipient by
β ∈ {0, 1}, the new image of the donor after the game from
the view point of some norm is a binary function of α and β :
βnew = f (α,β) ∈ {0, 1}. Hence a second order norm can be
identified by a four bit (f (1, 1) , f (1, 0) , f (0, 1) , f (0, 0)).There
are 16 possible norms and we number them by defining that
i = f (1, 1)23 + f (1, 0)22 + f (0, 1)21 + f (0, 0) 20 + 1. The 16
norms include some well-studied norms in the literature: the 9th
norm (1000) is known as Shunning (SH), the 10th norm (1001)
is called Stern-Judging (SJ), the 13th norm (1100) Image-Scoring
(IS) (which is of first order) and the 14th norm (1101) Simple-
Standing (SS). The first norm (0000) and the last one (1111) are
unconditional norms and called AD and AC, respectively.

We denote by xi the frequency of individuals that follow social

norm i
(

∑16
i=1 xi = 1

)

. Note that individuals using the same

norm have the same opinion on others, since all individuals have
the same information without errors.

As individuals play the game, the images of the individuals
gradually change. At the equilibrium of images, the average
payoff of individuals with norm i depends on the frequencies of
the other norms in the population and on how many individuals
are good. The average payoff Pi at the equilibrium of images is in
fact given by

Pi =

16
∑

j=1

xj
(

sjib− sijc
)

, (1)

where sij is the probability that a random player with norm
i has a good image of a random player with norm j. We call

sij∈ [0, 1]16×16 the “image matrix.” Thus specifying the image
matrix provides the average payoff with the frequencies xj fixed.
The outline of the calculation for the imagematrix is shown in the
Results section (The full information on the calculation is found
in the Supplementary Material).

Adaptive Architectures
The players adaptively switch their assessment rules, aiming at
more payoffs. We examine two different switching processes:
adaptive changes due to social learning by imitation described by
the replicator dynamics and those changes of norms modeled by
the genetic algorithm.

Replicator Dynamics
In case of replicator dynamics, an individual occasionally has a
chance to change its norm by imitating another individual (i.e.,
adopting its norm as a model). The probability that an individual
(with norm i) is chosen as a model is proportional to the norm’s
frequency xi and that model’s fitness Fi = F + Pi. Here, F is
a baseline fitness (the same for all) and will be set to c in all
simulations (We also normalize Fi in simulations.).

With some probability, an individual selects a norm totally at
random and adopts that norm. This occurs due to mutation. The
resulting dynamics is given by the replicator-mutation equation
ẋi = xi

(

Pi − P
)

+ µ
(

1
16 − xi

)

, where P =
∑16

k=1 xkPk is
the average payoff in the population (see [35]) and µ is a
parameter that measures strength of mutation. In fact, we use
the discretized version of replicator dynamics to compare with
genetic algorithm: xi

(

t + dt
)

= xi (t)+ dtxi (t)
(

Pi (t) − P (t)
)

+

dtµ
(

1
16 − xi(t)

)

.

Genetic Algorithm
In case of genetic algorithm, an individual decomposes a norm
into a collection of bits and changes its norm “bit-wise” by
imitating the norms of two randomly selected individuals (called
parents) [36]. Following [26], the probability that an individual
with norm i is selected as a parent is proportional to the norm’s
frequency xi and the square of the fitness of norm i (rule 1).

After parents have been chosen [now, the norms of the
parents are j = (a, b, c, d) and k = (e, f , g, h), respectively], a
crossover is uniformly performed: the first bit of the child’s norm
is either “a” or “e” with the same probability and the second
bit “b” or “ f ” and so on. The uniform crossover generates the
norms (a, b, c, d), (a, b, c, h) · · · (e, f , g, d), (e, f , g, h) with the same
probability, which is 1/16 (rule 2).

From rules 1 and 2, we can derive the probability that any
norm i = (p, q, r, s) is generated at the next generation (which we
denote by wi). However, due to mutation, a bit of the generated
norm can be flipped with probability µ. Note that µ in the RD
and that in the GA have different meanings. We assume that
at most one bit can be inverted because of the small mutation
probability. Thus the probability that none of 4 bits is flipped
is 1 − 4µ. Therefore the probability that norm i = (p, q, r, s) is
actually generated is vi = (1− 4µ)wi + µI. Here I is the total of
the probabilities that the neighboring norms (1−p, q, r, s), (p, 1−
q, r, s), (p, q, 1− r, s), (p, q, r, 1− s) are generated before mutation.
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The frequency of norm i at the next generation t + dt is given
by xi(t + dt) = (1 − dt)xi(t) + dtvi, where dt is the proportion
of individuals that change their norms between the generations t
and t + dt.

Replicator Dynamics with Multiple Models
In addition to the ordinary adaptive architectures well-studied in
the literature mentioned above, we consider two other adaptive
architectures that are modified versions of the conventional
replicator dynamics and the genetic algorithm, respectively. The
first one is replicator dynamics with multiple models.

In this adaptive architecture, an individual learns each bit
of its norm independently from probably different models. The
probability that an individual having norm j = (p, q, r, s)
flips its first bit is proportional to the average fitness of
such individuals that follow a norm the first bit of which
is 1 − p. This fitness is given by

∑

V∈X1
xVFV . Here X1 is

the set of norms whose first bit is 1 − p (i.e., norms of the
form (1 − p, ∗, ∗, ∗)) and FV is the normalized fitness of V .
Then for instance, the probability that the individuals change
their norm from j = (p, q, r, s) to k = (1 − p, q, r, s)
is given by

∑

V∈X1
xVFV

(

1−
∑

V∈X2
xVFV

) (

1−
∑

V∈X3
xVFV

)

(

1−
∑

V∈X4
xVFV

)

. In this formula, for example, the second

term
(

1−
∑

V∈X2
xVFV

)

is the probability that the individual
does not flip its second bit. By considering all possibilities, we
can calculate the in-flow to norm j from norm i (wij) and out-
flow from j to i (wji). Then the increase rate of norm j is given by
∑

i (xiwij − xjwji).
As in ordinary replicator-mutation dynamics, we also include

a mutation term in addition to the switching process described
above. But here, we assume that mutation occurs “bit-wise” as
assumed in genetic algorithm. That is, by µ, we denote the
probability that each bit is flipped by mutation. Then the in-
flow to j due to mutation is given by µ

∑

k xi with k being 4
neighboring norms of j (i.e., the hamming-distances between the
4 norms j are 1.) and the out-flow from j by 4µxj.

The resulting dynamics is given by ẋj =
∑

i (xiwij − xjwji) +
µ

(
∑

k xi − 4xj
)

. Note that “4µ” in this dynamics corresponds
to “µ” in the ordinary replicator-mutation dynamics. As for
other adaptive architectures, we use discretized version of the
dynamics.

Genetic Algorithm with a Single Parent
The other one is genetic algorithm with a single parent. In this
architecture, only one individual is chosen as the unique parent
of an individual. Then the child copies the norm of the parent.
That is, the child adopts the entire norm of the single parent.
Mutation effects and the probability that an individual is chosen
as a parent are calculated in the same way as in the ordinary
genetic algorithm mentioned above.

All four corresponding evolution equations depend on
expected payoffs. We assume that images are always at
equilibrium at each time step of the evolution equations. Under
this assumption in the next section, we derive the equation
system to specify image matrices (thus expected payoffs of
norms) and show time evolutions of norms based on the above
mentioned adaptive architectures.

RESULTS

Image Matrix
Images of individuals change in time as well as frequencies of
norms. But we assume that the time scale of the changes of images
is much faster than that of norm changes. As a result, images
are always at equilibrium and norm frequencies are treated as
constant in estimating image matrices, as is assumed in the
literature (See [37]).

To calculate image matrix sij, we introduce “image profile”

s
(j)
e1e2e3···e16 ∈ [0, 1]2

16
, which is the joint probability distribution

in terms of the images of a random player with norm j from

the viewpoints of all norms. Thus the value of s
(j)
e1e2e3···e16 is the

probability that a random player with norm j is labeled an image
e1 ∈ {0, 1} from the first norm and e2 from the second norm,
. . . , and e16 from the 16th norm. Note that, since the first norm
is unconditional AD, the probability that e1 = 1 is zero. Thus

s
(j)
e1=1,e2e3···e16

= 0. Similarly, s
(j)
e1e2e3···e16=0 = 0.

The image profile is a joint probability distribution and
contains the finest probabilistic information about the system.
For example, the image matrix is interpreted as the marginal
distribution:

sij =
∑

e1e2···ei−1ei+1···e16

s
(j)
e1e2···ẽi···e16

, (2)

with ẽi = 1.
Now we define the joint distribution in the whole population by

Rf1f2···f16 =

16
∑

j=1

xjs
(j)

f1f2···f16
, (3)

which gives the proportion of those individuals in the whole
population, who are labeled image f1 from the viewpoint of the
first norm and f2 from the second norm, f3 from the third norm
and so on. Since Rf1f2···f16 is a probability distribution, there is a
constraint on Rf1f2···f16 :

∑

f1f2······f16

Rf1f2···f16 = 1. (4)

According to our analysis, it is possible to derive the equation

system that yields the values of all image profiles s
(j)
e1e2···e16 (the

joint probability distribution). More concretely, we can find

an expression of s
(j)
e1e2···e16as a linear function of Rf1f2···f16 .

Then inserting those relations between s
(j)
e1e2···e16and Rf1f2···f16 into

Equations (3) and (4), we can have an inhomogeneous linear
equation system for Rf1f2···f16 . Solving this equation system yields

the values of s
(j)
e1e2···e16 , because s

(j)
e1e2···e16 is expressed as a function

of Rf1f2···f16 . See the supplementary material for the details of the
derivation.

We remark that the equation system with respect to Rf1f2···f16
includes 216 − 1 unknowns in principle, but the fact that
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the equation system contains some trivial variables such as
Rf1f2···f16 = 0 with f1 = 1 or f16 = 0 reduces the dimension of
the equation system.

Moreover, the case where f13 = f(1,1,0,0) = 1 indicates that
action C has been taken. In this case, the following conditions
must be satisfied: f(1,1,0,1) = f(1,1,1,0) = 1 and f(0,0,1,1) = f(0,0,0,1) =
f(0,0,1,0) = 0. The situations in which the above conditions are
broken never happen. For those situations, Rf1f2···f16 = 0.

Similarly if f13 = f(1,1,0,0) = 0, which implies that action D
has been chosen, then f(0,1,0,0) = f(1,0,0,0) = 0 and f(0,0,1,1) =

f(0,1,1,1) = f(1,0,1,1) = 1. Therefore Rf1f2···f16 = 0 for the situations
where the above condition is not satisfied.

As a result the dimension of the equation system reduces to
29 − 1, which can computationally be handled.

Note that the solution depends on the frequencies of norms
in the population. In Figure 1, we can compare an image matrix
obtained by an individual simulation with an image matrix
calculated by the above mentioned method with all frequencies
equal: xi = 1/16. We see that the simulation and the analytic
method generate parallel results.

Time Evolutions of Norms
Frequencies of norms in a population change in time, based on
its adaptive architecture. The equations describing such changes
depend on payoffs. Therefore the calculating image matrices by
the above mentioned method makes it possible to investigate the
evolution of multiple norms caused by both switching processes,
replicator dynamics and genetic algorithm.

In Figure 2A, we show a typical pattern of time evolutions
of norms produced by (ordinary) replicator-mutation dynamics
for a case where cooperation is achieved. Figure 2B shows its
initial part (the first 100 steps). Similarly in Figure 3, a time
series produced by (ordinary) genetic algorithm (for a case where
cooperation is reached) and its initial part (the first 30 steps) are
displayed. We note that whether or not the population evolves
to cooperation depends on initial conditions. It can happen
that a population evolves into non-cooperative states in both
architectures. In this paper, we discuss typical situations in which
cooperation is achieved.

As Figures 2B, 3B show, initial parts of both architectures
are similar, in that the cooperation rate declines at first as
defective norms such as AD (blue solid line) and Shunning (SH;
green dashed line) pervade in the population. But they gradually
decrease and alternatively the frequency of Stern-Judging (SJ; red
dashed line) rises. In parallel, the cooperation rate increases.

However the long-term behavior of Stern-Judging differs in
both architectures. In replicator dynamics, Stern-Judging gets a
majority after defective norms have disappeared and cooperation
has been realized. This trend after the transition between non-
cooperative states and cooperative states is preserved stably
(Figure 2A). In genetic algorithm, Stern-Judging gets a majority
during the transition but it becomes extinct when cooperation
has been achieved.

Generally, from Figure 3A, we see that genetic algorithm
prefers tolerant norms to strict norms in cooperative states. In
fact, after cooperation has been established, AC (the 16th norm;
green dotted line) gets a majority and the 15th norm (blue dotted

line) is the second best, then the 14th (Simple-Standing= SS; gray
dashed line) and the 13th (Image-Scoring = IS; yellow dashed
line). The more tolerant a norm is, the higher the frequency of
the norm becomes in the population.

But this is not true for replicator dynamics. In replicator
dynamics, Stern-Judging (red dashed line) is the best, Simple-
Standing (gray dashed line) is the second best and Image Scoring
(yellow dashed line) is the third. All these norms are well-known
in the literature. Note that in both architectures, Image-Scoring
survives in the long run. This is a significant finding since, in
literature, Image-Scoring is known as an unstable strategy [32]
and is not included in the leading eight [21].

Figure 4A shows a typical pattern of time evolutions of norms
produced by replicator dynamics with multiple models for a
case where cooperation is achieved. Its initial part (the first
500 steps) is shown in Figure 4B. We see that the evolutionary
path is similar to that of ordinary genetic algorithm (Figure 3)
rather than ordinary replicator dynamics (Figure 2). Conversely,
a typical pattern of time evolutions of norms produced by genetic
algorithms with a single parent (Figures 5A,B) is similar to that
of ordinary replicator dynamics. Thus in Figure 4, Stern-Judging
becomes extinct and in Figure 5, Stern-Judging gets a majority in
the end.

DISCUSSION

In the last section we found that the norm ecosystems based
on different architectures show similarity and dissimilarity.
Although the norm ecosystems investigated here are complex
systems, their analyses enable us to gain deep understanding of
a simple single norm. For instance, an unstable norm, Image-
Scoring, evolves and survives in the melting pot of competing
norms regardless of architectures individuals are based on. This
insight cannot be obtained if we solely analyze the single norm.

The main difference of the two representative architectures
(ordinary replicator dynamics and genetic algorithm) appears
in the roles of Stern-Judging, whose local stability is well-
studied in the literature. The analysis revealed that Stern-
Judging wins the competition against other norms and stays
alive in ordinary replicator dynamics even after cooperation
is achieved. That is, Stern-Judging is not only locally stable
but can evolve from a mixture of diverse norms and gets a
majority in the end as far as ordinary replicator dynamics
is assumed. In this sense, we say that Stern-Judging plays
the role of a “leading” norm in the framework of replicator
dynamics.

This norm also plays a vital role in genetic algorithm since it
gets a majority just before the cooperation rate starts rising. This
occurs because Stern-Judging can defeat defective norms such
as AD or Shunning and can increase its frequency in defective
states. In other words, Stern-Judging kick-starts the evolution
toward cooperation. In Yamamoto et al. [26], in which genetic
algorithm is adopted as an adaptive architecture, it is reported
that cooperation cannot evolve without Stern-Judging. However
it is not a stable leading norm because it becomes extinct after
cooperation has been achieved. Thus Stern-Judging takes a role of
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FIGURE 1 | Image matrix sij (i, j = 1, · · ·16) produced by (A) an individual based simulation and (B) the analytical method described in the text. In order to generate

(A), an individual simulation with 3,200 agents was run (each norm has 200 individuals). In the simulation, each individual plays the donation game as the donor 100

times on average with different randomly chosen recipients (i.e., 320,000 games in total). This number of games is large enough for the process to reach the

equilibrium. After each game, all individuals, following their own norms, assess the donor and label “1” or “0” to the individual. After 320,000 games, the number of

individuals with norm j of whom the individuals with i has image “1” is counted and the number is divided by 200 (total number of individuals with j) to obtain sij . The

value of sij is shown in gray scale, in which white corresponds to “1,” and black to “0”.

FIGURE 2 | A typical pattern of time evolution of norms’ frequencies and the cooperation rate in the population generated by replicator dynamics (A) and its initial part

(the first 100 steps) (B) for a case where cooperation is achieved. Parameters: c = 1,b = 7,µ = 0.05, dt = 0.2.

a “go-between” (defective states and cooperative states) in genetic
algorithm.

But why do these architectures show such different results?
What is the essential difference between the two? In genetic
algorithm, individuals divide norms into smaller parts (bits) and
learn the parts more or less independently (from its mother
and father). So we can call the learning process “analytic.”
For individuals with genetic algorithm, the first bit of a norm
represents pro-sociality of the norm, the second bit tolerance,
the third anti-sociality and the fourth intolerance (i.e., punitive
nature) and they imitate each aspect of their parents, respectively.

On the other hand, individuals based on (ordinary) replicator
dynamics do not analyze norms into parts but treat norms as a
whole. The learning process based on replicator dynamics can

therefore be called “synthetic.” And whether or not the adaptive
architecture is analytic or synthetic has a large impact on the
results.

In fact, we modified genetic algorithm so that an individual
learns how to assess others from only one parent (i.e., the norm
is not divided into parts), and we obtained similar results as
ordinary replicator dynamics. Moreover we extended replicator
dynamics so that an individual decomposes norms into four bits
and imitates each part of different models. As a result, we found
similar results as ordinary genetic algorithm (with two parents).
From these results, we can conclude that whether Stern-Judging
can survive in a long run in cases where cooperation is achieved
does not depend on switching processes (i.e., whether replicator
dynamics is assumed or genetic algorithm is used). But it relies
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FIGURE 3 | A typical pattern of time evolution of norms’ frequencies and the cooperation rate in the population generated by genetic algorithm (A) and its initial part

(the first 30 steps) (B) for a case where cooperation is achieved. Parameters: c = 1,b = 7,µ = 0.01, dt = 1.

FIGURE 4 | A typical pattern of time evolution of norms’ frequencies and the cooperation rate in the population generated by replicator dynamics with multiple models

(A) and its initial part (the first 500 steps) (B) for a case where cooperation is achieved. Parameters: c = 1,b = 7,µ = 0.005, dt = 0.2.

FIGURE 5 | A typical pattern of time evolution of norms’ frequencies and the cooperation rate in the population generated by genetic algorithm with a single parent

(A) and its initial part (the first 60 steps) (B) for a case where cooperation is achieved. Parameters: c = 1,b = 7,µ = 0.01, dt = 1.
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on whether norms are treated as a whole or “bit-wise” in the
corresponding switching processes.

In spite of the findings mentioned so far, we have to remark
that much remains to be studied. The model studied in this
present research especially has many limitations, which offers
some tasks for future research from physics perspectives. First of
all, we omitted implementation errors in the model to simplify
the analysis. Whether and how errors change the results is
interesting and necessary research yet to be done.

Moreover we assumed well-mixed populations in the analysis
and ignored the effects of structured populations and group
formations on cooperative behaviors of individuals. Recently
interactions between heterogeneity of populations and reciprocal
behaviors are investigated from physics viewpoints. For example,
Nax et al. [38] studied interactions among groups and found
that how important roles Image-Scoring plays for cooperation
to emerge relative to “group scoring” depends on the population
size. And Szolnoki et al. [39] introduced facilitators, a special
type of players, on interaction networks and showed that the
facilitators reveal the optimal interplay between information
exchange and reciprocity. These studies provide evidence
that structured populations in fact affect reciprocal functions.
Inversely, some papers showed that indirect reciprocity affects
population structures. For instance, it is reported that indirect
reciprocity can function as a boosting mechanism of group
formation and in-group favoritism, which is another aspect of
cooperation [40–43].

Another factor that is out of scope in this research is
the imperfectness of information. From the players’ viewpoint,
although the same interaction can be interpreted differently by
players with distinct norms, different individuals that share the
same norm always have the same opinion since all individuals

are based on the same information in the model. In the literature,
the imperfectness of information has been studied in several ways
[29, 30, 33, 44–46] and examining the effect of such imperfectness
may lead us to understand the moral ecosystem more deeply.
Obviously this present paper is just a first step to theoretically
investigate the competition and cooperation among multiple
norms.
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